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Abstract 

 

Quasi-affine Kac-Moody algebras is a special class of indefinite type of 

Kac-Moody algebras. In this paper, a family of quasi-affine Kac-Moody algebras 
(1)

2QAC  is considered. These quasi-affine algebras are realized as a graded Lie 

algebra of Kac-Moody type. Using the homological and spectral sequences theory  

homology modules upto level three are computed and a study on the structure of 

these algebras is undertaken. The classification of Dynkin diagrams for a 

particular family of (1)

2QAC is also given. 

 

Keywords: Generalized Cartan Matrix, Dynkin diagram, imaginary root, quasi 

hyperbolic, quasi affine, Kac-Moody algebras, spectral sequences. 

 

 

1 Introduction 
 

Kac-Moody Lie algebras is one of the rapidly growing fields of mathematical 

research due to the interesting connections and applications to various fields of 

Mathematics and Mathematical Physics, Combinatorics, Number Theory, 

Non-linear differential equations, etc. Among the broad classification of Kac 

Moody algebras into finite, affine and indefinite types, a lot of work has been 

carried out for the finite and affine type of Kac-Moody algebras, whereas a deeper  
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study on the structure of indefinite Kac-Moody algebras is yet to be given 

completely. 

Understanding the structure and determining the multiplicities of roots, 

explicitly for indefinite Kac-Moody algebras is still an open problem. In [2], 

Feingold and Frenkel computed level 2 root multiplicities for the hyperbolic 

Kac-Moody algebra 
(1)

1HA . Kang([5]-[8])  studied the structure and obtained the 

multiplicities for roots upto level 5 for
(1)

1HA and for roots upto level 3 for 
(2)

2HA  

and  root multiplicities are determined for the indefinite type of Kac-Moody 

algebra (1)
nHA . In [12] Sthanumoorthy and Uma Maheswari introduced a new 

class of indefinite type, namely extended – hyperbolic Kac – Moody algebras. In 

([11], [13], [15]), determined the multiplicities of roots for specific classes of 

extended–hyperbolic Kac–Moody algebra 
(1)

1EHA and )2(

2EHA were determined.    

 Another class of indefinite non-hyperbolic Kac-Moody algebra called 

Quasi-Hyperbolic was introduced by Uma Maheswari [16]. In ([17], [18]), Uma 

Maheswari considered two specific classes of indefinite non-hyperbolic 

Kac-Moody type
2QHG  and (1)

2QHA  and determined the structure of the 

components of the maximal ideal upto level 3. In [19], Uma Maheswari 

introduced another class of indefinite type, the quasi-affine Kac Moody algebras 

and studied about the Dynkin diagrams and properties of roots and obtained a 

realization for the quasi-affine family QAG2 
(1) 

In this work, we are going to consider a class of a Quasi-Affine indefinite type 

of Kac-Moody algebra (1)

2QAC ; We give a classification of Dynkin diagrams of 
(1)

2QAC . We then give a realization for a specific class of (1)

2QAC , associated 

with the GCM 
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 where a, b, c, l, m, n Z+ as a graded Lie 

algebra of Kac-Moody type. Then using the homological techniques developed by 

Benkart et al. and Kang, [1] we compute the homology modules and determine 

the structure of the components of the maximal ideal up to level five. 

 

2 Preliminaries 
 

We recall some preliminary definitions and results on Kac-Moody algebras and 

for further details one can refer to Kac [4] and Wan [20].  

 

Definition 2.1 [10]:  An integer matrix 
n

jiijaA 1,)(   is a Generalized Cartan 

Matrix (abbreviated as GCM) if it satisfies the following conditions: 

(i) aii = 2    i =1,2,….,n ; ii) aij = 0    aji = 0   i, j = 1,2,…,n 

(ii) aij  0   i, j = 1,2,…,n. 
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Let us denote the index set of A  by N = {1,…, n}. A GCM A  is said to 

decomposable if there exist two non-empty subsets I, J   N such that I  J = N 

and aij = aji = 0   i I and j J.  If A is not decomposable, it is said to be 

indecomposable.    

Definition 2.2 [4]: A realization of a matrix 
n

jiijaA 1,)(   is a triple ( H, , v ) 

where l is the rank of A,  H is a  2n - l dimensional complex vector space, 

},...,{ 1 n  and v },...,{ 1

v

n

v   are linearly independent subsets of  H* and 

H respectively, satisfying  
ij

v

ij a)(  for i, j = 1,….,n.    is called the root 

basis. Elements of    are called simple roots. The root lattice generated by    is

.
1

i

n

i

ZQ 


  

 

Definition 2.3[4]: The Kac-Moody algebra g(A) associated with a GCM 
n

jiijaA 1,)(   is the Lie algebra generated by the elements ei , fi, ni ,...,2,1  and H  

with the following defining relations :  

 

N    ji,  j,i   ,0)(;0)(

,,)(],[;)(],[;],[;,,0],[

11

''







j

a

ij

a

i

jjjjjj

v

iijji

fadfeade

NjifhfhehehfeHhhhh

ijij


 

 

The Kac-Moody algebra g(A) has the root space decomposition 

)()( AgAg
Q



 }.,)(],/[)({)( where HhallforxhxhAgxAg  

An 

element  ,  0   in Q is called a root if 0g . Let .
1

i

n

i

ZQ 


  Q has 

a partial ordering “ ” defined by    if   Q where Q  , .  

Let ))(( A  denote the set of all roots of g(A) and 
  the set of all 

positive roots of  g(A). We have  and    
  .  

 

Definition 2.4 [4]: A GCM A is called symmetrizable if DA is symmetric for 

some diagonal matrix D = diag(q1,…,qn), with qi> 0 and qi’s are rational numbers. 

Proposition 2.5 [4]:A GCM n

jiijaA 1,)(    is  symmetrizable if  and  only  if  

there exists an invariant, bilinear, symmetric, non degenerate form on g (A). 

Definition 2.6[4]: To every GCM A is associated a Dynkin diagram S (A) defined 

as follows: (A) has n vertices and vertices i and j are connected by max {|aij|, |aji|} 

number of lines if aij. aji4 and there is an arrow pointing towards i if |aij| > 1. If   

aij. aji> 4, i and j are connected by a bold faced edge, equipped with the ordered 

pair (|aij| , |aji|) of  integers. 
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Theorem 2.7 [20]: Let A be a real n x n matrix satisfying (m1), (m2) and (m3).    

 (m1) A is indecomposable; (m2) aij ≤ 0 for i ≠ j; (m3) aij = 0 implies aji =0.Then 

one and only one of the following three possibilities holds for both A and tA: 

(i) det A  ≠ 0; there exists u  > 0 such that A u > 0; Av ≥ 0 implies v > 0 or v = 0;  

(ii) co rank A=1;  there exists u > 0 such that  Au = 0; Av ≥ 0 implies Av = 0; 

(iii) there exists u > 0 such  that Au < 0; Av ≥ 0, v ≥ 0 imply v = 0 . 

Then A is of finite, affine or indefinite type iff (i), (ii) or (iii) (respectively) is 

satisfied. 

 

Definition 2.8 [20]:  A  Kac- Moody algebra  g(A) is said to be of finite, 

affine or indefinite type if the associated  GCM A is of finite, affine or indefinite 

type respectively.  

General construction of graded Lie algebra (Benkart et al. [1], Kang [5]): 

Let us start with G, the Lie algebra over a field of characteristic zero. Let V, V   

be two G – modules. Let   : V’  V  G be a G – module homomorphism.  

Define VGVGGG   110 ,, ;

 



 
1n

nGG  (resp. 


 
1n

nGG ) denote the free 

Lie algebra generated by  V    (respectively, V); Gn (respectively, G-n) for n > 1 

is the space of all products of n vectors from V   (respectively V). Then  







n nGG can be given a Lie algebra structure. By extending this Lie bracket 

operation,  




zn

nGG  becomes a graded Lie algebra which is generated by its 

local part
101 GGG 
.  

 

For n1 define the subspaces, }0) (|{ 1

1  

 xGadGxI n

nn  , define n
zn
II


   

and      
1 1

  ,
n n nn IIII  .Then the subspaces I  , I  and I are all 

graded ideals of G and I is the maximal graded ideal trivially intersecting the local 

part .101 GGG 
Let 

nnn IGL   / , for n > 1; 

Consider  
  IGGIGVVGLL //),,,( 0

...,... 21012   LLLLL where .  ,  , 111100   GLGLGL  
 

Then 
nn LL  becomes a graded Lie algebra generated by its local part V  G 

 V* and L = G / I. By the suitable choice of V (written as the direct sum of 

irreducible highest weight modules), the contragradient V* of V, the basis 

elements and the homomorphism   : V*  V  ge, form the graded Lie algebra 

L = L (ge, V, V*, ψ). For further details one can refer to ([1], [5] ). 

Theorem 2.9[1]: L is a Zn+m –graded algebra. 

 

Theorem 2.10[1]: Let: A(C)  L be the Lie algebra homomorphism sending Ei 

 ei, Fi  fi, Hi  hi. Then  has kernel as I(C) and I(C) is the largest graded ideal 
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of A(C) trivially intersecting the span of H1,…, Hn+m. Also LCICA )(/)(:   

is an isomorphism. 

 

Proposition 2. 11[1]: The matrix C has rank 2n – l and C is symmetrizable. 

We now recall the definition of homology of Lie algebra (Garland and Lepowsky ) 

and Hochschild-Serre spectral sequence (Kang et al. ).Let V be a module over a 

Lie algebra G. Define the space Cq (G, V) for q > 0 of q – dimensional chains of 

the Lie algebra G with coefficients in V to be .)( VGq   The differential  

 

),(),( 1 VGCVGCd qqq   is defined to be 















qs1

sqs1

s

qts1

qts1ts

1ts

q1q

.v,g)g...ĝ...(g1)(

v)g...ĝ...ĝ...g])g,([g1)(v)g...(gd

 

for .,...,, 1 GggVv q   For q < 0, define Cq(G,V) = 0 and dq = 0. Then 

.01 qq dd   The homology of the complex (C, d) = {Cq (G, V), dq} is called the 

homology of the Lie algebra G with coefficients in V and is denoted by Hq (G, V). 

When V = C, we write Hq (G) for Hq (G, C). Assume now that G, V, Cq (G, V) are 

completely reducible modules in the category O over a Kac-Moody algebra g (A) 

with dq having g (A)-module homomorphisms.  

 

Let I be an ideal of G and L = G/I. Define a filtration {Kp = KpC} of the 

complex {C, d} by KpCp+q = {g1  g2  …  gp+q  v | gi  I for p+1 ≤  i ≤  

p+q}.This gives rise to a spectral sequence }EE:d,{E r

1rqr,p

r

qp,r

r

qp,   such that 

V)),(I,H(L,HE qp

2

qp,  where s'Er

qp, are determined by

)EE:)/Im(dEE:Ker(dE r

qp,

r

1rqr,pr

r

1rqr,p

r

qp,r

1r

qp,  


with boundary 

homomorphisms .EE:d r

rq1,rp

r

qp,1r    The modules 
r

qp,E  become stable for r 

> max(p,q +1) for each (p,q) and is denoted by .E qp,


 The spectral sequence 

},{ , r

r

qp dE  converges to Hn(G,V) in the following sense : .),( ,




 qp

nqp
n EVGH

We get the Hochschild-Serre five term exact sequence ([5]): 

 

H2(G,V)  H2(L,H0(I,V)  H0(L,H1(I,V))  H1(G,V)  H1(L,H0(I,V))  0. 

Take L = G/I, where 
nn GG 1  is the free Lie algebra generated by the 

subspace G1 and 
nmn II   the graded ideal of G generated by the subspace Im 

for m  2. Then 
nn LL 1  becomes a graded Lie algebra generated by the 

subspace L1 = G1. 
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Let J = I / [I, I]. J is an L-module via adjoint action generated by the subspace Jm.  

For m  n < 2m, Jn   In. If Im and G1 are modules over a Kac-Moody algebra g(A) 

then Gn has a g(A)-module structure for every ,,),( 1 nGwGvAgx

].,[],[],[ wxvwvxwvx   In also has a similar module structure and we have 

the induced module structure of the homogeneous subspaces Ln, Jn. Then we have 

the following theorem proved by Kang. 

 

Theorem 2.12[5]: There is an isomorphism of g (A) – modules 

),(),( 2 LHJLH jj   for j  1. In particular Im+1  (G1  Im) / H3 (L)m+1.  

 

Now, for arbitrary j  m, set ;)(

njn

j II    then )( jI  is an ideal of G 

generated by the subspace Ij. We consider the quotient algebra L (j) = G/I(j). Let 

N(j)=I(j)/ I(j-1). In this notation L = L(m). Then we have an important relation: 

.)(/)( 1

)(

311   j

j

jj LHIGI And, there exists a spectral sequence {Er
p,q ,dr: Er

p,q 

Er
p-r,q+r-1}converging to )( )(

*

jLH  such that and )()( 1

)1(2

, 

  j

qj

pqp ILHE  

and .)( 3,02,11,20,3

)(

3

  EEEELH j   
 

 

Lemma 2.13[5]: In the above notation, H2(L)  Im. 

Let us recall the Kostant’s formula for symmetrizable Kac-Moody algebras [9]: 

Let S={1,…,s} be a subset of N = {1,…,n} and gs ,the subalgebra of g(A) 

generated by the elements ei,fi, i = 1, …, s and h. Let 
 s denote the set of positive 

roots generated by 1, …, s and .ΔΔ ss

   Then gs has the corresponding 

triangular decomposition: ,nhng sss

  where 


gn
s

s 

  and
  sss  

is the root system of gs. Let
  ss \)( , 


gSn

S )(

)(


  . 

Then g(A) = n(S)  gs  n+(S). Let )}.(/{)( SwWwSW    For  

 h* denote by ),(λV
~

 the irreducible highest weight module over g(A) and V(λ) 

the irreducible highest weight module over gs. 

  

Theorem 2.14[9]:(Kostant’s formula ) ).)(())(),((

)(
)(

~

 




 wVVSnH

jwl
SWw

j  

 

Lemma 2.15[5]: Suppose jrww '  and 1)'()(  wlwl . Then )(SWw  if and 

only if w’  W(s) and (S).Δ)(αw j

  
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3 Quasi -Affine Kac-Moody Algebra (1)

2QAC  
 

In this section, we first define the quasi-affine indefinite Kac Moody algebra 

associated with .QAC(1)

2 We give the classification of Dynkin diagrams 

associated with this quasi-affine family .QAC(1)

2  We then determine the 

structure of indefinite, quasi affine class (1)

2QAC  obtained from the affine family 
(1)

2C .  

Definition 3.1 [16]: Let A=
n

jiija 1,)(   be an indecomposable GCM of indefinite 

type. We define the associated Dynkin diagram S (A) to be of Quasi affine (QA) 

type if S (A) has a proper connected sub diagram of affine types with n-1 vertices. 

The GCM A is of QA type if S (A) is of QA type. We then say the Kac-Moody 

algebra g(A) is of QA type. 

 

The general representation of the GCM of (1)

2QAC  is A = 


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

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where a,b,c,l,m,n are positive integers. This GCM is symmetrizable when 2m/b = 

l/a = n/c. In this case we write A = DB  

 

where D = 


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In the following theorem, we give the classification of the Dynkin diagrams of 

 

of indefinite quasi-affine Kac-Moody algebras .QAC(1)

2
  

 

Theorem 3.2: There are 729 connected Dynkin diagrams associated with the 

indefinite quasi-affine Kac-Moody algebras .QAC(1)

2
  

 

Proof:The Dynkin diagram associated with C2
(1)

 is  

 

By definition , the Dynkin diagram for QAC2
(1) is:  

 

                                                

           

               1    2    3 

                          

 

where      can represent any of the following 9 types of edges: 
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         ,   ,  ,   ,     ,        

        

we obtain a total of 9 × 9 × 9 = 729 possible connected Dynkin diagrams 

associated with QAC2
(1).   

In the next section, we are going to consider a particular family belonging to this 

quasi affine class and study the structure of the graded components of the 

maximal ideal.  

 

By our definition, we note that the fourth vertex added must be connected to each 

of the three vertices in the affine diagram C2 
(1) 

 

Fixing one possible edge for the first link i.e. 1, there are 9 possibilities each for 

the other two links.  

We concentrate only on the connected Dynkin diagrams. Therefore, we obtain a 

total of 9 × 9 × 9 = 729 possible connected Dynkin diagrams associated with 

QAC2 
(1).   

In the next section, we are going to consider a particular family belonging to this 

quasi affine class and study the structure of the graded components of the 

maximal ideal.  

 

 

4 Realization for (1)

2QAC  
 

In this section, we shall give a realization for a family of quasi-affine Kac Moody 

algebras (1)

2QAC  as a graded Lie algebra of Kac Moody type. We begin with the 

affine family (1)

2C .   

                                                  

Consider the Kac-Moody algebra (1)

2C  associated with the GCM A =























210

222

012
. 

 

Let (h, , ) be the realization of A with ={α1,α2,α3}and v ={α1
v
,α2

v
,α3

v} 

representing the set of simple roots and simple co-roots respectively.   

Choose 
'

4  in h * such that . 1)( ,0)( ,0)( 3

'

42

'

41

'

4  vvv     

Define '

4321 )(
2

λ  cba
b

aa   ɛ h*     … (4.1)   

Set α4 = -λ. 

Form the matrix 4

1,),(  jijiC   where 

 .4,...,1,,
),(

),(2
  ,  ji

ii

ji

ji



  
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Then C = 





























2

210

222

012

nml

c

b

a
with 2m/b = l/a = n/c  is the symmetrizable GCM of 

indefinite Quasi - Affine type and let the associated  Kac-Moody algebra G(C) 

be denoted by .QAC(1)

2  

 

Let G be the Kac-Moody algebra associated with the GCM 























210

222

012

 

of the   

affine family .C(1)

2 . Let us take V to be the integrable highest weight irreducible 

module over G with the highest weight λ as defined in (4.1). Let V* denote the 

contragradient module of V and ψ be the homomorphidm as defined in Section 2. 

As in the general construction, form the graded Lie algebra L (Ge, V, V*, ψ).  

Then g(C)L   and L is a symmetrizable Kac-Moody algebra of Quasi- affine 

type associated with the GCM C (Proposition 2.11). Thus we have given the 

realization for this quasi affine family as a graded Lie algebra of Kac Moody type.

  

Next to understand the structure of these Kac Moody algebras, we apply the 

spectral sequences and homological techniques developed be Benkart, et.al. [1, 5].  

First, we compute the homology modules of the Kac-Moody algebra for .QAC(1)

2

We note that, from the realization of L =
(1)

2QAC  as IGLLLL /01  
 and 

using the involutive automorphism, it is sufficient to study only about the negative 

part ./   IGL   

 

5 Computation of Homology Modules   

 

Let S = {1, 2, 3}  N = {1, 2, 3, 4}.  Let gs be the Kac-Moody Lie algebra of

,C (1)

2 which is the subalgebra of QAC2 
(1).  Let ΔS

+ denote the set of positive roots 

generated by {α1, α2, α3} and - ΔS
+= Δ+

S, Δ± (S) = Δ± \ Δ- S.
 

The only reflection of length 1 in W(S) is r4. 

r4 (ρ) = ρ – α4; r 4 (ρ) – ρ= – α4     H1 (L-)  V (-α4). 

The reflections of length 2 in W(S) are r4r1, r4r2 and   r4r3.  

r4 r1 (ρ) – ρ = - (1+l) α4 – α1; r4r2 (ρ) – ρ = - (m+1) α4 – α2; 

 r4 r3 (ρ) – ρ = - (n+1) α4 – α3. 

 

By Kostant’s formula,  

H2(L-)  V(- (l+1)α4 – α1 )V(- (m+1)α4 – α2)  V(- (n+1)α4 – α3). 

The reflections of length 3 in W(S) are: 

r4 r1r2, r 4 r1r3, r 4 r1r4 (if a.l ≠ 1), r 4r 3r1,  r4r 3r2, r 4r3r4  (if n.c ≠ 1) , r4 r2r1, r4 r2 r3, r4 

r2 r4 (if m.b ≠ 1); 
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Now, r4r3r1 (ρ) – ρ = – (l+n+1) α4 – α3 – α1;  

r4 r3r2 (ρ) – ρ = – (m+2n+1) α4 – 2α3 – α2;  

r4r3r4 (ρ) – ρ = –n (c+1) α4 – (c+1) α3    if n.c ≠ 1; 

r4 r1r4 (ρ) – ρ = – (a.l+ l) α4 – (a+1) α1   (if a.l ≠ 1);  

r4 r1r3 (ρ) – ρ = – (l+n+1) α4 – α3 –α1;  

r4 r1r2 (ρ) –ρ = – (2l+m+1) α4 – α2 –2α1;  

r4r2 r1 (ρ) – ρ = – (3m+l+1) α4 –3α2 – α1;  

r4r2 r3 (ρ) – ρ = – (3m+n+1) α4 –3α2 – α3; 

r4r2 r4 (ρ) – ρ = – (m.b+m) α4 – (b+1) α2 – α1 (if m.b≠ 1); 

 

By Kostant’s formula,  

H3 (L-)  V (–(l+n+1) α4 – α3 – α1) V (– (m+2n+1) α4 – 2α3 – α2) 

V (–n (c+1) α4 – (c+1) α3) (if n.c ≠ 1)  

V (– (a.l+ l) α4 – (a+1) α1) (if a.l ≠ 1) 

        V (– (l+n+1) α4 – α3 –α1) V (– (2l+m+1) α4 – α2 –2α1) 

        V (– (3m+l+1) α4 –3α2 – α1) V (- (3m+n+1) α4 –3α2 – α3) 

        V (–(m.b+m) α4–(b+1) α2 –α1) (if m.b≠ 1)                 …(5.2) 

                                                                                    

Similarly by repeated application of Kostant’s formula, other homology modules 

H4 (L-), H5 (L-), H6 (L-) etc. can be computed.   

 

6 Structure of the components of the Maximal Ideal in (1)

2QAC  
 
In this section, we study the structure of the components of maximal ideal upto 

level 4. Since the ideal I of G is generated by the homological subspace I2, we 

may write .)2(

  II  For j  2, we write    
jn

jj

n

j IGLII )()()( /, and

./ )1()()( 

  jjj IIN  Using the homological approach and Hochschild – Serre 

spectral sequences theory together with the representation theory of Kac-Moody 

algebra, we can determine other components of the maximal ideals in .QAC(1)

2  

 

To determine I -2:   

Since G_ is free and I_ is generated by the subspace I-2 from the 

Hochschild –Serre five term exact sequence and using Lemma 2.13 we get, 

);(22   LHI H2(L-) V(- (l+1)α4 – α1 )V(- (m+1)α4 – α2)  V(- (n+1)α4 – α3). 

Hence 
2I  V (- (l+1) α4 – α1) V (- (m+1) α4 – α2)  V (- (n+1) α4 – α3). 

 

To determine I -3: 

We have, .2)(/)( )1(

)(

3)1(   jLHIVI j

j

jj
  

3

)(

33 )(/)(   j

j LHIVI
 

When j = 2, (2)L
 coincides with the subspace n(S) for S = {1, 2, 3} and 
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therefore we can compute )(LH (2)

3   , using the Kostant formula. 

 

)(LH (2)
3   V (–(l+n+1) α4 – α3 – α1) V (– (m+2n+1) α4 – 2α3 – α2) 

V (–n (c+1) α4 – (c+1) α3) (if n.c ≠ 1)  

V (– (a.l+ l) α4 – (a+1) α1) (if a.l ≠ 1) 

        V (– (l+n+1) α4 – α3 –α1) V (– (2l+m+1) α4 – α2 –2α1) 

        V (– (3m+l+1) α4 –3α2 – α1) V (- (3m+n+1) α4 –3α2 – α3) 

        V (–(m.b+m) α4–(b+1) α2 –α1) (if m.b≠ 1)               by  (3.1)  

 

and )(LH (2)

3  -3
= 0. Hence, )( 23   IVI . To determine the structure of  I 4: 

To find the structure of I 4, we need to find the structure of H3 (L
)3(


)-4.  

Consider the short exact sequence, 0 0LLN (2)(3)(2)    and the 

corresponding spectral sequence }{ ,

r

qpE converging to H )( )3(

* L such that  

).(IΛ)(LHE 2

q(2)

p

2

qp,   We start with the sequence, 0.EE0 2

0,1

d2

2,0
2   

 

Since the spectral sequence converges to ),(LH (3)

* 
we have 

.EE)(LH 0,11,0

(3)

1



  But VL]L,/[LL)(LH 1

(3)(3)(3)(3)

1  
and 

V,L]L,/[LL)(LHEE 1

(2)(2)(2)

1

(2)

1

2

1,01,0  

 0.EE 3

0,10,1    d2 is surjective.  

Since ,IE 2

2

1,0

2

2,0  E   d2   becomes an isomorphism. Thus 0EE 3

2,02,0  . 

Now, consider the sequence 0.EE0 2

1,1

d2

3,0
2   

 

By Kostant’s formula, 
)(LHE (2)

3

2

3,0 
; 2

2

1,1 IVE 
 ,

 by comparing the levels of 

both terms, d2:
2

1,1

2

3,0 EE  is trivial. So 2
3,0

3
3,0 EE  and .IVEEE 2

2

1,1

3

1,11,1 

 
 

)3(

I  is generated by 
3I    .IVI)(LH 23

(3)

2    

 

But .EEE)(LH 0,21,12,0

(3)

2



  It follows that 0.EE 4

0,20,2   Therefore we 

find that either 0E3

0,2  or 3

0,2

3

3,03 EE:d 
 
is surjective. 

 

In the first case, 0E3

0,2  , this implies that 3

0,2

3

3,03 EE:d   is trivial and that  

2

0,2

2

2,12 EE:d  is surjective in the sequence 0.EEE0 2

0,2

d2

2,1

d2

4,0
22 

 
Thus )E0:)/Im(dEE:Ker(dEE 3

3,03
3
0,2

3
3,03

4
3,03,0   =  2

0,3

3

0,3 EE )( )2(
3 LH .By 

comparing levels, we see that 2

2,1

2

4,02 EE:d   is trivial. Since ),(IΛE 2
22

0,2 

2

4,0

3

4,0 EE  , )EE:)/Im(dEE:Ker(dEE 2

2,1

2

4,02

2

0,2

2

2,12

3

2,12,1    
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).EE:(dKer 2
0,2

2
2,12  Since 2

0,2

2

2,12 EE:d  is surjective, 2
2
2,1

2
0,22

2 /KerdEE)(IΛ 

222 d)/Ker II(   .Therefore Ker ).(ISd 2

2

2   Hence ).(ISE 2

2

2,1 

   

 

If 
3

0,2E is nonzero and 3

0,2

3

3,03 EE:d  is surjective, since 2

3,0

3

3,0 EE  is irreducible, 

3

2,0

3

0,33 : EEd  is an isomorphism. Thus 0EE 4

3,03,0  and  

 )EE:Im(d / EEE)(LH 2
0,2

2
2,12

2
0,2

3
0,2

3
3,0

(2)
3  ).EE:)/Im(d(IΛ 2

0,2

2

2,122

2  
 

 

Since all the modules, here are completely reducible over (1)

2C , 

)():Im( 2
22

2,0
2

1,22  IEEd / )(LH (2)
3  .  We get, 2

2,1

2

4,02 EE:d  is trivial.  

Thus ):Im(/):(Ker 2
1,2

2
0,42

2
2,0

2
1,22

3
1,21,2 EEdEEdEE 

).:( 2

2,0

2

1,22 EEdKer   

Since )(Im 2

2

2  Id / )(H )2(
3 L Ker / E2

2,1 Ker / )II(d 222   2d ,  

   Ker   )( 2
2

2 ISd )( )2(
3 LH    

 )( 2

2

1,20,3 ISEE )( )2(
3 LH  

Consider 0.EE0 2

3,1

d2

5,0
2  By comparing levels, we see that  

2

1,2

2

3,12 EE:d   is trivial. Thus  ).(IΛVEE 2

22

1,2

3

1,2   By comparing the 

levels of the terms in the sequence 0,EE0 3

1,2

d3

4,0
3  we get 0d3  . 

Therefore ).(IΛVEEE 2

22

1,2

4

1,21,2 

 
 

Since 
0,3E is a sub module of 

).(IΛE 2

32

0,3   we see that  )( )3(

3 LH )( )2(
3 LH ,M))(()( 2

2
2

2   IVIS  where 

M is a direct sum of level >6 irreducible representations of (1)

2C . Therefore 

.0)(LH 4

(3)

3  Thus )()(/)( 34

)3(

334   IVLHIVI  

 

To determine the structure of I 5:  

 

Consider the short exact sequence, 0 0LLN (3)(4)(3)    and the 

corresponding spectral sequence }{ ,

r

qpE converging to H )( )4(

* L such that 

).(IΛ)(LHE 3

q(3)

p

2

qp,    Clearly
 

2

0,1

2

2,02 EE: d  is an isomorphism and 

0E2,0 


.
We now consider the sequence, 0.EE0 2

1,1

d2

3,0
2 

)(LHE (3)

3

2

3,0 
,

.IVE 3

2

1,1  22

2

3,0 d ImdKer  E  . By comparing the levels 

of both terms, we get d2:
2

1,1

2

3,0 EE  is trivial. .IVI)(LH 34

(4)

2  

.d )/ImIV( d/ImEE 23-2

2

1,1

3

1,11,1  E But Im d2 = 0; Hence 

.I E  EE 4-

3

1,11,1

2

3,0

3

3,0  Eand ..0EE 4

0,20,2   Therefore  3

0,2

3

3,03 EE:d 
 
is 

surjective. 3

0,2E  is a sub module of ),(E 3

22

0,2  I
 
by comparing the levels we 
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get Ker d2 must contain ).(IV 2-

2  Thus  4

3,03,0 EE ,')(IV 2-

2 M

where M’ is a direct sum of level >6 irreducible highest weight representations of 

C2
(1).    Hence .0)(E 53,0 

 Thus .0)()()( 53,052,151,2  









 EEE Therefore 

)0)(LH 5

(4)

3   
and )( 45   IVI

.
Thus we have proved the following 

structure theorem. 

 

Theorem 6.1: With the usual notations, let nZn LL   be the realization of 

(1)

2QAC  associated with the symmetrizable GCM 





























2

210

222

012

nml

c

b

a
 with 2m/b = 

l/a = n/c.. Then the structure of the components of the maximal ideal upto level 5 

are given by: 

 

i) 
2I  V (- (l+1) α4 – α1) V (- (m+1) α4 – α2) V (- (n+1) α4 – α3). 

ii) )( 23   IVI  

iii) )( 34   IVI  

iv) )( 45   IVI  

 

7 Conclusion 

 
In this work, we have considered a class of quasi affine Kac-Moody algebra 

(1)

2QAC and determined the structure of the components in the graded ideals upto 

level five. The components of higher level can be computed in a similar manner. 

This work gives further scope for understanding the complete structure of this 

indefinite quasi affine algebra and also will help in the determination of the 

multiplicities of root spaces and weight spaces. 
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