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Abstract

Let M and M' be two prime I'-ring and ¢",t" be two higher homomorphism of a I'-
ring M, for all n € N in the present paper we show that under certain
conditions of M, every generalized Jordan (o, t) - higher homomorphism of a I'-
Ring M into a prime I' -Ring M 'is either generalized (o, t) - higher
homomorphism or (o, t) — higher anti- homomorphism.
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1- Introduction

Let M and I" be two additive abelian groups, suppose that there is a mapping from
MxI'xM —— M (the image of (a,a,b) being denoted by aab, a, b € M and o e
I'). Satisfying foralla, b,c e Mand o, B € I
(i) (a+Db)ac=aac+bac

a(o+p)c=aac+apc

aa (b +c)=aab +aac
(i)  (aab)pc =aa(bpc)
Then M is called a I"-ring. This definition is due to Barnes [1], [8].
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AT-ring M is called a prime if al’'MI'b = (0) impliesa=0o0r b =0, where a, b
M, this definition is due to [5].

A T-ring M is called semiprime if al'MI"a = (0) implies a = 0, such that a € M,
this definition is due to [7].

Let M be a 2-torsion free semiprime I'-ring and suppose that a, b € M if al'mI'b +
bI'mI"a =0 for all m € M, then al'mI'b = bI'mI"a = 0 this definition is due to [11].

Let M be I'-ring then M is called 2-torsion free if 2a = 0 implies a = 0, for every a
€ M, this definition is due to [6].

Let o', t' be two higher homomorphism of a I'-ring M then o', 7' are called
commutative if ¢' ' = ' ¢, for all ieN.

Let M be a I'-ring and d: M —— M be an additive map (that isd (a + b) = d(a) +
d(b)), then d is called a derivation on M if :

d (aab) =d(a)ab + aad(b), foralla,b e Mand a € T.
d is called a Jordan derivation on I'-ring if d(aca) = d(a)aa + aad(a), for all a
Mand a € T, [4], [9].

Let M be a I'-ring and f: M—— M be an additive map (thatisf(a+b) =f(a) +f
(b)), Then fis called a generalized derivation if there exists a derivation d: M ——
M such that

f (acb) =f (a)ab + aad(b), foralla,b e Mand a € T.

f is called a Jordan generalized derivation if there exists a Jordan derivation d: M
—— M such that

f(aca) =f(a)aa +aa d(a), forallae Mand a € T, [2], [3] .

Let 6 be an additive mapping of I'-ring M into a I'-ring M', 0 is called a
homomorphism if foralla,b e Mand a. € '
0 (aab) = 6(a) ab(b), [1], [10].

Let 6 be an additive mapping of I"-ring M into a I'"-ring M'. 0 is called a Jordan
homomorphism if foralla,b e Mand o € T’
0 (aab + baa) = 6(a)ab(b) + 6(b)a 6(a), [10] .

Let F be an additive mapping of a I'-ring M into a I'-ring M', F is called a
generalized homomorphism if there exists a homomorphism 6 from a I'-ring M
into a I"'-ring M', such that F (acb) = F (a)aB(b), foralla,b € M and a. € T', where 6
is called a relating homomorphism.



Generalized Jordan (o, t) 1565

F is called a generalized Jordan homomorphism if there exists a Jordan
homomorphism 6 from a I'-ring M into a I"-ring M, such that

F(aob + baa) = F(@)ab(b) + F(b)a 6(a), for all a, b € M and o € T", where 6 is
called a relating Jordan homomorphism, [10] .

Let F = (fi )ien be a family of additive mappings of a I'-ring M into a I"-ring M'
and there exists a higher homomorphism 0 = (¢i)ien from a I'-ring M into a I'-ring
M' then f is said to be a generalized higher homomorphism (resp. generalized
Jordan higher homomorphism) onaI-ring M intoal -ring M'if forall neN,
we have

f.@ab)=>f,(@ad (b):

(respectively fn(aab+baa)=zn:fi(a)a¢, (b)+Zn:fi(b)0uh (a)) , forall a, b
eManda eI, [10].

Now, the main purpose of this paper is that every generalized Jordan (o, 1) -
higher homomorphism of a I"-ring M into a prime I'-ring M' is either generalized
(o, t) - higher homomorphism or (o, t) - anti -higher homomorphism and every
generalized Jordan (o, t)-higher homomorphism from a I"-ring M into a 2-torsion
free T"-ring M' is a generalized Jordan triple (o, T) - higher homomorphism.

2- Generalized Jordan (o, ) - Higher Homomorphisms of a I'-
Rings

Definition(2.1):
Let F = (fi )ien be a family of additive mappings of a I'-ring M into a " -ring M'
and o,t be two homomorphism of a I'-ring M, F is called a generalized (o, T) -
higher homomorphism if there exists a (o, t) - higher homomorphism 6 = (¢i)ien
from a I'-ring M into a I"-ring M, such that for all a, b € M, o € T and for every
n e N, we have:

f,@ab) = f (o' @)ad, (')

Where 0 is called the relating (o, t) - higher homomorphism.

Definition (2.2):

Let F = ( fi )ien be a family of additive mappings of a I'-ring M into a I" - ring M’
and o,t be two homomorphism of a I'-ring M, F is called a Jordan generalized (o,
7) - higher homomorphism if there exists a (o, t) - higher homomorphism 0 =
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(¢i)ien from a I'-ring M into a I' - ring M', such that for all a, b € M, a € T" and
for every n € N, we have:

f.(@aab +baa) = (o' @)ad, (' BN + > f,(c" 0ot (7' @)

Where 0 is called the relating Jordan (o, 1) - higher homomorphism.

Definition (2.3):

Let F = ( fi )ien be a family of additive mappings of a I'-ring M intoa I" - ring M'
and o,t be two homomorphism of a I'-ring M, F is called a generalized Jordan
triple (o, 1) - higher homomorphism if there exists a Jordan triple (o, T) - higher
homomorphism 6 = (¢i)ien from a I'-ring M into a I"-ring M', such that for all a, b
€ M, a, B € I'and for every n € N:

fL@abfa) =3 f (o' @ad(c's" BN S (@)

Where 0 is called the relating Jordan triple (o, t) - higher homomorphism.

Definition (2.4):

Let F = ( fi )ien be a family of additive mappings of a I'-ring M intoa T - ring M'
and o,t be two homomorphism of a I'-ring M, F is called a generalized (o, 1) —
higher anti- homomorphism if there exists a (o, ) - higher anti- homomorphism
0 = (¢i)ien from a T'-ring M into a I - ring M, such that forall a, b e M, a € T
and for every n € N we have:

f.(@ab)=>"f,(c" B)ad, (= @)

Where 0 is called the relating (o, t) — higher anti - homomorphism.

Now, we present below an example of generalized higher (o, t) - homomorphism
and it is clearly is a generalized Jordan (o, t) - higher homomorphism.

Example (2.5):

Let Si, S2 be two rings and f = ( fi )ien be a generalized higher (o, 1) -

homomorphism of a ring S1 into a ring Sz then there exist a relating higher (o, 1)

- homomorphism 06 = (0;)ien from a ring S: into Sz. Let M = M1x2(S1), M' =

Mi2(S2) and - :{(m] e z} then M and M’ be tow T-rings. F = (Fi )ien be a
0

family of mappings from a I'-ring M into I"-ring M' defined by: Fn((a b)) = (fa(a)
fa(b)) then there exists a relating higher (o, T) - homomorphism ¢ = (¢i)ien from a
I'-ring M into T'-ring M, such that ¢n((a2 b)) = (6n(a) 6n(b)).
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Let o,, T, be two homomorphism of a T-ring M, such that o;, T, : M——>M >

s'((a b)=(c"@) c"(b)), (@@ b)=(r"@@) t"(b)) then F. is a

generalized higher (o, ) - homomorphism.

Lemma (2.6):
Let F = (fi )ien be a generalized Jordan (o, t) - higher homomorphism of a I"-ring
M into aI-ring M’ then forall a, b,c € M, a, B € " and for every n € N

i__n—i

-2 . -2 . P . . .
If o' =c0',7" =7',0'r' =0 and o', t' are commutative

O ¢ @abparamaar- S f(e @) (o' BN S (7 @) +
Z fi (o' @)L (o' BNad (' (@)
(i)

f . (@aobgc +cabpga) = 2 f. (o' @)ad, (" (0N LB P, (' (€)) +
i fi(a' )N (c'z"" ©O)Ld:i(' (@)
If M"is a 2-torsion free commutative I"-ring
() @abac) =3 1,(0" @)ody (o2 0 erd, (@)
(iv) ,(@oabac +cobaa) = Z f (o' @)ad,(a'z" O)ad, (' (c)) +

Z f,(o" €N, (c'z" B, (7' ()

Proof:
(i) Replacing apb + bpa for b in the definition (2.2), we get:

f.(@o(@pBb+bpa)+@pLb +bLa)ca) = Z f. (o' (@)ad,(r'(@Bb +b pa)) +
> f (o' @pb +b pa)ad, (7' @)
=2 fi(c' @)ad ('@ (b) +7'(0) B (@) +

Z f (o' (@pBc'(b)+c'(b)Bc' (@)ad,(z' (@)
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=> (o (a))a[i BT @B (D) + D (oI 0) B (" (a))] +
i—1 =1 =1

Z[Z (0" @AHE BN+ D (o 0I5 (rjaj(a)jmi ('@

2 L ; Lo Coo o .
Since 0 =o', 7' =7',0't' =c't"" and &', ' are commutative

N Z fi(o' @)ad,(o'z"" @) B d;i(' (b)) + Z f (o' @)ad,(o'z" (b)) B, (' (a)) +
Z fi (o' @)B G (7" 0)ad (z'(a) + Z f,(o' ONB (o' (@)ad, (z'(a))
(1)

On the other hand:
f.@u@pBb+bpa)+@Lb+bpa)ca)=f (acapfb+aabfa+asboa+bpfaca)

= Z fi(o' @)ad (c'z"" @) ¢ (' (b)) + Zf (o' BN §(a'T" (@)ad;(z'(a)) +
f, (@aabBa +apboa) -

Comparing (1) and (2), we get:

f,(@aabpa+afbaa)= Z f,(c' @), (7" (b)) B, (7' (@) +

i f.(c' @) B (' (O)od (7' (@)

(if) Replace a +c for a in the definition (2.3), we get:

f.(@+c)abB@+c)) = Z f.(c' @+cHad, (e BN LB (7' @+c)

=3 f,(c' @) + o' @), (o'T" BN BB (@) + 7' ©)

= i fi(a'@ad (o' DN L di(' (@) + i f (o' @ad;(a'c" N L (' (C)

=3 (0 @b (T OV A B @) + 3 T (0 @) (T DN (@)
(D)
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On the other hand:
f.,((@a+c)abpB@+c)) =f (aobpfpa+aocbc +cabfa+cabfa)

=2 1,(0 @) (T 0N b (7 (@) + D (0 @ (e OB (e ) +
f,(@abBc +cabpfa)

..(2)
Comparing (1) and (2), we get:

f.(@abgc +cabpa)=> f,(c @)ad (=" 1) B (7' ©)) +

i fi(c'C©Nod (a'z" )L (' (@)

(iii) Replace o for B in (ii), we get:
f,(@abac+caoaboa)=f (aaboac+aobac)=2f (aoboc)

=23 (o' @) (o7 Ba b (7))

Since M'is a 2-torsion free I"-ring
f,(@abac) =f,(c'@)ad,(a'z"" O )ad;(z'(c))

(iv) Replace a for B in (ii), we get:
f.,(@aaboc +cobaa) = Zn: f.(c'@)ad,('z" " O))ad, (' (c)) +

> (0 ©)ad (o' 0oy (' @)

Definition (2.7):

Let F = (fi )ien be a generalized Jordan triple (o, 1) - higher homomorphism from
a I'-ring M into a I'-ring M', then for all a, b € M, o € T"and n € N, we define
dn(a, b)o: MxI'xM —— M' by:

3,(@.,b), =f,(aab) —i fi (' @)od;(z' (b))

Lemma (2.8):

Let F = ( fi )ien be a generalized Jordan (o, 1) - higher homomorphism from a I'"-
ring M into a I'-ring M', then foralla, b,c e M, o, B e Tand ne N:

(1) on(a,b)a =—dn(b,a)a

(if) on(a + b,c)a = dn(a,C)a + Sn(b,C)x

(|||) Sn(a,b + C)a = Sn(a,b)u + Sn(a,C)ot

(IV) Sn(a,b)a +p = Sn(a,b)q + Sn(a,b)ﬁ
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Proof:

) ¢ (@ab +baa)= P NCHCHERNCHCHED N CHCHETTCACH
fa@ab) = > f (o' @), (7' B)) = —F , baa) = 3 (o 0oty (' @)
Sn(a,b)a - - Sn(b,a)ot

(i) 5, a+b.c), =f,(@+b)ac) — D f (o' (@+bYad,(r'€))
~f,(@0c +bac) — > f, (o @)ad (7' @) - X f, (o' BN (7' ©))

~f,(@ac) = 3 f,(o' @)ad (' ©) +1,(0ac) = 3 (o' BN, (7' ©))
= Sn(a,C)a + Sn(b,C)a

(i) 5 (@,b+c), =f, (@a +c)) —Zn: f.(c'@)ad,(z'(b +c))

—f,@ab +axc)) = X F (o @)ad (7' B — > f (o @)ad, (' ©))

—f,@ab) = > F (o' @)ad (' B) +F,@ac)) — > f,(' @)od, (7' (©))
= Sn(a,b)o, + Sn(a,C)a

V) 5,@b),., =, (@l +Pb)~ X f (" @)(c+ B (7' 0))

=f,.(@ab) —i fi(c'@)od (') +f,(@pb) — i f (' @)IB,(z' (b))
= Sn(a,b)a + Sn(a,b)ﬁ

Remark (2.9):
Note that F = ( fi )ien is a generalized (o, 1) - higher homomorphism from a I"-ring
M into aI'-ring M' if and only if 6n(a,b)o =0 foralla,b € M,a e T"and n € N.

Lemma (2.10):

Let F = (fj )ien be a generalized Jordan (o, 1) - higher homomorphism of a 2-

torsion free  I'-ring M into a I-ring M’ such that
n? i_n-i

o =o0",t'c"=0",07t""'=7c" and o',7' for all i € N are
commutative, then forall a,b,m e M, o, B eT"andn € N
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() &,(c"@).c"©)).Bd (" (M)HBG, (" (B), 2" @), +
5,(c"(0), 5" @), Bd, (" (M)BG, (z" (@), z" (b)), =0
(i) 5,(c"@), ")), adh (" (M)NaG, (=" ), z" (@), +
3, (" (0), 5" (@), oy, (5" (M) G, (" (@), 7" (b)), =0
(i) 5, (c" @, " O, 0, (" (MNaG, (=" (©), 7" (@), +
8,(c"(©),c" (@), 0, (" (M)aG, (" (@), z" (b)), =0

Proof:
(i) We prove by using the induction, we can assume that:

3. (c*(@),c°(0)) Bh (> (M)BG, (z*(b),z° (@), +
8,(c°(b).o° (@), B (o (M)BG, (* (@), 7° (b)), =0 forall a, b, me M,
ands,ne N,s<n.

Let w = acbBmBbaa + baafmpaab, since F is a generalized Jordan (o, 1) -
higher homomorphism
fa (W) = fa(ac(bpmpb)aa + ba(apmpPa)ab)

=3 f,(0" @)ad (o' BBMBb Yot (7' (@) +
> fi(o' Gad (o' @Bmpa)ad, (< 0))

ORIC (a»a[_'m- (o (O (o T (M) ('™ (b)))}wi (7' (@) +
> i(a%b))a[Zq-(oj(o"r“j(a)»m,-(ajr“J'<ajr“<m>>>s¢j<r"(a"r"i(a)»jad)i(ri(b»

n

= Z (o' @)ad; (o' (o' OB (7" (o™ (M)Bi (7' (o' (b)) oy (7' (@) +

2. fila'O)ad (o' (a'c" @B (a'c" (a7 (M))Bei (' (0" (@) oy (' (b))

i=1

n . .

= Z fi(c'@)ad(c' (a7 0))Bo(c'7" (o7 (m))BZ (' (c'z" O))ady(r (@) +

n

2 i(Ui(b))wl)i(Ui(Gif"’i(a)))Bd)i(UiT”’i(GiT”’i(m))BZd)j(Tj(Ujfn’j(a)))ad)j(fj(b))

i=1
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=f.(c"@)ad, (" (" 0))B¢, (" (o (m)))BZ ¢, (z' (o7 (0)) oy (7' (2)) +

ni fi(c'@)ag (o' (c'z" 0B (o'c" (o' (m))BZ‘,¢j(fj(0jf”'j(b ))ady(7)(@)) +

i=1

f.(a"(0))ad, (" (" (@)Bh, (" (" (m)))BZ (7' (" (@), (r' (b)) +

Z f.(c'(0))ad; (o' (o'"" (@)Bd;(c'z" ' (o™ '(m))BZd),-(Tj(ijn’j(a)))ad)j(fj(b))
(D)

On the other hand:

fa(w) = fa((acb)pmp(baa) + (baa)pmpP(ach))
= Z f. (o' (@ab))Be,(c'z" (M)BP, (' (baa)) +

> (o' baa)Be,(o'z" (MNP, (' (aab))

=Z f,(c" @ab))Bo, ((ij""(m))B(ZILd),-(G"T"(a))ocd),—(sz (b))+2¢,.(airj(b))a¢j(ﬁ @) -

¢;(z'(acb)) j+2( Zf (o @)ag, (T‘G‘(b))+zf (o' b))y (r'o(a)) -

=1 j=1

fi(c'(aab)) JBdﬁ ((c'z"(m))Bo;(z' (acb))

>

Zf (o' (aab))Bé; ((o'r" ’(m))BZ¢(aJr'(a))a¢ (7’ (b))+zf (o' (aab))Bé; ((o'z" (m))B-

> ¢(0' 0))ag (" @) Zf (o' (acb)Be;((o'z" (M) (7' (acib)) +

Zf (o" (@))ad,(z'0" (0))B, (o7 (M))Bo (' (2ctb)) +Zf (o" (0))ad,(r'o" @)B,(o'7" ())B-

¢,(7'(acb)) - Z fi(c'(aab)Be;((o'z"" (M))Boy (7' (actb))
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== fi(o'(ach))B; ((c'7" (M)B(¢; (z' (acb)) — Zd),— (/7' @)ady (" (b)) -
Zn‘, (o' (acb))Be; (o' (M))B(¢; (' (acb)) — ZI‘,(1),—(0"7"(b))0u1>,-(sz () +

i=1 =L

n

Z f.(c" @)ad,(z'c' 0))B (o™ ()P, (7' (acb)) +

n

Z f.(o" 0)ad (7o' @)B (o' (M), (' (acb))

= —i fi(c'(@aab))Be;((o'z" (M)BG,(7' (@), 7' (b)), —

Z fi(c'(@ab))Be;(c'z"" (M)BG;(z'(b). 7' (@), +

> .0 @) (' 0B, (o' (M) (7' (acrb)) +

> (0" 0)ad, (r'o' @), (o'r" (M)Bay (7' (@crb))

—f,(o" (@ab))B¢, (o (M)BG,(z"(a), 7" (b)), —
nz:: fi(c'(@aab))Bd ((c'z" (M)BG;(7' (@), 7' (b)), —

f.(c"(@ab))Be, ((a"(M)BG,(z"(b).7"(a)), -

S 1,(c" (@ob )P, (o' (MBG, ('), (@), +

fo(o™ @), (z"0" (BB, (" (M))B, (" (acb)) +

> 1,(0" @ (7'0" NP4, (o' (M) (' (axb)) +

fo(c" ©)ad, ("o" @)B4, (" (M)B4 (" (actb)) +

> f.(0" 0)ou,(r'o @) (o'e" (M) (' (@ab))
.(2)

Compare (1), (2) and since o™ =", r"c" =" , 0" =o' andsi, ¢
are commutative
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0=—f (" (@aab))B¢, (" (M)BG, (" (a),7" (b)), —
f,(c" (@ab))B, (" (M)BG,(z"(b).7"(a)), +
fo (" @)ag, (" (0))B4, (" (M))B(¢, (z" (aab)) -

i(l)i (r'(o'7" @))ady (7' (0) + 1, (b)ad, (o @)B(%, (" (M))B(¢, (z" (acb)) —

i(l) (r'(o'c"" (@)))ag; (7' (0)) - nz_ll fi(o'(@ab))Bo; ((o'z" (M))BG;(7'(a), ' (b)), —

n-1

Z fi(c' (@ab))Bd; ('™ (M))BG, (' (b). 7' (a)),, +

n-1

Z fi(c'@ad;(z'c" 0))Bd (o'z"" (M))B(¢; (r' (b)) —

i=1

¢,(z'(c'7" (b)) oty (7' (a)))+2f (o' B)adi (r'a' (@)B; ('™ (M))B(9;(z' (acb)) —

J:l

Z(I) (7' (c'7" (@)))agy(z' (b))

=1

—f . (" (@ab))B¢, (" (M)BG, (" (a),z" (b)), —
f.(c"(@ab))B¢, (" (M)BG,(z"(b).z" (), +
f.(c"(@)ag, (c" 0)B, (" (M)BG, (z"(b).7" (), +
f.(c" (), (" (@)Be, (6" (M)BG,(z"(a),z" (b)), -

E fi(c'(@oh))Be; ((o'z""(M))BG;(z' (@), 7' (b)), —

Zf.(a (@ah))Be; (o'z" (M))BG; (7' (b), 7' (@), +

Z fi (o' @oad; (z'c' 0)Be;('z" (M)BG (' (b). 7' (@), +

i=1

nz fi(o'®)ad(c'o' (@)B;(a'z"" (M)BG;(z'(a), 7' (b)),

i=1

=-8,(c"(b),0"(@)), B¢, ((c"(M)BG,(z"(a),z" (b)), -
8,(c"(@),0"(0)). B, ((a"(M)BG, (" (b),7"(a)), —

25 (c'().c' @), B ((c'7" (M)BG;(7'(a), 7' (b)), —

n25.(0 @),0'(0)) B (c'c" (M)BG;(7' (b), 7' (@),
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=—(8,(c"(b),0"(a)). B, ((c"(M)BG, (" (a),z" (b)), +
8,(c"(a),c" (0)). B, (" (M)BG,(z"(b).7"(a)), —

i fi(@'(0),0' @), Bo;((c'z"" (M)BG;(7' (@), 7' (b)), +
> fi(o'(@),0' (b)), B (o'z" (M)BG; (7' (b), 7' (@)),)

By our hypothesis, we have:
3,(c"(@),c" () B (" (M)HBG,(z"(0).z" (@), +
3,(c"(®),c"(@).Bh (" (M)BG,(z"(a),z" (b)), =0

(i) Replace B by o in (i), we get (ii).
(iii) Interchanging o and B in (i), we get (iii).

Lemma (2.11):
Let F = ( fi )ien be a generalized Jordan (o, t) - higher homomorphism from a I'-
ring M into a prime I'-ring M', then for all a, b, m € M, o, Bel"andn € N

() s,(c"@).c"O).Bd (" (MHBG, (" (b),7" (@), =
8,(c" (), o" (@), Bdh, (" (M)BG, (" (@), " (b)), =0
(i) 8,(c" @), 0" ®)), ad (" (M)aG,(z"(b), " (@), =
3,(c" (), o" (@), ad, (6" (M)aG, (" (@),z" (b)), =0
(iii) &, (c" (@), 0" O, (" (M)aG, (z"(b), 7" (@), =
8,(c" (), 0" (@) ad, (" (M)aG, (" (@), z" (b)), =0

Proof:
(i) By lemma (2.10) (i), we have:
3,(c"(@),c" (b)) B (" (M)BG,(z" (b),7"(a)), +
3,(c" (), 0" (@) B, (" (M)BG, (" (@), z" (b)), =0
Since by lemma (let M be a 2-torsion free semiprime I'-ring and suppose that
a,b e Mifal'mI'b + bI'mI"a = 0 for all m € M, then al'mI’b = bI'mI"a = 0),
we get:
8,(c"(@),5"(0)),Bd (" (M)BG, (" (b). " (@), =
8,(c"(b), " (@) B (" (M)IBG,(z"(@).z" (b)), =0

(if) Replace o for B in (i), we obtain (ii).

(iii) Interchanging o and B in (i), we obtain (iii).
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Theorem (2.12):
Let F = (fi )ien be a generalized Jordan (o, t) - higher homomorphism from a I'-

ring M into a prime I'-ring M', then for all a, b, c,d,m € M, a, Bel"andn € N
) &,(c"@.c"©),.Bd (" (M)BG,(z"(d),z"(€)), =0

(i) &,(c"@.c"®)),ad (" (M)aG, (z"d),z"(c)), =0

(i) 5 (" (@).c"®)),0, (" (M)aG,(z"(d),z"(€)), =0

Proof:

(i) Replacing a+c for a inlemma (2.11) (i), we get:
8,(c"(@+c),c" ), Bh (c"(M)BG,(z"(b),z"(a+c)), =0
8,(c" (@), " (0)) B (" (M)BG, (" (b),7" (), +
8,(c"(@),0"(0)),.B,(c"(M)BG,(z"(b),z"(c)), +
8,(c"(c),o" (1)), B, (" (M)BG, (" (b), 7" (d)), +
8,(c"(c),a" (b)), B, (" (M)BG,(z"(b),z"(c)), =0
By lemma (2.11)(i), we get:

3,(c"(@),c" (b)), Bd, (a"(M)BG,(z"(b),z"(c)), +
3,(c"(€),o"(0)), B, (a"(M)BG,(z"(b),z" (@), =0

Therefore, we get:

3,(c"(@),c"(0)) B (a"(M)BG, (z" (), z"(€)) B, (" (M))B
3,(c"(@),c"(0)).Bd, (" (M)BG,(z"(b),z"(c)), =0

=-5,(c"(@),c"(0)) B, (a"(M)BG,(z"(b).z"(c)) B, (" (M))B
3,(c" (), ")), B, (" (M)BG,(z"(b),z"(a)), =0
Since M'"is a prime I'-ring and therefore:
3, (" (@), 0" (0)),Bh, (" (MNBG, (=" (), 7" (c)), =0 (D)
Replacing b +d for b inlemma (2.11) (i), we get:
8,(c"(@),c" (b +d)), Bd (" (M)HBG,(z" (b +d),z"(a)), =0
8,(c"(@),c" (), B, (" (M)BG,(z" (). z" (@), +
3,(c"(@),c"(0)), B, (" (M)BG,(z"d).z" (@), +
3,(c"(@),c"(d)) Bd, (" (M)BG,(z" (). z"(a)),, +
3,(c"(@),c"(d)) Bd, (" (M)BG,(z"(d).z"(a)), =0
By lemma (2.11) (i), we get:
3,(c"(@),c"(0)).Bd,(c"(M)BG, (z"(d),z"(a)), +
3,(c"(@),0"(d)), B, (" (M)BG,(z"(b).7" (@), =0
Therefore, we get:
5,(c"(@),c" (1)), B (" (M)BG,(z"(d), 7" (@)) B, (" (M))B
5,(c"(@),c"(©)), B (" (M)BG,(z"(d), 7" (a)), =0
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=-5,(c"(@),0"(0)).B¢,(c"(M)BG,(z"(d),7"(a)).Be,(c" (M)B
5,(c"(@),0"(d)).Be,(c"(M)BG, (" (b).7"(@)), =0

Since M' is a prime I'-ring and therefore:

8,(c" (@), "), B (c"(M))HBG, (" (d),z"(a)), =0 -(2)
Now, §,(c"(@),5" (), B, (" (M)BG,(z"(b +d),z"(a+c)), =0
8,(c"(@),c" (b)), B, (c"(M)BG,(z"(b),7"(a)), +

3,(c"(a),c" (b)), B, (" (M)BG,(z"(b),z"(c)), +

8,(c"(@),c" (b)), B, (c"(M)BG,(z"(d).z"(a)), +

8,(c"(@),c" (b)), B, (c"(M)BG,(z"(d),z"(c)), =0
Since by lemma (2.11) and (1) and (2), we get:

3,(c"(@),5"(0)) B, (" (M)BG,(z"(d),z" (), =0

(i) Replace a for B in (1), we obtain (ii).

(iii) Replacing o+ for a in (ii), we get:
S,(c"(@),c" O pod, (" (M)aG,(z"(d),z"(C)),,; =0
8,(c"(@),0" (b)), o, (" (M)aG, (z"d).z"(c)), +
8,(c"(@),c" (), ad,(c"(M)aG,(z"(d),z"(c)), +
8,(c" (@), " (©))zad, (" (M)aG,(z"(d).z"(c)), +
8,(c" (@), " (©0))zod, (" (M))aG,(z"(d),z"(c)); =0
By (i) and (ii), we get:
3,(c" (@), 0" (b)), ad,(c"(M)aG, (z"(d),z"(c)), +
3,(c" (@), 0" (b))zod,(c"(M)aG,(z"(d),z"(c)), =0
Therefore, we have:
3,(c"(@),c" b)), ad,(a"(M)aG, (z"d),z"(€))ad (" (M))a

3,(c"(@),c" (b)), o, (c"(M)aG,(z"(d),z"(c)); =0

=—3,(c"(a),c" (b)), 0, (c"(M)aG,(z"(d),z"(c));ad, (" (M)
3,(c"(@),c" (0));ad, (" (M)aG, (z"(d),z"(c)); =0

Since M'"is a prime I'-ring, then:

3,(c" (@), " (b)), od (" (M))aG,(z"(d),z"(c)); =0-
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3- The Main Results

Theorem(3.1):

Every generalized Jordan (o, 1) - higher homomorphism from a I'-ring M into a
prime I'-ring M' is either generalized (o, 1) - higher homomorphism or (o, 1) -
higher anti- homomorphism.

Proof:

Let F = (fi )ien be a generalized Jordan (o, 1) - higher homomorphism of a I"-ring
M into a prime I'-ring M', then by theorem (2.12) (i);

3,(c"(@),a"©)) B (a"(M)BG,(z"(d),z"(c)), =0-

Since M' is a prime [-ring therefore either & (o"(a),o"()), =0 OF
G, (z"(d),z"(c)), =0, foralla,b,c,d e M, o, Bel"and n e N.

If G (z"d).z")), =0 for all ¢, d € M, aell and n € N then
8. (c"(a),c" (b)), =0.Hence, we get F is a generalized (o, 1) - higher
homomorphism.

Butif G, (z"(d),z"(c)), =0 forallc,d e M, ael'and n € N then we get F is
a (o, 1) - higher anti- homomorphism.

Proposition (3.2):

Let F = (fi )ien be a generalized Jordan (o, 1) - higher homomorphism from a I'-
ring M into 2-torsion free T"-ring M', such that aabpa = apbaa, foralla, b e M
and o, Bel, a'ab'Pa’ = a'Bb'ea’, for all a, b' € M and o, B € T,
o =o', =7, 0 =c'z" and &', i are commutative for all ie N, then F
is a generalized Jordan triple (o, t) - higher homomorphism.

Proof:
Replace aBb + bpa for b in the definition (2.2), we get:

f.,(@o(apb+bpa)+(apb +bpa)oa)
= Zi: f.(c'(@)ad,(z' (apb +bpa)) + Zi: f.(c'(aBb +bBa))ad,(z' (@)
= i f.(c'@)ad (' @Bz (0)+7' (0O)P (@) + i f. (o' (@Bc' (0)+ o b)Bo (@)ad (r'(a))

= Zi: fi (o' (a))a[ZI:d)j (O'jTj(a)B¢j(Tj2 )+ Z:ij(O'jrj(b)[?x])j(rj2 (a))j +

> [i fi (o @B (o' (0)) + Z fi(o” (D)BY (r"oj(a))jacbiri(a))

i-1 \_j=1
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Since a'ab'Bpa’ = aBb'ea’, for all a, b € M and o B € T,
o =o', " =7, o =" and 4 i are commutative.

= > (0! @)ad (o' @B (7 B) + 23 f (o @)ad(o'r (0B, (7' @) +

z f,(c" 0B (o' (@), (7' (@)

On the other hand:
f.(@aa(apb +bpa)+@Bb +bpa)aa) =  (acaBb +aacbPBa +apBb aa +bpaca)

Since acbpa = apbaa, foralla,b € Mand a, Bel’
=31, (0 @), (o' @B (' B ) + D T (o BN (o' @audy (' (@) +
2fI:n1 (acbpa) -
..(2)
Compare (1) and (2), we get:
2f (aobpa) = 2Zn‘, f.(c' @)ad;(a'z"" (DB ('(@)
Since M'is a 2-torls:ilon free I'-ring, we get:
f.(aabBa) = .Z:‘ f (o' @)ad,(a'z"" (b)Y, (z' (@)

Hence, F is a generalized Jordan triple (o,t) - higher homomorphism.
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