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Abstract

Quasi-affine Kac-Moody algebras is a special class of indefinite type of
Kac-Moody algebras. In this paper, a family of quasi-affine Kac-Moody algebras
QACY’ is considered. These quasi-affine algebras are realized as a graded Lie

algebra of Kac-Moody type. Using the homological and spectral sequences theory
homology modules upto level three are computed and a study on the structure of
these algebras is undertaken. The classification of Dynkin diagrams for a

particular family of QACY’ is also given.
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1 Introduction

Kac-Moody Lie algebras is one of the rapidly growing fields of mathematical
research due to the interesting connections and applications to various fields of
Mathematics and Mathematical Physics, Combinatorics, Number Theory,
Non-linear differential equations, etc. Among the broad classification of Kac
Moody algebras into finite, affine and indefinite types, a lot of work has been
carried out for the finite and affine type of Kac-Moody algebras, whereas a deeper
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study on the structure of indefinite Kac-Moody algebras is yet to be given
completely.

Understanding the structure and determining the multiplicities of roots,
explicitly for indefinite Kac-Moody algebras is still an open problem. In [2],
Feingold and Frenkel computed level 2 root multiplicities for the hyperbolic

Kac-Moody algebra HAf). Kang([5]-[8]) studied the structure and obtained the

multiplicities for roots upto level 5 for HA™ and for roots upto level 3 for HAY
and root multiplicities are determined for the indefinite type of Kac-Moody
algebra HAY. In [12] Sthanumoorthy and Uma Maheswari introduced a new

class of indefinite type, namely extended — hyperbolic Kac — Moody algebras. In
([11], [13], [15]), determined the multiplicities of roots for specific classes of
extended-hyperbolic Kac—-Moody algebra EHA® and EHA{® were determined.

Another class of indefinite non-hyperbolic Kac-Moody algebra called
Quasi-Hyperbolic was introduced by Uma Maheswari [16]. In ([17], [18]), Uma
Maheswari considered two specific classes of indefinite non-hyperbolic
Kac-Moody type QHG, and QHAY and determined the structure of the
components of the maximal ideal upto level 3. In [19], Uma Maheswari
introduced another class of indefinite type, the quasi-affine Kac Moody algebras
and studied about the Dynkin diagrams and properties of roots and obtained a
realization for the quasi-affine family QAG, ®

In this work, we are going to consider a class of a Quasi-Affine indefinite type

of Kac-Moody algebra QACS”; We give a classification of Dynkin diagrams of
QACY . We then give a realization for a specific class of QACY’ associated
2 -1 0 -

-2 2 -2 -b
0 -1 2 -c
-1 -m -n 2
algebra of Kac-Moody type. Then using the homological techniques developed by
Benkart et al. and Kang, [1] we compute the homology modules and determine
the structure of the components of the maximal ideal up to level five.

with the GCM where a, b, ¢, I, m, n €Z" as a graded Lie

2 Preliminaries

We recall some preliminary definitions and results on Kac-Moody algebras and
for further details one can refer to Kac [4] and Wan [20].

Definition 2.1 [10]: An integer matrix Az(aij):j _, Is a Generalized Cartan
Matrix (abbreviated as GCM) if it satisfies the following conditions:

M gi=2 v i=12,...n;1)aj=0 < =0V i,j=12,...,n

(i) aij< 0 v 1,3=1,2,...n.
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Let us denote the index set of A by N = {I,..., n}. A GCM A is said to
decomposable if there exist two non-empty subsets I, J < N suchthat | wJ=N
and aj = ai =0 V iel and jeJ. If A is not decomposable, it is said to be
indecomposable.

Definition 2.2 [4]: A realization of a matrix A=(a;){;_, isatriple (H,m, ")
where | is the rank of A, His a 2n - | dimensional complex vector space,n
={o,...,,} and 1V ={a),...,’'} are linearly independent subsets of H* and
H respectively, satisfying «;(ey') =a; fori, j = 1,....n. n is called the root
basis. Elements of 1 are called simple roots. The root lattice generated by n is

Q:Zn:Zai.

Definition 2.3[4]: The Kac-Moody algebra g(A) associated with a GCM
A=(a;); 4 isthe Lie algebra generated by the elements ei , fi,i=1,2,...,n and H
with the following defining relations :

[hh] =0, hheH ; le,, f1=0,ai [he;] =a;(he; ; [hf] =— a;(0)f, ,i,jeN
1-q _ . 1-q; _ . T
(ade;) “e; =0 ; (adf)) ™ f;=0 ,VizjijeN

The Kac-Moody algebra g(A) has the root space decomposition
g(A) = G—é g,(A)  whereg, (A) ={x < g(A)/[h, x]=a(h)x, for all he H}. AN

element o, o #0 inQiscalledarootif g #0.Let Q= Zn:chi. Q has
i=1

a partial ordering “ <> defined by o < g ifg—a cQ, Where o, Q.

Let A=(=A(A)) denote the set of all roots of g(A) and A, the set of all

positive roots of g(A). Wehave A =—- A and A=A,  UA_.

Definition 2.4 [4]: A GCM A is called symmetrizable if DA is symmetric for
some diagonal matrix D = diag(qs,...,qn), with gi> 0 and gi’s are rational numbers.

Proposition 2.5 [4]:A GCM A:(aij):j _, Is symmetrizable if and only if

there exists an invariant, bilinear, symmetric, non degenerate form on g (A).
Definition 2.6[4]: To every GCM A is associated a Dynkin diagram S (A) defined
as follows: (A) has n vertices and vertices i and j are connected by max {|aij|, |ai|}
number of lines if aij. aji<4 and there is an arrow pointing towards i if |aij| > 1. If
aij. aji> 4, i and j are connected by a bold faced edge, equipped with the ordered
pair (Jaij| , [aji]) of integers.
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Theorem 2.7 [20]: Let A be a real n x n matrix satisfying (m1), (m2) and (m3).
(m1) A is indecomposable; (m2) ajj <0 fori#j; (m3) aij = 0 implies aji =0.Then
one and only one of the following three possibilities holds for both A and 'A:
(i) det A #0; there existsu > 0 such that A u>0; Av>0 implies v>0 or v=0;
(if) corank A=1; there exists u > 0 such that Au=0; Av >0 implies Av = 0;
(iii) there exists u > 0 such that Au<0; Av>0,v>0implyv=0.
Then A is of finite, affine or indefinite type iff (i), (ii) or (iii) (respectively) is
satisfied.

Definition 2.8 [20]: A Kac- Moody algebra g(A) is said to be of finite,
affine or indefinite type if the associated GCM A is of finite, affine or indefinite
type respectively.

General construction of graded Lie algebra (Benkart et al. [1], Kang [5]):

Let us start with G, the Lie algebra over a field of characteristic zero. Let V, V'
be two G —modules. Let vy :V’® V — G be a G — module homomorphism.

DefineG, =G,G, =V,G, =V'; G, =>G, (resp.G_=> G_,) denote the free
n>1

n>1
Lie algebra generated by V' (respectively, V); Gn (respectively, G.n) forn > 1
Is the space of all products of n vectors from V' (respectively V). Then

G :Z::_an can be given a Lie algebra structure. By extending this Lie bracket
operation, G =ZGn becomes a graded Lie algebra which is generated by its

nez

local partG_, + G, +G,.

For n>1 define the subspaces, 1,, ={xeG,, |(ad G,;)"*x=0}, define 1 =@ 1

nez
and 1,=> 1,1 => 1, Then the subspaces I and | are all

graded ideals of G and | is the maximal graded ideal trivially intersecting the local
part G, +G, +G,.Let L, =G, /I, , forn>1;

Consider L=LGV,V,»)=G /| _®G,®G, /I,

—.oL, oL, o, oL ®L, ®..,Where L,=G,, L =G,, L,=G,.

+

Then L=, _, L, becomes a graded Lie algebra generated by its local part V & G

® V*and L =G/ 1.By the suitable choice of V (written as the direct sum of
irreducible highest weight modules), the contragradient V* of V, the basis
elements and the homomorphism y : V" ® V — ¢, form the graded Lie algebra
L=1L (g% V, V", y). For further details one can refer to ([1], [5] ).

Theorem 2.9[1]: L is a Z™™ —graded algebra.

Theorem 2.10[1]: Let¢: A(C) — L be the Lie algebra homomorphism sending E;
— e, Fi > fi, Hi > hi. Then ¢ has kernel as I(C) and I(C) is the largest graded ideal
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of A(C) trivially intersecting the span of Hy,..., Hh+m. Alsog: A(C)/1(C) > L
is an isomorphism.

Proposition 2. 11[1]: The matrix C has rank 2n — | and C is symmetrizable.

We now recall the definition of homology of Lie algebra (Garland and Lepowsky )
and Hochschild-Serre spectral sequence (Kang et al. ).Let VV be a module over a
Lie algebra G. Define the space Cq (G, V) for q > 0 of g — dimensional chains of

the Lie algebra G with coefficients in V to be A" (G)®V. The differential

d, =C,(G,\V)>C,,(G,V) is defined to be
d, (@A ng, ®V) = Z(—l)s“’l([gs,gt]) AGAAG A A AL AG) BV

1<s<t<q

+ Z(—l)s(gl A NG A AD,) B,

1<s<q

for veV,g,,...9,€G. For q < 0, define Cy(G,V) = 0 and dq = 0. Then
d,od,, =0. The homology of the complex (C, d) = {Cq (G, V), dq} is called the

homology of the Lie algebra G with coefficients in V and is denoted by Hq (G, V).
When V = C, we write Hq (G) for Hq (G, C). Assume now that G, V, Cq(G, V) are
completely reducible modules in the category O over a Kac-Moody algebra g (A)
with dq having g (A)-module homomorphisms.

Let | be an ideal of G and L = G/I. Define a filtration {K, = K,C} of the
complex {C, d} by KpCp+qg = {01 A Q2 A ... AQpq® V| gi € I for pt1 < i<

p+q}.This gives rise to a spectral sequence {E;..d, :E . —>E ...} such that

E,o =H,(LH(LV)),  where En,'s  are determined by

pa —

Epa =Ker(d :Ej, —>Ej .)Imd :E

bergr —> Epg)  with boundary

r

homomorphisms d,.;:E;, —>E[  ,.,- The modules E;

oq decome stable for r

> max(p,q +1) for each (p,q) and is denoted by E‘;q. The spectral sequence

{E;+d.} converges to Ha(G,V) in the following sense : H,(G,V)= pg)zn Er.

We get the Hochschild-Serre five term exact sequence ([5]):

H2(G,V) — Ha(L,Ho(1,V) = Ho(L,H1(1,V)) — H1(G,V) — Hi(L,Ho(1,V)) — 0.

Take L = G/I, where G=@,,G, is the free Lie algebra generated by the
subspace Gi1and 1 =@ ___ 1, the graded ideal of G generated by the subspace Im
form > 2. Then L=& becomes a graded Lie algebra generated by the

subspace L1 = Ga.

n>1 Ln
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LetJ =1/l 1]. J is an L-module via adjoint action generated by the subspace Jm.
Form<n<2m,J, =In If Inand G; are modules over a Kac-Moody algebra g(A)
then Gn has a g(A)-module structure for every xeg(A),veGweG,_,

X-[v,w] =[x-v,w]+[v,x-w]. I also has a similar module structure and we have

the induced module structure of the homogeneous subspaces Ln, Jn. Then we have
the following theorem proved by Kang.

Theorem 2.12[5]: There is an isomorphism of g (A) — modules
H;(L,J)=H;,,(L), forj>1. Inparticular Im+1 = (G1 ® Im) / Hz (L)m+1.

j+2
Now, for arbitrary j > m, set 1 =anj|n; then 19 is an ideal of G

generated by the subspace ;. We consider the quotient algebra L 0 = G/19. Let
NO=107 16-D In this notation L = L™. Then we have an important relation:
1, =(G,®1,)/Hy(L"),.,. And, there exists a spectral sequence {E'pq dr: E'ng

SE'prgrraconverging to H.(LY) such that and EZ, =H (L")®A%(1,,)
and H,(L'")=zE;, ®E;, ®E, ®Ey,.

Lemma 2.13[5]: In the above notation, Hz(L) = Im_

Let us recall the Kostant’s formula for symmetrizable Kac-Moody algebras [9]:
Let S={1,...,s} be a subset of N = {l,...,n} and gs ,the subalgebra of g(A)

generated by the elements ei,fi, i=1, ..., s and h. Let A’ denote the set of positive
roots generated by ou, ..., as and A; =-A.. Then gs has the corresponding
triangular decomposition: g, =n; @h@n_, where n; = @ g,and A, = A{ UA]

aelg

is the root system of gs. LetA*(s) =A"\A;, n*(S)= & g,.

aeh* (S)
Then g(A) = n(S) @ gs ® n*(S). Let W(S)={weW /WA nA" = A"(S)}. For i
e h” denote by \7(%), the irreducible highest weight module over g(A) and V(A)
the irreducible highest weight module over gs.

Theorem 2.14[9]:(Kostant’s formula) H, (n’(S),\7 1) = %S)V (W(A + p)— p).
I(w)=]

Lemma 2.15[5]: Suppose W=W' T, and I(w)=I1(w)+1. ThenweW(S) if and

only if w> e W(s) and W'(a;) € A"(S).
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3 Quasi -Affine Kac-Moody Algebra QACY

In this section, we first define the quasi-affine indefinite Kac Moody algebra
associated with QAC(Zl). We give the classification of Dynkin diagrams

associated with this quasi-affine family QAC(Zl). We then determine the
structure of indefinite, quasi affine class QACY obtained from the affine family
c.

Definition 3.1 [16]: Let A=(g;);,4 be an indecomposable GCM of indefinite

type. We define the associated Dynkin diagram S (A) to be of Quasi affine (QA)
type if S (A) has a proper connected sub diagram of affine types with n-1 vertices.
The GCM A is of QA type if S (A) is of QA type. We then say the Kac-Moody
algebra g(A) is of QA type.

2 -1 0 -a

-2 2 -2 -b

0 -1 2 -c

-1 -m -n 2

where a,b,c,I,m,n are positive integers. This GCM is symmetrizable when 2m/b =
I/a = n/c. In this case we write A = DB

The general representation of the GCM of QACY’ is A =

100 0 2 -1 0 -a
whereD= |0 2 0 0| andB=|-1 1 -1 —b/2

001 O 0 -1 2 —c |

0 0 0 I/a —-a -b/2 —-c 2c/n

In the following theorem, we give the classification of the Dynkin diagrams of
of indefinite quasi-affine Kac-Moody algebras QACY.

Theorem 3.2: There are 729 connected Dynkin diagrams associated with the
indefinite quasi-affine Kac-Moody algebras QACY.

Proof: The Dynkin diagram associated with C,M js =00

By definition , the Dynkin diagram for QAC,® is:

where \can represent any of the following 9 types of edges:
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o—0 O=0 0&0oe=0 =000 00 O—=0O

we obtain a total of 9 x 9 x 9 = 729 possible connected Dynkin diagrams
associated with QAC,™.

In the next section, we are going to consider a particular family belonging to this
quasi affine class and study the structure of the graded components of the
maximal ideal.

By our definition, we note that the fourth vertex added must be connected to each
of the three vertices in the affine diagram C, ®

Fixing one possible edge for the first link i.e. 1, there are 9 possibilities each for
the other two links.

We concentrate only on the connected Dynkin diagrams. Therefore, we obtain a
total of 9 x 9 x 9 = 729 possible connected Dynkin diagrams associated with
QAC, ™,

In the next section, we are going to consider a particular family belonging to this
quasi affine class and study the structure of the graded components of the
maximal ideal.

4 Realization for QACY’
In this section, we shall give a realization for a family of quasi-affine Kac Moody

algebras QACY’ as a graded Lie algebra of Kac Moody type. We begin with the
affine family c$".

Consider the Kac-Moody algebrac$’ associated with the GCM A =

2 -1 0
-2 2 =2|

0 -1 2

Let (h, IT, ITV) be the realization of A with IT={ay 02,03}and IT ={o1" 02" 03"}
representing the set of simple roots and simple co-roots respectively.

Choose «, inh”suchthat a,(a))=0,a,(a})=0,a,(a})=1.
Define A=aq, +aa, —ga3+(a+b+c) a, ¢h* .. (4.1)

Set o4 = -A.
Form the matrix C =(<¢;,a; >)i,, Where
2, 1“]) .

i, j=1...4.

<aa;> = |,
()
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Then C = 722 ;1 702 :Z with 2m/b = I/a = n/c is the symmetrizable GCM of
0 -1 2 -c
-1 -m -n 2

indefinite Quasi - Affine type and let the associated Kac-Moody algebra G(C)
be denoted by QACY.

Let G be the Kac-Moody algebra associated with the GCM

0o -1 2
affine family cy. Let us take V to be the integrable highest weight irreducible

module over G with the highest weight ) as defined in (4.1). Let V" denote the
contragradient module of V and y be the homomorphidm as defined in Section 2.
As in the general construction, form the graded Lie algebra L (G&, V, V7, y).

Then L=g(C) and L is a symmetrizable Kac-Moody algebra of Quasi- affine
type associated with the GCM C (Proposition 2.11). Thus we have given the
realization for this quasi affine family as a graded Lie algebra of Kac Moody type.

2 -1 OJ of the
2 2 2

Next to understand the structure of these Kac Moody algebras, we apply the
spectral sequences and homological techniques developed be Benkart, et.al. [1, 5].

First, we compute the homology modules of the Kac-Moody algebra for QACY’.

We note that, from the realization of L =QACY) asL=L,®L,®L, =G/I and

using the involutive automorphism, it is sufficient to study only about the negative
part L =G /1.

5 Computation of Homology Modules

Let S={1,2, 3} cN={1, 2, 3,4}. Let gs be the Kac-Moody Lie algebra of

C%.which is the subalgebra of QAC,W. Let As* denote the set of positive roots
generated by {01, az, az} and - As'= A*s, A* (S) = A"\ A’ s,
The only reflection of length 1 in W(S) is ra.
p)=p-osra(p)-p=—as -~ Hi(L)z=V (-o)
The reflections of length 2 in W(S) are rary, raro and — rars.
rari(p) —p =- (1+l) aa—oy; rar2(p) —p = - (M+1) 0 — 0z,
rar3(p) —p =-(n+1) as— 0.

By Kostant’s formula,

Ho(L) = V(- (I+1)as— a1 )BV(- (m+1)os— a2) @ V(- (n+1)os— a3).

The reflections of length 3 in W(S) are:

rariro, rarars, rarara (if al # 1), rarary, rarary, rarars (ifn.c # 1), rarary, rara 13, ra
r2ry(if m.b # 1);
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Now, rarary (p) — p =— (I+n+1) os— 03— a;

rarsrz2(p) —p =—(M+2n+1) os— 203 — 02;
rarsra(p)—p=-n(Cc+l) as—(ctl) az ifnc#1;
rarra(p)—p=—(@l+ ) os—(atl) oz (ifa.l#1);
rarirs(p) — p = — (Hn+1) os— a3 —ou;

rarir2 (p) —p = — (2Hm+1) as— 02 —20u;

rarz r1 (p) — p =— (3m+I+1) os—302 — oa;

rar2 13 (p) — p =— (3M+n+1) as—302 — 03;

rarz2 14 (p) —p =— (M.b+m) as— (b+1) a2 — a1 (if m.b# 1);

By Kostant’s formula,
H3 (L) =V (-(I+n+1) as— a3 — a1) ®V (— (M+2n+1) as— 203 — 02)
@V (—n (c+1) os— (c+1) o) (if n.c # 1)
@AV (—(@l+1)as—(a+l) oa) (ifa.l # 1)
@V (- (Hn+1) as— a3 —01) BV (- 21+m+1) as— a2 —201)
@V (— (Bm+l+1) 0s—302 — a1) DV (- (3m+n+1) oz 302 — a3)
@V (—(m.b+m) as—(b+1) o2 —01) (if m.b# 1) ...(5.2)

Similarly by repeated application of Kostant’s formula, other homology modules
Ha(L.), Hs (L.), He (L.) etc. can be computed.

6 Structure of the components of the Maximal Ideal in QACY’

In this section, we study the structure of the components of maximal ideal upto
level 4. Since the ideal |- of G- is generated by the homological subspace I-2, we

may write | =1%. For j > 2, we wiite 17=3" 1, L9=G/1" and

NG = 197199 Using the homological approach and Hochschild — Serre
spectral sequences theory together with the representation theory of Kac-Moody

algebra, we can determine other components of the maximal ideals in QACY”.

To determine | :
Since G_ is free and |_ is generated by the subspace 1. from the
Hochschild —Serre five term exact sequence and using Lemma 2.13 we get,

I, =H,(L);Ho(L)= V(- (I+D)as— 01)®V(- (m+1)ou—02) © V(- (n+1)os— 03).
Hence 1 ,=V (- (1+1) au—01) ®V (- (M+1) cu—a2) @ V (- (n+1) ou— aa).

To determine | .3:
Wehave, 1) =(V®I)/H (L) () J220 1=V O/ H (L),

When j=2, L® coincides with the subspace n~(S) for S = {1, 2, 3} and
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therefore we can compute H,(L®) , using the Kostant formula.

Hy (L) = V (—(1+n+1) 04— 03— 01) BV (— (M+2n+1) os— 203 — a2)
®V (-n (c+1) as— (c+1) a3) (if n.c # 1)
@AV (—(@l+1)as—(a+l) oa) (ifa.l #1)
®V (- (Hn+1) as— a3 —01) BV (- 21H+m+1) as— a2 —201)
@V (— (Bm+l+1) 0s—302 — a1) DV (- (3m+n+1) oz 302 — a3)
@V (—(m.b+m) as—(b+1) o2 —01) (if m.b# 1) by (3.1)

and H,(L®) ,=0.Hence, 1_;=(V®I,).To determine the structure of 1 -:
To find the structure of | _4, we need to find the structure of Hz (L ).a.
Consider the short exact sequence, 0 —N® 51® 51® 50 and the

corresponding spectral sequence {E;,}converging to H.(L®) such that

EZ, =H, (L®)®A%(I_,). We start with the sequence, 0—E;,—%—>E; —0.

Since the spectral sequence converges to  H.(L®)), we have
H,(L®) =E;, ®EJ,. But H,() = 9N®,191=L, =V and
Efo=EZ,=H, (L) = LP/NL? L®1=L, =V, E;,=Ej,=0. .. dz2is surjective.
Since E;,=E;, =1, d2 becomesanisomorphism. Thus E;,=E;,=0.

Now, consider the sequence 0— E;,—%—>EZ, —0.

By Kostant’s formula, E;,=H,(L?) E?,=v®1, by comparing the levels of
both terms, d2: E2 ) — EZ,is trivial. So E3,=E3,and E;, =E; =E}, =2V®]I_,.
1® isgeneratedby 1, .~ H,(L®)=1,=VQI,,.

But H,(L®)=E;,®E, ®Ej,. It follows that E;,=E;,=0. Therefore we
find that either Ej,=00r d,:E3, —>E;, issurjective.

In the first case, E;,=0, this implies that d,:Ej, > E;, is trivial and that
d, :E5, —Ej,is surjective in the sequence 0 —E} —%—>E;,—%>E}, —>0.

Thus E3,=Ej,=Kerd;:E3, > Eg,)Imd; :0>E3) = Ej,=Ej, = Hy(L'”) By
comparing levels, we see that d,:E;,—Ej;, is trivial. Since EZ,=A%(_,),
Eio=Ei¢ E;.=E;, =Ker(d,:E3, > E},)Im(d,:E;, >E;,))=
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Ker (d,:E3, —~E2,). Since d,:E;, —>EJ, is surjective, A?(1_,)=E2,=E3 /Kerd,

=(1_, ®1_,)/Ker d, . Therefore Kerd, = S*(1_,). Hence Ey,=S(l.,).

If Ej,is nonzeroand d,:E3, —E2,is surjective, since E2, =EZis irreducible,
d,: EZ, — EZ,is an isomorphism. Thus Ej, =Ej3,=0and
Ha(L?) =E3,=E3,=E3,/Im(d, :E3; > Ed,) = A*(,)Im(d, : E2, - E2,).

Since all the modules, here are completely reducible over C§,

Im(d, : B3, > Eg,) = A%(1,)/Hy(L®)  Weget, d,:Ef, —Ej,istrivial.

Thus EZ, =E3, =Ker(d,:E3; —Ed,)/Im(d, : EZ — EZ;) =Ker(d, : EZ, —EZ,).

Since Imd, = A*(1_,)/Hy(L?) =E3, /Ker dp =(1_, ®1_,) /Ker dy,

= Kerd, =S%*(1_,)® Hy(L?) .. Ef, ®E;, =S?(1,)® Hy(L?)

Consider 0—>EZ,—%—>E2 —0. By comparing levels, we see that
d,:E;, >EZ, is trivial. Thus E;,=E},=V®AZ?*(1_,). By comparing the
levels of the terms in the sequence 0—E},—%>E?, -0, we getd,=0.
Therefore E;,=E;,=E;,=V®AZ?*(l_,). Since Ej,is a sub module of
E2,=A%(1,). we see that H,(L9)= Hy(L?) @S2(1,) ®(V ®A* (1)) ®M, where
M is a direct sum of level >6 irreducible representations of C{’. Therefore
H,(L®) ,=0.Thus 1, =(V®I)/H, (D), =VRl.)

To determine the structure of | _s:

Consider the short exact sequence, 0 —N® 1% 51® 50 and the
corresponding  spectral sequence {E; .} converging to H .(L“) such that
E2, =H (L®)®A%(l;). Clearly d,:E},—E], is an isomorphism and
E7,=0 We now consider the sequence, 0—>E} —“>E’ —0.
EZo= H, (L) E,=V®I,. E,= Kerd, ® Imd,.By comparing the levels
of both terms:, we get da E3,—EZ is trivial. H,(L")=z1,=V®I.
Ef,=E},=EX/Imd,=(V®I,)Imd,. But Im d2 = 0; Hence
Eso=E;,and Ej; =E; =1,. Ej,=E;,=0.. Therefore d,:E5,>E], is

surjective. Ej , isasub module of Ej, =A%(1_,), by comparing the levels we
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get Ker d2 must contain V®A*(1,). Thus Ej =E;,= VOA*(l,)®M",
where M’ is a direct sum of level >6 irreducible highest weight representations of
C2® Hence (E3,) s =0. Thus (EJ) s =(E5) s =(ES,) s =0. Therefore
H,(L) . =0) and 1 ,=(®I_) Thus we have proved the following
structure theorem. .

Theorem 6.1: With the usual notations, let L=@®, L, be the realization of
QAC} associated with the symmetrizable GCM [ °, ° ° ~%| with 2m/b =
0 -1 2 -c

-1 -m -n 2

I/a = n/c.. Then the structure of the components of the maximal ideal upto level 5
are given by:

i) | ,=V (- (14+1) cu—a1) @V (- (M+1) au—a2) DV (- (N+1) ou— aa).
i) l,=V®I,)
iii) l,=2(V®I,)
iv) . =(V®I,)
7 Conclusion

In this work, we have considered a class of quasi affine Kac-Moody algebra
QAC‘zl) and determined the structure of the components in the graded ideals upto

level five. The components of higher level can be computed in a similar manner.
This work gives further scope for understanding the complete structure of this
indefinite quasi affine algebra and also will help in the determination of the
multiplicities of root spaces and weight spaces.
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