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Abstract

Type II diabetes mellitus is a metabolic disorder in which a person
has highly elevated blood glucose levels resulting from bodily tissues be-
ing resistant to the insulin that is produced in the pancreas. Metformin
is an anti-hyperglycemic drug that is widely used for treating type II
diabetes mellitus. Metformin works to reduce blood glucose levels by
decreasing the rate of hepatic glucose output, decreasing the rate of in-
testinal glucose absorption, and increasing the rate of glucose uptake by
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muscle cells and fat tissue. In this work, an identification problem was
investigated using an existing pharmacokinetic compartmental model
for type II diabetes mellitus where the effects of oral administration of
metformin are considered. The parameters of the model were estimated.
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Keywords: Parameter estimation, Pharmacokinetic model, Optimal pa-
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1 Introduction

It was estimated in 2011 that, worldwide, 347 million people have diabetes [1]
and of these people, 90% are estimated to have type II diabetes [2]. Type II
diabetes mellitus is sometimes referred to as adult-onset diabetes or non-insulin
dependent diabetes.

Normally, when blood glucose levels rise too high, insulin that is produced
in the pancreas will work to lower blood glucose levels back down to within
a normal range. In type II diabetics, insulin is produced normally by the
pancreas, however, the cells in their bodies do not use the insulin properly or
they have become resistant to it entirely. This leads to highly elevated blood
glucose levels, a condition called hyperglycemia. As a result of this, type
II diabetics need to take anti-hyperglycemic drugs to help keep their blood
glucose levels within a normal range.

Metformin is the drug of choice for type II diabetes. It has been used as an
effective glucose-lowering agent in type II diabetes mellitus for over forty years
[3]. Metformin works to lower blood glucose levels by decreasing intestinal
glucose absorption [4], decreasing hepatic glucose output, and increasing the
rate of absorption of glucose by muscle cells and fat tissue [5].

In most cases metformin is administered orally in the form of a 500-mg or
850-mg tablet, and due to the fact that metformin is not completely absorbed
in the intestine, some of the oral dosage can be recovered from feces [6]. Met-
formin is not metabolized and as a result it is eliminated unchanged through
the urinary system [7].

Metformin does not work to increase insulin concentrations and it does not
cause weight gain [8]. Besides minor gastrointestinal upset, the other potential
side effect of taking metformin is lactic acidosis, which is usually the result of
metformin being wrongfully prescribed to a patient [3].

This paper is organized as follows. In section 2, we introduce the pharma-
cokinetic model. The methods and solutions for solving the model analytically
are presented in section 3. The methods and solutions for solving the model
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numerically are presented in section 4. Conclusions of this work are presented
in section 5.

2 Pharmacokinetic Model

In this study a compartmental model is used to model the kinetics of the
distribution of metformin through different biological compartments in type
II diabetes mellitus patients. For the purpose of studying the mechanism of
action of a drug, and for predicting the effects of new dosage regimens, it is
useful to use mechanism-based models [9]. The compartmental model that is
employed in this study has been used in two previous works [10, 11]. The
four main places where metformin exhibits some mechanism of action to lower
blood glucose levels are the gastrointestinal system, the liver, muscle cells, and
fat tissue. Based on this, the following model is constructed.

Figure 1: Pharmacokinetic model showing the distribution of metformin

The gastrointestinal system makes up the first two compartments, the GI
lumen and the GI wall. This is necessary for three reasons. First, it will show
the rate of absorption of metformin after oral administration. Second, not all
of the orally administered metformin is absorbed so it shows the amount that
is excreted as feces. Third, it shows the accumulation of metformin in the GI
wall, through both the GI lumen and arterial blood supply to the intestine [10].
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The third compartment in this model is the liver and the fourth compartment
is the periphery. The periphery consists of everything else in the body, most
notably the kidneys and two of the sites of action of metformin: the muscle
cells and fat tissue.

The oral bolus is the amount of metformin in the tablet that is being
administered. The rate of absorption of metformin from the GI lumen into
the GI wall is shown by the rate constant kgg whereas kgo shows the rate of
elimination of the unabsorbed metformin in the GI lumen. The following rate
constants show transfer of metformin between two compartments: kgl is from
the GI wall to the liver, klp is from the liver to the periphery, kpl is from the
periphery to the liver, and kpg is from the periphery to the GI wall. Lastly, the
rate of elimination of metformin through the urinary system is shown by the
rate constant kpo. This model accounts for unidirectional blood flow through
the portal system because through the oral administration route, metformin
will pass through both the GI wall and the liver before it reaches the periphery
[11]. We assume that all changes are first order processes.

Based on the model, a system of linear ordinary differential equations can
be constructed. Each equation relates the amount of metformin in each com-
partment to the amount of time that has elapsed since the administration of
metformin.

dx1

dt
= −x1kgg − x1kgo (1)

dx2

dt
= x1kgg − x2kgl + x4kpg (2)

dx3

dt
= x2kgl − x3klp + x4kpl (3)

dx4

dt
= x3klp − x4kpg − x4kpl − x4kpo (4)

This system of equations is the same as for the model that has been used
twice in the past [10, 11]. Concentrations of metformin in each compartment
are not used because that would involve estimation of the volumes of each of
the compartments. As a result, just the amounts (in mg) are used in our system
of equations. Converting the system of linear ordinary differential equations
into matrix form gives the following matrix.

x′1(t)
x′2(t)
x′3(t)
x′4(t)

 =


−(kgg + kgo) 0 0 0

kgg −kgl 0 kpg
0 kgl −klp kpl
0 0 klp −(kpg + kpl + kpo)



x1(t)
x2(t)
x3(t)
x4(t)


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Which can then be shown in the following equation.

~x ′(t) = A ~x(t)

3 Analytical Solutions

The general overview for finding the analytical solutions for x1(t), x2(t), x3(t),
and x4(t) first involved converting the system of linear ordinary differential
equations into matrix form. To solve this, the Laplace transform was used to
convert this from the time (t) domain to the complex (s) domain. Once in
the complex domain, the solutions for x1(s), x2(s), x3(s), and x4(s) were found
using Cramer’s rule. After this the inverse Laplace transform was used to
convert the analytical solutions in the complex (s) domain back into the time
(t) domain.

3.1 Process Used to Find Analytical Solutions

The following equation represents the system of linear ordinary differential
equations in matrix form.

~x ′(t) = A ~x(t)

Then the Laplace transform was used to convert this system from the time
(t) domain into the complex (s) domain. Using the Laplace transform on both
sides of the equation yielded the following.

[s− A] ~x(s) = ~x(0)

In the above equation, ~x(0) is the initial conditions. This is where we
account for the amount of metformin that is in the body at the time of ad-
ministration. For example, if there are 10 mg of metformin in the liver at the
time of administration, 10 would be the value of x◦3. This equation is then
converted to matrix form.

s + kgg + kgo 0 0 0
−kgg s + kgl 0 −kpg

0 −kgl s + klp −kpl
0 0 −klp s + kpg + kpl + kpo



x1(s)
x2(s)
x3(s)
x4(s)

 =


x◦1
x◦2
x◦3
x◦4


The matrix [s − A] is the identity matrix I4 times s, minus the constant

coefficient matrix A. To solve this matrix, Cramer’s rule was used. First, the
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determinant of the [s− A] matrix was found.

det([s− A]) = (s + kgg + kgo)(s + kgl)(s + klp)(s + kpg + kpl + kpo)

This determinant was then used in finding the analytical solutions for each
of the four compartments.

To find the analytical solution in the complex domain for x1(s), the first
column in the [s− A] matrix was replaced with the initial conditions and the
determinant of the resulting [s− A]1 matrix was found.

det([s− A]1) = (x◦1)(s + kgl)(s + klp)(s + kpg + kpl + kpo)

x1(s) = det([s−A]1)
det([s−A])

=
(x◦

1)

(s+kgg+kgo)

Then the inverse Laplace transform was used to convert the analytical so-
lution from the complex domain back to the time domain. Using the inverse
Laplace transform on both sides of the equation yielded the following.

x1(t) = x◦1 e−(kgg+kgo)t

Then using the same method, the analytical solutions in the time domain
were found for the remaining three compartments.

For x2(t), the GI wall

x2(t) = C1 e−(kgg+kgo)t + C2 e−(kgl)t + C3 e−(klp)t + C4 e−(kpg+kpl+kpo)t

For x3(t), the liver

x3(t) = x◦3 e−(klp)t

And for x4(t), the periphery

x4(t) = C5 e−(kgg+kgo)t + C5 e−(kgl)t + C7 e−(klp)t + C8 e−(kpg+kpl+kpo)t

The analytical solutions are shown in matrix form as follows


x1(t)
x2(t)
x3(t)
x4(t)

 =


x◦1 0 0 0
C1 C2 C3 C4

0 0 x◦3 0
C5 C6 C7 C8




e−(kgg+kgo)t

e−(kgl)t

e−(klp)t

e−(kpg+kpl+kpo)t


where,
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C1 =
(−kpl)(−klp)(−kgg)(x◦

1)

(kgg+kgo−kgl)(kgg+kgo−klp)(kgg+kgo−kpg−kpl−kpo) ,

C2 = x◦2 − (−kpg)(x◦
4)

(−kgl+kpg+kpl+kpo)
− (−kpl)(−klp)(−kgg)(x◦

1)

(kgl−klp)(kgg+kgo−kgl)(kgl−kpg−kpl−kpo) ,

C3 =
−(−kpl)(−klp)(−kgg)(x◦

1)

(klp−kgl)(kgg+kgo−klp)(klp−kpg−kpl−kpo) ,

C4 =
−(−kpg)(x◦

4)

(kgl−kpg−kpl−kpo) −
(−kpl)(−klp)(−kgg)(x◦

1)

(−kgl+kpg+kpl+kpo)(−klp+kpg+kpl+kpo)(kgg+kgo−kpg−kpl−kpo)

C5 =
−(−kgg)(−kgl)(−klp)(x◦

1)

(kgg+kgo−kgl)(kgg+kgo−klp)(kgg+kgo−kpg−kpl−kpo) ,

C6 =
(−kgg)(−kgl)(−klp)(x◦

1)

(kgl−klp)(kgg+kgo−kgl)(kgl−kpg−kpl−kpo) ,

C7 =
(−kgg)(−kgl)(−klp)(x◦

1)

(klp−kgl)(kgg+kgo−klp)(klp−kpg−kpl−kpo) ,

C8 = x◦4 +
(−kgg)(−kgl)(−klp)(x◦

1)

(−kgl+kpg+kpl+kpo)(−klp+kpg+kpl+kpo)(kgg+kgo−kpg−kpl−kpo)

4 Numerical Results

Matlab generated data were used to estimate parameters associated in the
pharmacokinetic model introduced in section 2. Values between 0 and 1 were
arbitrarily assigned to each of the seven rate constants. The initial conditions
that were chosen were [500 0 0 0], where 500 implies that a 500-mg pill is being
administered. These initial conditions can be changed as necessary. For exam-
ple, if there are 40 mg of metformin in the liver at the time of administration,
then the initial conditions would be [500 0 40 0].

From the generated data, measurements were taken at 100 time intervals.
A multiplier of 200 was used, which means that between each time interval
there are 200 data points, yielding a total of 20,000 data points. In order for
the Matlab generated data to provide a more realistic representation of real
biological data small amounts of deviation were introduced into the data.
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Figure 2: Plot of Matlab generated data with 0% deviation in the data

Figure 3: Plot of Matlab generated data with 5% deviation in the data
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Figure 4: Plot of Matlab generated data with 10% deviation in the data

The numerical solutions for the Matlab generated data were found using
two Matlab functions. The first was fitfun which was used to define the change
in the amount of metformin in a compartment. The second one was fminsearch
which uses a simplex method to find the values of the rate constants, for exam-
ple, kgg, kpg and kgl that minimize the difference between ∆x2(t) and ∆x2(t)

′′

∆x2(t) = x2(t) − x2(t− 1)

∆x2(t)
′′ = x1(t− 1)kgg

m
+ x4(t− 1)kpg

m
− x2(t− 1)kgl

m

Table 1: Numerical solutions for the rate constants that were calculated
using Matlab

Rate Constants Assigned Values 0% Deviation 5% Deviation 10% Deviation

kgg 0.100000 0.100094 0.099602 0.098593
kgo 0.050000 0.050050 0.044991 0.051675

kgl 0.700000 0.699310 0.688405 0.657787

klp 0.800000 0.798980 0.741137 0.608021

kpg 0.100000 0.098263 0.090720 0.072913

kpl 0.150000 0.149254 0.103234 0.004873

kpo 0.500000 0.500598 0.499026 0.489011



1518 Narayan Thapa, Kowan O’Keefe and Michal Gudejko

5 Conclusions

We established a pharmacokinetic model associated with several parameters.
Analytical and numerical solutions were established. Matlab functions fitfun
and fminsearch were used to estimate the parameters. Based on our results
we can conclude that the model does work to accurately find the numerical
solutions for the values of the rate constants. This was also true when we
introduced various amounts of deviation into the data.
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