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Abstract

Given the finite abelian group G and a positive integer k, the
k-barycentric Olson constant, denoted by BO(k,G), is the smallest
positive integer g such that every set of cardinality ¢ in G contains
a subset with k& elements {aj,as,...,a;} that satisfies the following
property:Zf:1 a; = ka; for some j € {1,2,...,k}. Such a subset with k&
elements is called k-barycentric and the element a; corresponding to the
set is called k-barycenter. The k-barycentric Olson constant has been
studied in cyclic finite abelian groups, however this constant has not
been studied in non-cyclic finite abelian groups. In this paper some re-
sults are shown for the k-barycentric Olson constant in non-cyclic finite
abelian groups [[;*, Z, where p is a prime number and an algorithm
for calculating BO(k, [[;~, Z2) is presented.
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1 Introduction

Let G be a finite abelian group of order n and S be a sequence of elements
in G, i.e., the repetition of elements is allowed and the order of placing of the
elements is not considered. Given S C G a sequence or set, let |S| be the
length or cardinality of S and > (S) ={>_ c,a:0#ACS} If> ,a=0
one says that A is zero-sum.

The first known result on zero-sum problems is called by Erdos Prehistoric
Lema: Let G be an abelian group of order n. Then any sequence of n elements
contains a zero-sum subsequence. Erdos et al [4] have the following theorem:
Any sequence of 2n—1 elements in an abelian group of order n contains a zero-
sum n-subsequence. This result is the fundamental basis in the development
of the research area called Zero-Sum Problems, which is immersed in the field
of Combinatorial Theory and, therefore, uses many results of the theory and
basic tools.

Weighted sequences, i.e., sequences constituted by terms of the form w;a;
where the a;’s are elements of G and the coefficients or weights are positive
integers, appear initially in the Caro conjecture [1].

Hamidoune [6] proved partially that conjecture which was later demon-
strated by Grynkiewicz [5]. The fact that Hamidoune partially prove the
Caro conjecture, allowed Ordaz to introduce the concept of k-barycentric se-
quences: Let G be an abelian group of order n > 2 and A be a finite set with
|A] > 2. A sequence f : A — G is barycentric if there exists a € A verifying
Yoaf =1A|f(a). The element f(a) is called barycenter. When |[A| = k we
talk about k-barycentric sequences and when f is injective we can use the
expression k-barycentric set.

For example, in the non-cyclic finite abelian group

3
]2 = Z2 x Z» x Z, = {000, 010,100, 110,001, 011, 101, 111}
i=1
of order 8, the set {000,010, 100, 110} is 4-barycentric because
000 & 010 @ 100 & 110 = 000 = 4 - (000)

and 000 is barycenter.
However, the set {000,010, 100,001} is not 4-barycentric since

000 & 010 @ 100 & 001 = 111 ¢ {4 - (000),4 - (010),4 - (100), 4 - (001)}.

The definition of barycentric sequences initiates the barycentric problems.
It is important to note that barycentric sequences generalize the sequences of
zero-sum when their lengths are a multiple of the order of the group where
they are defined.
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Barycentric sequences are studied in [2, 3, 7, 8, 9, 10]. In [2] and [3] the
study of these sequences begins. In [7] some observations of the barycentric-
sum problems on cyclic groups are shown. In [8] the k-barycentric Olson
constant, BO(k,G), is studied; it is defined as the smallest positive integer
q such that every g-set in G contains a k-barycentric subset. An algorithmic
method based on matrix theory to calculate BO(k,Z,) for 3 < n < 23 and
3 < k < nis given in [9]. An algorithmic method based on the theory of
orbits for the calculation of the constant Z,, for 3 <n <12 and 3 < k < n is
given in [10]. In this paper some results of the k-barycentric Olson constant
in noncyclic finite abelian groups [];", Z, are shown and an algorithm for the
calculation of BO(k,[[}~, Z,) is presented. Some results of this constant for
the non-cyclic finite abelian group [[", Z, with p > 3 a prime number are
also included.

2 Preliminary Results

Proposition 2.1. If m > 2 is an integer and k is an even integer such that
3<k<2m thenVx €[[*,Zs: k-x=e, wheree=(0,,...,0).

Proof. Let k = 2w for some w € N and = € [[", Z,. Then
k-x=Q2u)-z=2-(w-z)=2-y=c¢,
where w-x =y € [\, Zy. Therefore, Ve € [[" Zy: k- -z =e. O

Proposition 2.2. If m > 2 is an integer and x,y € [[~, Zy such that
x #y, thenx @y #e.

Proof. Let x,y € [/~ Zs such that z # y.
r#y=>3je{l,2,.m}3z;#y;=z;+y,=1l=cdyFe.
Therefore, x @& y # e. O
As an immediate consequence of propositions 2.1 and 2.2, we have
Corollary 2.3. If m > 2, then BO(2,][;~, Z2) does not exist.
Proposition 2.4. If m > 2 is an integer, then GBxEH?;lZz r=e.

Proof. Let [[, Zy be the noncyclic finite abelian group of even order 2.
Among the 2™ elements of [[" | Z,, there are exactly 2"~ ! that have a 1 in
i-th component, for i = 1,2,...,m. Since 2! is even, then the sum of the 2™
elements results 0 in every component. Therefore, @wem’;l 7, T =€ O



1454 Henry Marquez, José Salazar and Felicia Villarroel

Proposition 2.5. If m > 2 is an integer and k is an odd integer such that
3<k<2m—1, thenVe € [[[XZy: k-2 =ux.

Proof. Let k = 2w + 1 for some w € N and = € [[}*, Zy. Then
k-x=QRQ2uw+1)-2=Q2uw) - 2@zx=2-(w-z)Pr=edz =z
Therefore, Vo € [[[%,Zo : k-2 = x. O

Proposition 2.6. If m > 2 is an integer and A = [[*, Zy — {z}, then

Pocaa =z

Proof. Let A = [[";Zy, — {z} and 2 the opposite of z. Since z' = z and
eawél_[”ll% x = e, then

e = @ x:@a@zﬁ@a@z:e:@a:e@z,

z€[I™, Za acA a€A acA
/
= EB a=z = GB a=z.
acA acA
Therefore, @, 4 a = =. O

Proposition 2.7. If m > 2 is an integer and p > 3 is a prime number,
thenVa €[], Zy: (" — 1) -z =2, where x is the opposite of .
Proof. Let x € [, Z,. Then

/

e=p"x=0p"-1)-x@dr=>0pP"-1)-cdr=e=(p"—-1)-x=1.

’

Therefore, Vo € [, Z, : (p" — 1) -z =x . O

Proposition 2.8. Ifm > 2 is an integer and A = [[;", Z,—{z} withp > 3,
then @ 0 =72

Proof. Let z € [[i*,Z, and A =[], Z, — {z}. Then

e = @ $:@a@22>@a@2’:6=>@a22,.

z€[[i2, Zp a€A acA acA

Therefore, P, ,a =z . O
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3 Main Results

Given m > 2 an integer, let [[", Zs be the noncyclic finite abelian group of
even order 2™ and Z, be the cyclic finite abelian group of order n. When
[[:X, Zy and Z, have the same order, it happens that for some values of F,
the constants BO(k, H?:1 Zs) and BO(k,Z,,) are different. For example, when
k = 8, one has that BO(8, Zg) does not exist but BO(8, [[_, Zs) = 8 and when
k = 7, one has that BO(7,Zg) = 7 but BO(7, [[>_, Z3) does not exist. Similar
results apply more generally to the 2"-barycentric and (2™ — 1)-barycentric
Olson constants, for every integer m > 2.

Theorem 3.1. If m > 2 is an integer, then BO(2™, [\~ Z2) = 2™.

Proof. Since []I", Zs has 2™ elements, it is the only set to consider. By propo-
sition 2.4, the sum of its elements is e, which, by proposition 2.1, can be
obtained as 2™ -z for any x in the set. Therefore, BO(2™, |2, Zs) = 2™. O

As an immediate consequence we have

Corollary 3.2. Let m > 2 be an integer and k be an even integer, 2 < k <
2" and A be a subset of [[\-, Zs with cardinality k. Then A is k-barycentric

if and only if @,c4a=e.

Theorem 3.3. If m > 2 is an integer, then BO(2™ — 1,[[;~, Z2) does not
exist.

Proof. Let ([[;%, Z2, ®) be the noncyclic finite abelian group of order 2™ and
A =TI, Zy — {z} be any subset of odd cardinality 2™ — 1 from [[;", Z,. By
Proposition 2.5, it holds that Ya € A : (2™ —1)-a = a and by Proposition 2.6,
we have that @, ,a = z.

Then

VaeA:@a#@m—l)'a,

acA
i.e., [[i2, Zy does not contain any (2™ — 1)-barycentric subset. Therefore,
BO2™ —1,1[%, Z>) does not exist. O

As an immediate consequence we have

Corollary 3.4. Let m > 2 be an integer and k be an odd integer, 3 <
k < 2™ —3, and A be a subset of [~ Zy with cardinality k. Then A is
k-barycentric if and only if there exists x € A such that @ ., a = x.

Theorem 3.5. If m > 2 is an integer, then BO(2™ — 2, ][~ Z2) does not
exist.
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Proof. Let ([~ Z2,®) be the noncyclic finite abelian group of order 2™ and
A=1I[",Zy — {y, 2z} be any subset of even cardinality 2" — 2 from [[;", Z,
with y # z. By Proposition 2.1, we have that YVa € A: (2" —2)-a =e.

Moreover,
e = @ x:@a@y@z:>@a@y@z:e:>@a:(y@z)/
z€[[%, Z2 a€A acA ac€A
#@a:yl@zlé@a:y@z%e
acA acA
i@a#e.
acA
Thus

VacA:@Pa#(2"-2)-aq

a€A

ie., [[X, Zy does not contain any (2™ — 2)-barycentric subset. Therefore,
BO(2™ —2,1[, Zs) does not exist. O

Theorem 3.6. If m > 2 is an integer, then BO(3,[[;, Zs) does not exist.

Proof. Suppose BO(3,[[;%, Z2) = ¢ with 3 < g < 2™, e.., every ¢-set A in
[[;%, Z> contains a 3-barycentric subset B = {z,y,z} con © # y # z. By
Corollary 3.4, there exists b € B such that t &y @ 2z = 0.

Since in ]}, Zs it holds the cancellation law, then

ydz=e V rPz=ce€ V TDyY = e,
which contradicts the Proposition 2.2. This proves the theorem. O

Theorem 3.7. Let m > 2 be an integer and k be an even integer such that
4 <k<2m—4. If BO(k, ][~ Zs) = q with ¢ > k, then BO(k+1,[]", Zs) =
q.

Proof. Suppose BO(k, [~ Z2) = q with ¢ > k, e.i., every ¢g-set A in [[]" Z,
contains a k-barycentric subset B. By Corollary 3.2, @, ;b = e.
Let C'= BU{x} be subset of odd cardinality £+ 1 in A, where x € A — B
and k+1 <q.
As
@c:@b@$:e®x:x,
ceC beB
then by Corollary 3.4, C'is a (k + 1)-barycentric subset of g-set A C []1", Zo,
el, BO(k+1,1[, Zs) <q.
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Suppose BO(k + 1,1[*, Zs) = ¢ with ¢1 < ¢, e.d., every gi-set A; in
[[;%, Zy contains a (k + 1)-barycentric subset B;. By Corollary 3.4, there
exists © € By such that Q.5 b =.

Let Cy = By — {z} be subset of even cardinality k in A; C [[}", Z,, where
E<k+1<q <q.

As

@c: @ b=e;

ceCy bEBl—{z}

then by Corollary 3.4, C; is a k-barycentric subset of g¢i-set A;, e..,
BO(k,[1X,Zy) < ¢q1 with ¢; < ¢, which contradicts the hypothesis of the
theorem. This proves the theorem. O]

Given m > 2 an integer and p > 3 a prime number, let [[;", Z, be the
noncyclic finite abelian group of odd order p™ and Z,, be the cyclic finite abelian
group of order n. When [[", Z, and Z,, have the same order, it occurs that
for some values of &, the Olson constants for [[!", Z, and Z, are equal. For
example, when k = 9, one has BO(9,Zy) = 9 and BO(9,H?:1 Z3) = 9, and
when k = 8, one has that BO(8, Z¢) and BO(8,[[-_, Z3) do not exist. Similar
results apply more generally to the p™-barycentric and (p™ — 1)-barycentric
Olson constants, for every integer m > 2 and for all p > 3.

Theorem 3.8. If m > 2 is an integer, then BO(p™, [\~ Z,) = p™.

Proof. Since [[;~, Z, has p™ elements, it is the only set to consider. To calcu-
late the sum of its elements, it is enough to observe that, since p is not even,
the opposite of each element is different from itself, excepting only the neutral

e. Hence,
D -

z€][i%q Zp

On the other hand, since p™ is a multiple of p, then

m
V:L‘EHszpm-x:e.
i=1

Thus m
HQTGHZp: @ :pm‘x’
i=1 ze[[, Zy
implying that BO(p™, [, Z,) = p™. .

Theorem 3.9. If m > 2 is an integer, then BO(p™ — 1,[[;~, Z,) does not
exist.
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Proof. Let’s see that no subset of cardinality p™ — 1 is (p™ — 1)-barycentric.
Indeed, by Proposition 2.8, the sum of the elements of the subset is equal
to the opposite of the element that does not belong to the subset; while, by
proposition 2.7, the product of p™ — 1 times any element of the subset is the
opposite of that element. By the property of uniqueness of the opposite in
[1:%, Z,, the opposite of the element outside the subset cannot be equal to the
opposite of an element in the subset. Thus, there is no (p™ — 1)-barycentric
set. Therefore, BO(p™ — 1,][*, Z,) does not exist. O

Proposition 3.10. If m > 2 is an integer, p > 3 is a prime number and k
is a odd number such that 3 < k < p™, then BO(k,[[;", Z,) exists.

Proof. Since, by Theorem 3.8, we have that BO(p™, [~ Z,) = p™, let con-
sider k£ to be an odd number such that 3 < k < p"™ — 2. Define the subset
A of cardinality k£ in [[*,Z, by A = B U {e} where B is a subset of even
cardinality k—1in [[}", Z, consisting of % elements x # e jointly with their
respective opposites ' # e, so that Db =ce.

Then
@az@b@@zeGBe:e
acA beB
Moreover, de € A: k-e=ce.
Thus
EIxGA:@a:k:-m,
acA
implying that [[",Z, contains a k-barycentric subset, i.e., BO(k,[[;%, Z,)
exists. []

Proposition 3.11. If m > 2 is an integer, p > 3 is a prime number and k
is an even multiple of p such that 3 < k < p™, then BO(k,[[*, Z,) exists.

Proof. Given k an even multiple of p such that 3 < k < p™, let A be a subset
of cardinality k in [[;", Z, formed by g elements x # e jointly with their g
opposites = # e. Then Dcaa=c

Since k is a multiple of p and A C [[1", Z,, thenVz € A: k- -z =e.

Thus

EIxEA:@a:k-x,
acA

implying that [[,Z, contains a k-barycentric subset, i.e., BO(k,[[.", Z,)
exists. [

As an immediate consequence of propositions 3.10 and 3.11, we have

Corollary 3.12. If m = 2 and k is a number such that 3 < k < 9 and
k # 8, then BO(k,[1-_, Zs) ewists.
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4 Method for calculation of BO(k,[[", Z>)

Suppose you want to calculate BO(k, [[\~, Zo) with Zy = {0,1}, m > 2 a
positive integer and 3 < k < 2™. First, you compute the number 5 = 2™,
which represents the order of the set [[;*, Zs. Then you check whether the
conditions of the theorems are true: (1) If m > 2, then BO(3, [[\~, Z2) does not
exist. (2) If m > 2, then BO(2™—2,[[;%, Z2) does not exist. (3) If m > 2, then
BO(2™ —1,]1%, Z5) does not exist. (4) If m > 2, then BO(2™,[[\%, Zy) =
2™ Otherwise, you construct the set [[", Zs and compute the number of
combinations without repetition of elements from [[}" | Z,, taken k by k, using

the formula ()7«) = Wlk)'
You form, one by one, the (i) sets of cardinality k in []", Zs and check

at once whether they are k-barycentric or not. If they are all k-barycentric,
the method ends, and you get BO(k, [[.~, Zs) = k. Otherwise, you assign to
a variable ¢ the value k+ 1, you compute the number of combinations without
repetition of the j elements of []\", Z, taken ¢ by ¢, which is ({1) = q!(jjiq)!,
and the number of combinations without repetition of the ¢ elements of the

corresponding sets taken k by k, which is (z) = ﬁik)!.

You form, one by one, the (f] ) sets of cardinality ¢ in [[}*, Zs and for each

of them, you form, one by one, the (q)

1) subsets of cardinality k£ and check
whether they are k-barycentric or not. If all sets of cardinality ¢ contain some
k-barycentric subset, then the method ends and you get BO(k, [~ Z2) = q.
Otherwise, ¢ is increased by 1 and the process continues. The final level is
reached when ¢ exceeds j, in which case the method has ended and BO(k, [ [, Z2)

does not exist

5 Application of the method

Let’s see how you get BO(4, Hle Zs) = 5 using the method. First, you
compute the number j = 2™ = 23 = 8, which is the order of the group
H?:1 Zs. Since 4 ¢ {3,6,7,8}, the conditions of the theorems 3.1, 3.3, 3.5 and
3.6 are not met and you construct the set

3
I z> = {000,010, 100, 110,001,011, 101, 111}.
=1

The number of its subsets with 4 elements is (i) = 70. You have to check
each one of these 70 subsets to see if it is 4-barycentric, but when you arrive
at {000,010, 100,101}, you get a subset that fails to be 4-barycentric, because

000 & 010 & 100 & 101 = 011 ¢ {4 - (000), 4 - (010),4 - (100),4 - (101)} = {e}.
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Then, you does not need to check the remaining subsets, you know that
the Olson constant is not 4. So you consider ¢ = k + 1 = 5; there are (g) = 56

sets of cardinality 5 in Hle Zs, each of which allows for (i) = 5 subsets of

cardinality 4. It so happens that for each of the 56 sets, you find one of its
subsets to be 4-barycentric (these 56 findings are not reported here for lack of
space). Thus, the method ends, and you get BO(4, [[>_, Z,) = 5.

6 Algorithm for the calculation of BO(k, ][], Zs)

Begin
Input: m > 2 and k > 2 positive integers
Assign to the variable j the value 2™
ftk=3 Vv k=757—-2 V k=j75—1,then
Out: BO(k,[]:~, Z3) does not exist
Else
If k=7, then
Out: BO(k, [, Zy) =k

Else

Construct the set [[[", Zo = Zo X Zy X ... X Ly

m factors

Assign to the variable d the value Wlk)'
Initialize the variable r with 1
While r < d do

Determine the k-subset S, in []1", Z,

If S, is not k-barycentric,

Assign to the variable r the value d + 2
Else

Assign to the variable r the value r + 1
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End If
End While
Ifr=d+1, then
Out: BO(k, |12, Z,) =k
Else
Assign to the variable ¢ the value k + 1
While ¢ < 5 do

Assign to the variable r the value 1

Assign to the variable d the value 7

Assign to the variable e the value
While r < d do
Determine the g-set C, in [, Z,
Assign to the variable [ the value 1
While | < e do
Determine the k-subset S; of C,
If S; is k-barycentric, then
Assign to the variable [ the value e + 2
Else
Assign to the variable [ the value [ + 1
End If
End While
If | =e+ 2, then
Assign to the variable r the value r + 1
Else

Assign to the variable r the value d + 2

1461
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End If
End While
If r =d+ 1,then
Out: BO(k,[12,2Z,) = ¢
If k£ is even,then
Out: BO(k+ 1,1[%,Z2) = ¢
End If
Assign to the variable j the value j + 2
Else
Assign to the variable ¢ the value ¢ + 1
End If
End While
If g=7+1, then
Out: BO(k,[]:~, Z>) does not exist
End If
End If
End If
End If

End Algorithm.

7 Exact Values of BO(k,[[", Z>)

The manual procedure to calculate some values of the BO(k, [[~, Z2) is long
and tedious, and many times humanly impossible to obtain. This reason led us
to develop and program in MuPAD an algorithm that calculates these values;
MuPAD is a program designed to assist in performing mathematical calcula-
tions and graphs. Program execution threw the values obtained manually and
other securities; which we show in the following table:
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Value of m | Value of k | BO(k,[[", Z»)
9 3 does not exist
4 4
3 does not exist
4 5
3 5 5
6 does not exist
7 does not exist
8 8
3 does not exist
4 7
5 7
6 10
7 10
8 11
9 11
4 10 13
11 13
12 13
13 13
14 does not exist
15 does not exist
16 16
3 does not exist
26 29
27 29
5 28 29
29 29
30 does not exist
31 does not exist
32 32

Table 1: Exact Values of BO = (k,[[", Z,), for m = 2,3,4,5.

The values of BO(k,[[_, Z,) that are missing in table 1 could not be
calculated due to insufficient memory on the computer. What follows now is
to use high computer computations to obtain new values this constant. Then
analyze it to try to obtain other algebraic results that will allow us improve
the algorithm.

We propose the following:

Conjecture 7.1. If m > 2 be an integer and k be an integer such that
4 <k <2m™—3, then BO(k,[[", Z2) exists.
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Conjecture 7.2. Let m > 2 be an integer and k be an integer such that
4 <k<2m—=3. If BO(k,][;",Z2) = q1 and BO(k + 1,[[}%, Zs) = q2, then
@1 < Q.
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