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Abstract 

 

Let M and M' be two prime -ring and n,n be two higher homomorphism of a -

ring M, for all n  N in the present  paper  we show  that  under  certain 

conditions of  M, every generalized Jordan (σ, τ) -  higher homomorphism of a -

Ring M into a prime  -Ring M 'is either generalized (σ, τ) - higher 

homomorphism or  (σ, τ) – higher anti- homomorphism. 
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1- Introduction 

 
Let M and  be two additive abelian groups, suppose that there is a mapping from 

MM  M (the image of (a,,b) being denoted by ab, a, b  M and   

). Satisfying for all a, b, c  M and ,   : 

(i) (a + b)c = ac + bc  

a ( + ) c = ac + ac 

a (b + c) = ab + ac 

(ii) (ab)c = a(bc) 

Then M is called a -ring. This definition is due to Barnes [1], [8]. 
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A -ring M is called a prime if aMb = (0) implies a = 0 or b = 0, where a, b  

M, this definition is due to [5]. 

 

A -ring M is called semiprime if aMa = (0) implies a = 0, such that a  M, 

this definition is due to [7].  

                                                                                                                                              

Let M be a 2-torsion free semiprime -ring and suppose that a, b  M if amb + 

bma = 0 for all m  M, then amb = bma = 0 this definition is due to [11]. 

 

Let M be -ring then M is called 2-torsion free if 2a = 0 implies a = 0, for every a 

 M, this definition is due to [6]. 

 

Let i, i be two higher homomorphism of a -ring M then i, i are called 

commutative if i i = i i, for all iN. 

 

Let M be a -ring and d: M  M be an additive map (that is d (a + b) = d(a) + 

d(b)), then  d  is called a derivation on M if : 

 

d (ab) = d(a)b + ad(b), for all a, b  M and   . 

d is called a Jordan derivation on -ring if d(aa) = d(a)a + ad(a), for all a  

M and   , [4], [9]. 

 

Let M be a -ring and f: M  M be an additive map (that is f (a + b) = f (a) + f 

(b)), Then f is called a generalized derivation if there exists a derivation d: M  

M such that 

f (ab) = f (a)b + ad(b), for all a, b  M and   . 

f is called a Jordan generalized derivation if there exists a Jordan derivation d: M 

 M such that 

f (aa) = f (a)a + a d(a), for all a  M and   , [2], [3]  . 

 

Let  be an additive mapping of -ring M into a -ring M',  is called a 

homomorphism if for all a, b  M and    

 (ab) = (a) (b), [1], [10]. 

 

Let  be an additive mapping of -ring M into a -ring M'.  is called a Jordan 

homomorphism if for all a, b  M and    

 (ab + ba) = (a)(b) + (b) (a), [10] . 

 

Let F be an additive mapping of a -ring M into a -ring M', F is called a 

generalized homomorphism if there exists a homomorphism  from a -ring M 

into a '-ring M', such that F (ab) = F (a)(b), for all a, b  M and   , where  

is called a relating homomorphism. 
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F is called a generalized Jordan homomorphism if there exists a Jordan 

homomorphism  from a -ring M into a -ring M', such that 

F(ab + ba) = F(a)(b) + F(b) (a), for all a, b  M and   , where  is 

called a relating Jordan homomorphism, [10] . 

 

Let F = ( fi )iN be a family of additive mappings of a -ring M into a -ring M' 

and there exists a higher homomorphism  = (i)iN from a -ring M into a -ring 

M' then f is said to be a generalized higher homomorphism (resp. generalized 

Jordan higher homomorphism) on a -ring M into a  -ring M' if for all  nN, 

we have                                                                                                              
n

n i

i 1

( α ) ( )α ( )if a b f a b


  ,            

(respectively n n

n i i

i 1 i 1

( α ) ( )α ( ) ( )α ( )i if a b b a f a b f b a
 

     
) , for all a, b 

 M and   ,  [10] . 

                                                                                                                                                                                                                                                                                                                                

Now, the main purpose of this paper is that every generalized Jordan   (σ, τ) - 

higher homomorphism of a -ring M into a prime -ring M' is either generalized  

(σ, τ)  - higher homomorphism or  (σ, τ)   - anti -higher homomorphism and every 

generalized Jordan (σ, τ)-higher homomorphism from a -ring M into a 2-torsion 

free -ring M' is a generalized Jordan triple  (σ, τ)  - higher homomorphism. 

 

2- Generalized Jordan  (σ, τ)  -  Higher  Homomorphisms of a -

Rings 
      

Definition(2.1):                                                                                                                                                

Let F = ( fi )iN be a family of additive mappings of a -ring M into a  -ring M' 

and , be two homomorphism of a -ring M, F is called a generalized (σ, τ)   - 

higher homomorphism if there exists a (σ, τ) - higher homomorphism   = (i)iN 

from a -ring M into a -ring M', such that for all a, b  M,    and for every 

n  N, we have: 
n

i i

n i i

i 1

( α ) ( ( ))α ( ( ))f a b f a b 


 
 

 

Where  is called the relating (σ, τ) - higher homomorphism. 

                                                                                                                                           

Definition (2.2):  

Let F = ( fi )iN be a family of additive mappings of a -ring M into a  - ring M' 

and , be two homomorphism of a -ring M, F is called a Jordan  generalized (σ, 

τ)  -  higher homomorphism if there exists a (σ,  τ)  - higher homomorphism  = 
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(i)iN from a -ring M into a  - ring M', such that for all a, b  M,    and 

for every n  N, we have: 
n n

i i i i

n i i i i

i 1 i 1

( α α ) ( ( ))α ( ( )) ( ( ))α ( ( ))f a b b a f a b f b a   
 

     
 

 

Where  is called the relating Jordan (σ, τ) - higher homomorphism. 

 

Definition (2.3):  

Let F = ( fi )iN be a family of additive mappings of a -ring M into a   - ring M' 

and , be two homomorphism of a -ring M, F is called a generalized Jordan 

triple    (σ, τ) - higher homomorphism if there exists a Jordan triple (σ, τ) -  higher 

homomorphism   = (i)iN from a -ring M into a -ring M', such that for all a, b 

 M, ,    and for every n  N: 
n

i i n i i

n i i i

i 1

( α ) ( ( ))α ( ( )) ( ( ))f a b a f a b a     



    

 

Where  is called the relating Jordan triple (σ, τ)  - higher homomorphism. 

                                                                                                                                                                                                                                                             

Definition (2.4):                                                                                                                              

Let F = ( fi )iN be a family of additive mappings of a -ring M into a   - ring M' 

and , be two homomorphism of a -ring M, F is called a generalized (σ, τ) – 

higher anti- homomorphism if there exists a (σ, τ) - higher anti- homomorphism    

 = (i)iN from a -ring M into a  - ring M', such that for all a, b  M,    

and for every n  N we have: 

 
n

i i

n i i

i 1

( α ) ( ( ))α ( ( ))f a b f b a 


 
 

Where  is called the relating  (σ, τ) – higher anti - homomorphism. 

 

Now, we present below an example of generalized higher  (σ, τ) - homomorphism 

and it is clearly is a generalized Jordan  (σ, τ) - higher homomorphism. 

 

Example (2.5):  

Let S1, S2 be two rings and f = ( fi )iN be a generalized higher (σ, τ) - 

homomorphism of a ring S1 into a ring S2 then there exist a relating higher (σ, τ)   

- homomorphism  = (i)iN from a ring S1 into S2. Let M = M12(S1), M' = 

M12(S2) and m
: m Z

0

  
    

  

 then M and M' be tow  -rings. F = (Fi )iN be a 

family of mappings from a -ring M into -ring M' defined by: Fn((a   b)) = ( fn(a)   

fn(b)) then there exists a relating higher (σ, τ) - homomorphism  = (i)iN from a 

-ring M into -ring M', such that n((a   b)) = (n(a)   n(b)). 
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Let 
n n

1 1σ , τ  be two homomorphism of a -ring M, such that 
n n

1 1σ , τ : MM  

n n n n n n

1 1σ ((a b)) (σ ( ) σ ( )), τ ((a b)) (τ ( ) τ ( ))a b a b   then Fn is a 

generalized higher (σ, τ) - homomorphism. 

 

Lemma (2.6):  

Let F = ( fi )iN be a generalized Jordan  (σ, τ) - higher homomorphism of a -ring 

M into a -ring M', then for all a, b, c  M, ,    and for every n  N 

If 
2 2i i i i i i i n i, ,            and i, i are commutative 

 

(i) n
i i n i i

n i i i

i 1

( ) ( ( )) ( ( )) ( ( ))f a b a a b a f a b a      



      
 

n
i i n i i

i i i

i 1

( ( )) ( ( )) ( ( ))f a b a    



 
 

(ii) n
i i n i i

n i i i

i 1

( ) ( ( )) ( ( )) ( ( ))f a b c c b a f a b c      



      
 

n
i i n i i

i i i

i 1

( ( )) ( ( )) ( ( ))f c b a    



 
  

 If M' is a 2-torsion free commutative -ring   

 

(iii) n
i i n i i

n i i i

i 1

( ) ( ( )) ( ( )) ( ( ))f a b c f a b c   



    
                                                                                       

(iv) n
i i n i i

n i i i

i 1

( ) ( ( )) ( ( )) ( ( ))f a b c c b a f a b c   



        
                                   

n
i i n i i

i i i

i 1

( ( )) ( ( )) ( ( ))f c b a   



 
 

 

Proof:  

(i) Replacing  ab + ba  for  b  in the definition (2.2), we get: 

 
n

i i

n i i

i 1

n
i i

i i

i 1

( α( ) ( )α ) ( ( ))α ( ( ))

( ( ))α ( ( ))

f a a b b a a b b a a f a a b b a

f a b b a a

       

   





      

 




n

i i i i i

i i

i 1

n
i i i i i

i i

i 1

( ( ))α ( ( ) ( ) ( ) ( ))

( ( ) ( ) ( ) ( ))α ( ( ))

f a a b b a

f a b b a a

    

    





   

 




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2 2

2 2

n i i
i j j j j j j

i j j j j

i 1 j 1 j 1

n i i
j j j j j j i

j j j j i

i 1 j 1 j 1

( ( ))α ( ( ) ( ( )) ( ( ) ( ( ))

( ( ) ( ( )) ( ( ) ( ( ) α ( ( ))

f a a b b a

f a b f b a a

        

        

  

  

 
       

 

 
    

 

  

  

Since 
2 2i i i i i i i n i, ,            and i, i are commutative 

n n
i i n i i i i n i i

i i i i i i

i 1 i 1

n n
i i n i i i i n i i

i i i i i i

i 1 i 1

( ( ))α ( ( )) ( ( )) ( ( ))α ( ( )) ( ( ))

( ( )) ( ( ))α ( ( )) ( ( )) ( ( ))α ( ( ))

f a a b f a b a

f a b a f b a a

         

         

 

 

 

 

      

    

 

 

     …(1) 

 

 

On the other hand: 

n n( α( β β ) ( )α ) ( α α α α )f a a b b a a b b a a f a a b a b a a b a b a a           
n n

i i n i i i i n i i

i i i i i i

i 1 i 1

n

( ( ))α ( ( )) ( ( )) ( ( )) ( ( ))α ( ( ))

( α ) ...(2)

f a a β b f b β a a

f a bβa aβb a

        

 

      

 

 

                                                                                                                              

 

Comparing (1) and (2), we get: 
n

i i n i i

n i i i

i 1

( ) ( ( )) ( ( )) ( ( ))f a b a a b a f a b a      



      
 

n
i i n i i

i i i

i 1

( ( )) ( ( )) ( ( ))f a b a    



 
 

 

 

(ii) Replace  a + c  for  a  in the definition (2.3), we get: 

 
n

i i n i i

n i i i

i 1

(( )α ( )) ( ( ))α ( ( )) ( ( ))f a c b a c f a c b a c     



      
 

n
i i i n i i i

i i i

i 1

( ( ) ( ))α ( ( )) ( ( ) ( ))f a c b a c      



    

 

 
n n

i i n i i i i n i i

i i i i i i

i 1 i 1

( ( )α ( ( )) ( ( )) ( ( )α ( ( )) ( ( ))f a b a f a b c          

 

      
n n

i i n i i i i n i i

i i i i i i

i 1 i 1

( ( )α ( ( )) ( ( )) ( ( )α ( ( )) ( ( ))f c b a f c b c          

 

      

   …(1) 
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On the other hand: 

n n(( )α β( )) ( α α α α )f a c b a c f a b a a b c c b a c b a        
n n

i i n i i i i n i i

i i i i i i

i 1 i 1

n

( ( ))α ( ( )) ( ( )) ( ( )) ( ( )) ( ( ))

( α )

f a b β a f c b c

f a bβc c bβa

          

 

      

 

 

 

…(2) 

Comparing (1) and (2), we get: 
n

i i n i i

n i i i

i 1

( ) ( ( )) ( ( )) ( ( ))f a b c c b a f a b c      



      
 

n
i i n i i

i i i

i 1

( ( )) ( ( )) ( ( ))f c b a    



   

 

(iii) Replace    for    in (ii), we get: 

n n n( α α α α ) ( α α α α ) 2 ( α α )f a b c c b a f a b c a b c f a b c     
n

i i n i i

i i i

i 1

2 ( ( )) ( ( )) ( ( ))f a b c    



  
 

 

Since M' is a 2-torsion free -ring 
i i n i i

n i i i( ) ( ( )) ( ( )) ( ( ))f a b c f a b c         

 

 

(iv) Replace    for    in (ii), we get: 
n

i i n i i

n i i i

i 1

( ) ( ( )) ( ( )) ( ( ))f a b c c b a f a b c   



        
 

n
i i n i i

i i i

i 1

( ( )) ( ( )) ( ( ))f c b a   



   

 

Definition (2.7):  

Let F = ( fi )iN be a generalized Jordan triple (σ, τ) - higher  homomorphism from 

a -ring M into a -ring M', then for all a, b  M,    and n  N, we define 

n(a, b): MM  M' by: 
n

i i

n n i i

i 1

( ) ( ) ( ( )) ( ( ))a b f a b f a b 



     
 

Lemma (2.8):  

Let F = ( fi )iN be a generalized Jordan (σ, τ) - higher homomorphism from a -

ring M into a -ring M', then for all a, b, c  M, ,    and      n  N: 

(i) n(a,b) = – n(b,a) 

(ii) n(a + b,c) = n(a,c) + n(b,c) 

(iii) n(a,b + c) = n(a,b) + n(a,c) 

(iv) n(a,b) +  = n(a,b) + n(a,b) 
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Proof:  

(i) n n
i i i i

n i i i i

i 1 i 1

( ) ( ( )) ( ( )) ( ( )) ( ( ))f a b b a f a b f b a   
 

       
 

n n
i i i i

n i i n i i

i 1 i 1

( ) ( ( )) ( ( )) ( ) ( ( )) ( ( ))f a b f a b f b a f b a   
 

        

n(a,b) = – n(b,a) 

 

(ii) 
n

i i

n n i i

i 1

( , ) (( ) ) ( ( )) ( ( ))a b c f a b c f a b c 



         

n n
i i i i

n i i i i

i 1 i 1

n n
i i i i

n i i n i i

i 1 i 1

( ) ( ( )) ( ( )) ( ( )) ( ( ))

( ) ( ( )) ( ( )) ( ) ( ( )) ( ( ))

f a c b c f a c f b c

f a c f a c f b c f b c

   

   

 

 

       

       

 

 

= n(a,c) + n(b,c) 

 

(iii) 
n

i i

n n i i

i 1

( , ) ( ( )) ( ( )) ( ( ))a b c f a b c f a b c 



         

n n
i i i i

n i i i i

i 1 i 1

( )) ( ( )) ( ( )) ( ( )) ( ( ))f a b a c f a b f a c   
 

        

 
n n

i i i i

n i i n i i

i 1 i 1

( ) ( ( )) ( ( )) ( )) ( ( )) ( ( ))f a b f a b f a c f a c   
 

        

= n(a,b) + n(a,c) 

 

(iv) 
n

i i

n n i i

i 1

( , ) ( ( ) ( ( ))( ( ( ))a b f a b f a b 



        

n n
i i i i

n i i n i i

i 1 i 1

( ) ( ( )) ( ( )) ( ) ( ( )) ( ( ))f a b f a b f a b f a b   
 

        

 = n(a,b) + n(a,b) 

 

 

Remark (2.9):  

Note that F = ( fi )iN is a generalized (σ, τ) - higher homomorphism from a -ring 

M into a -ring M' if and only if n(a,b) = 0 for all a, b  M,    and n  N. 

 

Lemma (2.10):  

Let F = ( fi )iN be a generalized Jordan  (σ, τ) - higher homomorphism of    a 2-

torsion free -ring M into a -ring M', such that 
2n n n n n i n i i i, ,            and 

i i,   for all i  N are 

commutative, then for all a, b, m  M, ,    and n  N 
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(i) n n n n n

n n n( ( ), ( )) ( (m)) G ( ( ), ( ))a b b a          
n n n n n

n n n( ( ), ( )) ( (m)) G ( ( ), ( )) 0b a a b          

(ii) n n n n n

n n n( ( ), ( )) ( (m)) G ( ( ), ( ))a b b a          

 n n n n n

n n n( ( ), ( )) ( (m)) G ( ( ), ( )) 0b a a b          

(iii) n n n n n

n n n( ( ), ( )) ( (m)) G ( ( ), ( ))a b b a          

n n n n n

n n n( ( ), ( )) ( (m)) G ( ( ), ( )) 0b a a b          

 

 

Proof:  
(i) We prove by using the induction, we can assume that: 

s s s s s

s s s( ( ), ( )) ( (m)) G ( ( ), ( ))a b b a          

s s s s s

s s s( ( ), ( )) ( (m)) G ( ( ), ( )) 0b a a b          for all a, b, m M, 

and s, n  N, s < n.  

 

Let w = abmba + bamab, since F is a generalized Jordan (σ, τ)  - 

higher homomorphism 

fn (w) = fn(a(bmb)a + b(ama)b) 

 
n

i i n i i

i i i

i 1

n
i i n i i

i i i

i 1

( ( )) ( ( m )) ( ( ))

( ( )) ( ( m )) ( ( ))

f a b b a

f b a a b

   

   









     

   





 

n i
i j j n j j n j j n j j j n j i

i j j j i

i 1 j 1

n i
i j j n j j n j j n j j j n j i

i j j j i

i 1 j 1

( ( )) ( ( ( ))) ( ( (m))) ( ( ))) ( ( ))

( ( )) ( ( ( ))) ( ( (m))) ( ( ))) ( ( ))

f a b b a

f b a a b

           

           

   

 

   

 

 
        

 

 
      
 

 

 

n
i i i n i i n i i n i i i n i i

i i i i i

i 1

n
i i i n i i n i i n i i i n i i

i i i i i

i 1

( ( )) ( ( ( ))) ( ( (m)) ( ( ( )) ( ( ))

( ( )) ( ( ( ))) ( ( (m)) ( ( ( )) ( ( ))

f a b b a

f b a a b

           

           

   



   



     

   





 
n i

i i i n i i n i i n i j j n j j

i i i j j

i 1 j 1

n i
i i i n i i n i i n i j j n j j

i i i j j

i 1 j 1

( ( )) ( ( ( ))) ( ( (m)) ( ( ( ))) ( ( ))

( ( )) ( ( ( ))) ( ( (m)) ( ( ( ))) ( ( ))

f a b b a

f b a a b

           

           

   

 

   

 

      

    

 

 
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i

n n n n n j j n j j

n n n j j

j 1

n 1 i
i i i n i i n i i n i j j n j j

i i i j j

i 1 j 1

n n n n n

n n n j

( ( )) ( ( ( ))) ( ( (m))) ( ( ( ))) ( ( ))

( ( )) ( ( ( )) ( ( (m)) ( ( ( ))) ( ( ))

( ( )) ( ( ( ))) ( ( (m)))

f a b b a

f a b b a

f b a

        

           

    






   

 

      

     

   



 

i
j j n j j

j

j 1

n 1 i
i i i n i i n i i n i j j n j j

i i i j j

i 1 j 1

( ( ( ))) ( ( ))

( ( )) ( ( ( )) ( ( (m)) ( ( ( ))) ( ( ))

a b

f b a a b

   

           






   

 

 

    



 

…(1) 

 

 

 

On the other hand: 

 

fn(w) = fn((ab)m(ba) + (ba)m(ab)) 
n

i i n i i

i i i

i 1

n
i i n i i

i i i

i 1

( ( )) ( (m)) ( ( ))

( ( )) ( (m)) ( ( ))

f a b b a

f b a a b

   

   









     

   





 

 

2 2

2 2

n i i
i j n j j j j j j j

i i j j j j

i 1 j 1 j 1

n i i
i j j j j j j

i j j j j

i 1 j 1 j 1

i j n j

i i

( ( )) (( (m)) ( ( )) ( ( )) ( ( )) ( ( ))

( ( )) ( ( )) ( ( )) ( ( )) ( ( ))

( ( )) (( (m))

f a b a b b a

a b f a b f b a

f a b

        

      

  



  

  




         



 
       

 


 



  

  

i

i ( ( ))a b 

2

2

2

n i n
i j n j j j j i j n j

i i j j i i

i 1 j 1 i 1

i n
j j j i i n i i

j j i i i

j 1 i 1

n
i i i i n

i i i

i 1

( ( )) (( (m)) ( ( )) ( ( )) ( ( )) (( (m))

( ( )) ( ( )) ( ) (( (m)) ( ( ))

( ( )) ( ( )) (

f a b a b f a b

b a f a b a b

f a b

        

      

    

 

  



 



          

        

 

  

 


2

n
i i i i i i n i

i i i i

i 1

n
i i i n i i

i i i i

i 1

(m)) ( ( )) ( ( )) ( ( )) ( (m))

( ( )) ( ) (( (m)) ( ( ))

a b f b a

a b f a b a b

     

    

 







      

       




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2

2

2

n i
i j n j i j j j

i i i j j

i 1 j 1

n i
i i n i i j j j

i i i j j

i 1 j 1

n
i i i i n i i

i i i i

i 1

( ( )) (( (m)) ( ( )) ( ( )) ( ( ))

( ( )) ( (m)) ( ( ( )) ( ( )) ( ( ))

( ( )) ( ( )) ( (m)) ( ( ))

f a b a b a b

f a b a b b a

f a b a b

      

      

     



 



 





         

        

   

 

 



2
n

i i i i n i i

i i i i

i 1

( ( )) ( ( )) ( (m)) ( ( ))f b a a b     





   

 

 

2

2

n
i i n i i i

i i i

i 1

n
i i n i i i

i i i

i 1

n
i i i i n i i

i i i i

i 1

n
i i i i n i i

i i i i

i 1

( ( )) (( (m)) G ( ), ( ))

( ( )) ( (m)) G ( ), ( ))

( ( )) ( ( )) ( (m)) ( ( ))

( ( )) ( ( )) ( (m)) (

f a b a b

f a b b a

f a b a b

f b a

    

    

     

     





















      

    

    

  







 ( ))a b

 

 

2

n n n n

n n n

n 1
i i n i i i

i i i

i 1

n n n n

n n n

n 1
i i n i i i

i i i

i 1

n n n

n n

( ( )) (( (m)) G ( ), ( ))

( ( )) (( (m)) G ( ), ( ))

( ( )) (( (m)) G ( ), ( ))

( ( )) ( (m)) G ( ), ( ))

( ( )) (

f a b a b

f a b a b

f a b b a

f a b b a

f a

   

    

   

    

  



















      

    

    

    







2

2

2

n n

n n

n 1
i i i i n i i

i i i i

i 1

n n n n n

n n n n

n 1
i i i i n i i

i i i i

i 1

( )) (( (m)) ( ( ))

( ( ) ( ( )) ( (m)) ( ( ))

( ( )) ( ( )) (( (m)) ( ( ))

( ( ) ( ( )) ( (m)) ( ( ))

b a b

f a b a b

f b a a b

f b a a b

 

     

    

     











   

    

    

   





 

…(2) 

 

 

Compare (1), (2) and since 
2n n n n n i n i i i, ,            and i i,   

are commutative 
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n n n n

n n n

n n n n

n n n

n n n n

n n n n

n
i i n i i n n n

i i n n n n

i 1

0 ( ( )) (( (m)) G ( ), ( ))

( ( )) (( (m)) G ( ), ( ))

( ( )) ( ( )) (( (m)) ( ( ))

( ( ( ))) ( ( )) ( ) ( ( )) (( (m)) ( ( ))

f a b a b

f a b b a

f a b a b

a b f b a a b

   

   

   

      









      

    

    

      
n n 1

i i n i i i i n i i i

i i i i i

i 1 i 1

n 1
i i n i i i

i i i

i 1

n 1
i i i i n i i

i i i i

i 1

j j n

j

( ( ( ))) ( ( )) ( ( )) (( (m)) G ( ), ( ))

( ( )) ( (m)) G ( ), ( ))

( ( ) ( ( )) ( (m)) ( ( ))

( (

a b f a b a b

f a b b a

f a b a b

        

    

     

  


 



 















       

    

    



 




i n 1

j i i i i i n i i

j i i i i

j 1 i 1

i
j j n j i

j j

j 1

( ))) ( ( ))) ( ( ) ( ( )) ( (m)) ( ( ))

( ( ( ))) ( ( )))

b a f b a a b

a b

      

   


 

 





      

 

 



 
n n n n

n n n

n n n n

n n n

n n n n n

n n n n

n n n n n

n n n n

n 1
i

i i

i 1

( ( )) (( (m)) G ( ), ( ))

( ( )) (( (m)) G ( ), ( ))

( ( )) ( ( )) (( (m)) G ( ), ( ))

( ( )) ( ( )) (( (m)) G ( ), ( ))

( ( )) (

f a b a b

f a b b a

f a b b a

f b a a b

f a b

   

   

    

    















      

    

    

    

  i n i i i

i

n 1
i i n i i i

i i i

i 1

n 1
i i i i n i i i

i i i i

i 1

n 1
i i i i n i i i

i i i i

i 1

( (m)) G ( ), ( ))

( ( )) ( (m)) G ( ), ( ))

( ( ) ( ( )) ( (m)) G ( ), ( ))

( ( ) ( ( )) ( (m)) G ( ), ( ))

a b

f a b b a

f a b b a

f b a a b

   

    

      

      


























  

    

    

   







 

 
n n n n n

n n n

n n n n n

n n n

n 1
i i i n i i i

i i i

i 1

n 1
i i i n i i i

i i i

i 1

( ( ), ( )) (( (m)) G ( ), ( ))

( ( ), ( )) (( (m)) G ( ), ( ))

( ( ), ( )) (( (m)) G ( ), ( ))

( ( ), ( )) ( (m)) G ( ), ( )

b a a b

a b b a

b a a b

a b b a

    

    

     

     

 

 




 










     

    

    

   



 )
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n n n n n

n n n

n n n n n

n n n

n 1
i i i n i i i

i i i

i 1

n 1
i i i n i i i

i i i

i 1

( ( ( ), ( )) (( (m)) G ( ), ( ))

( ( ), ( )) (( (m)) G ( ), ( ))

( ( ), ( )) (( (m)) G ( ), ( ))

( ( ), ( )) ( (m)) G ( ), (

b a a b

a b b a

f b a a b

f a b b a

    

    

     

     

 

 




 










      

    

   

  



 )) )

 

 

By our hypothesis, we have: 
n n n n n

n n n( ( ), ( )) ( (m)) G ( ( ), ( ))a b b a          
n n n n n

n n n( ( ), ( )) ( (m)) G ( ( ), ( )) 0b a a b          

 

(ii) Replace    by    in (i), we get (ii). 

 

(iii) Interchanging    and    in (i), we get (iii). 

 

Lemma (2.11):  

Let F = ( fi )iN be a generalized Jordan  (σ, τ)  - higher homomorphism from a -

ring M into a prime -ring M', then for all a, b, m  M, ,  and n  N        

                                                                                                                                                                                                             

(i) n n n n n

n n n( ( ), ( )) ( (m)) G ( ( ), ( ))a b b a          
n n n n n

n n n( ( ), ( )) ( (m)) G ( ( ), ( )) 0b a a b          

(ii) n n n n n

n n n( ( ), ( )) ( (m)) G ( ( ), ( ))a b b a          
n n n n n

n n n( ( ), ( )) ( (m)) G ( ( ), ( )) 0b a a b          

(iii) n n n n n

n n n( ( ), ( )) ( (m)) G ( ( ), ( ))a b b a          

n n n n n

n n n( ( ), ( )) ( (m)) G ( ( ), ( )) 0b a a b          

 

Proof:  
(i) By lemma (2.10) (i), we have: 

n n n n n

n n n( ( ), ( )) ( (m)) G ( ( ), ( ))a b b a          
n n n n n

n n n( ( ), ( )) ( (m)) G ( ( ), ( )) 0b a a b          

Since by lemma (let M be a 2-torsion free semiprime -ring and suppose that 

a, b  M if amb + bma = 0 for all m  M, then amb = bma = 0), 

we get: 
n n n n n

n n n( ( ), ( )) ( (m)) G ( ( ), ( ))a b b a          
n n n n n

n n n( ( ), ( )) ( (m)) G ( ( ), ( )) 0b a a b          

 

(ii) Replace  for    in (i), we obtain (ii). 

 

(iii)  Interchanging    and    in (i), we obtain (iii). 
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Theorem (2.12):  

Let F = ( fi )iN be a generalized Jordan (σ, τ) - higher homomorphism from a -

ring M into a prime -ring M', then for all a, b, c, d, m  M,  ,  and n  N 

(i) n n n n n

n n n( ( ), ( )) ( (m)) G ( ( ), ( )) 0a b d c          

(ii) n n n n n

n n n( ( ), ( )) ( (m)) G ( ( ), ( )) 0a b d c          

(iii) n n n n n

n n n( ( ), ( )) ( (m)) G ( ( ), ( )) 0a b d c          

 

Proof:  
(i) Replacing  a + c  for  a  in lemma (2.11) (i), we get: 

n n n n n

n n n( ( ), ( )) ( (m)) G ( ( ), ( )) 0a c b b a c            
n n n n n

n n n

n n n n n

n n n

n n n n n

n n n

n n n n n

n n n

( ( ), ( )) ( (m)) G ( ( ), ( ))

( ( ), ( )) ( (m)) G ( ( ), ( ))

( ( ), ( )) ( (m)) G ( ( ), ( ))

( ( ), ( )) ( (m)) G ( ( ), ( )) 0

a b b a

a b b c

c b b a

c b b c

    

    

    

    

 

 

 

 

   

   

   

   

 

By lemma (2.11)(i), we get: 
n n n n n

n n n

n n n n n

n n n

( ( ), ( )) ( (m)) G ( ( ), ( ))

( ( ), ( )) ( (m)) G ( ( ), ( )) 0

a b b c

c b b a

    

    

 

 

   

   

 

Therefore, we get: 
n n n n n n

n n n n

n n n n n

n n n

( ( ), ( )) ( (m)) G ( ( ), ( )) ( (m))

( ( ), ( )) ( (m)) G ( ( ), ( )) 0

a b b c

a b b c

     

    

 

 

    

   

 

 
n n n n n n

n n n n

n n n n n

n n n

( ( ), ( )) ( (m)) G ( ( ), ( )) ( (m))

( ( ), ( )) ( (m)) G ( ( ), ( )) 0

a b b c

c b b a

     

    

 

 

     

   

 

Since M' is a prime -ring and therefore: 
n n n n n

n n n( ( ), ( )) ( (m)) G ( ( ), ( )) 0a b b c                            …(1) 

Replacing  b + d  for  b  in lemma (2.11) (i), we get: 
n n n n n

n n n( ( ), ( )) ( (m)) G ( ( ), ( )) 0a b d b d a            
n n n n n

n n n

n n n n n

n n n

n n n n n

n n n

n n n n n

n n n

( ( ), ( )) ( (m)) G ( ( ), ( ))

( ( ), ( )) ( (m)) G ( ( ), ( ))

( ( ), ( )) ( (m)) G ( ( ), ( ))

( ( ), ( )) ( (m)) G ( ( ), ( )) 0

a b b a

a b d a

a d b a

a d d a

    

    

    

    

 

 

 

 

   

   

   

   

 

By lemma (2.11) (i), we get: 
n n n n n

n n n

n n n n n

n n n

( ( ), ( )) ( (m)) G ( ( ), ( ))

( ( ), ( )) ( (m)) G ( ( ), ( )) 0

a b d a

a d b a

    

    

 

 

   

   

 

Therefore, we get: 
n n n n n n

n n n n

n n n n n

n n n

( ( ), ( )) ( (m)) G ( ( ), ( )) ( (m))

( ( ), ( )) ( (m)) G ( ( ), ( )) 0

a b d a

a b d a

     

    

 

 

    

   
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n n n n n n

n n n n

n n n n n

n n n

( ( ), ( )) ( (m)) G ( ( ), ( )) ( (m))

( ( ), ( )) ( (m)) G ( ( ), ( )) 0

a b d a

a d b a

     

    

 

 

     

   

 

 

Since M' is a prime -ring and therefore: 
n n n n n

n n n( ( ), ( )) ( (m)) G ( ( ), ( )) 0a b d a                            …(2) 

Now, n n n n n

n n n( ( ), ( )) ( (m)) G ( ( ), ( + )) 0a b b d a c           
n n n n n

n n n

n n n n n

n n n

n n n n n

n n n

n n n n n

n n n

( ( ), ( )) ( (m)) G ( ( ), ( ))

( ( ), ( )) ( (m)) G ( ( ), ( ))

( ( ), ( )) ( (m)) G ( ( ), ( ))

( ( ), ( )) ( (m)) G ( ( ), ( )) 0

a b b a

a b b c

a b d a

a b d c

    

    

    

    

 

 

 

 

   

   

   

   

 

Since by lemma (2.11) and (1) and (2), we get: 
n n n n n

n n n( ( ), ( )) ( (m)) G ( ( ), ( )) 0a b d c         . 

 

(ii) Replace    for    in (1), we obtain (ii). 

 

 

(iii)  Replacing   +   for    in (ii), we get: 
n n n n n

n n n( ( ), ( )) ( (m)) G ( ( ), ( )) 0a b d c          

n n n n n

n n n

n n n n n

n n n

n n n n n

n n n

n n n n n

n n n

( ( ), ( )) ( (m)) G ( ( ), ( ))

( ( ), ( )) ( (m)) G ( ( ), ( ))

( ( ), ( )) ( (m)) G ( ( ), ( ))

( ( ), ( )) ( (m)) G ( ( ), ( )) 0

a b d c

a b d c

a b d c

a b d c

    

    

    

    

 

 

 

 

   

   

   

   

 

By (i) and (ii), we get: 
n n n n n

n n n

n n n n n

n n n

( ( ), ( )) ( (m)) G ( ( ), ( ))

( ( ), ( )) ( (m)) G ( ( ), ( )) 0

a b d c

a b d c

    

    

 

 

   

   

 

Therefore, we have: 
n n n n n n

n n n n

n n n n n

n n n

( ( ), ( )) ( (m)) G ( ( ), ( )) ( (m))

( ( ), ( )) ( (m)) G ( ( ), ( )) 0

a b d c

a b d c

     

    

 

 

    

   

 

 
n n n n n n

n n n n

n n n n n

n n n

( ( ), ( )) ( (m)) G ( ( ), ( )) ( (m))

( ( ), ( )) ( (m)) G ( ( ), ( )) 0

a b d c

a b d c

     

    

 

 

     

   

 

Since M' is a prime -ring, then: 
n n n n n

n n n( ( ), ( )) ( (m)) G ( ( ), ( )) 0a b d c         . 
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3- The Main Results 
                                                                                                                                                                                                                                                                                                                                                                                                 

Theorem(3.1):                                                                                                                                                                                                                                                                                                                                            

Every generalized Jordan  (σ, τ) - higher homomorphism from a -ring M into a 

prime -ring M' is either generalized (σ, τ) - higher homomorphism or (σ, τ) - 

higher anti- homomorphism. 

 

Proof: 

Let F = ( fi )iN be a generalized Jordan   (σ, τ) - higher homomorphism of a -ring 

M into a prime -ring M', then by theorem (2.12) (i); 
n n n n n

n n n( ( ), ( )) ( (m)) G ( ( ), ( )) 0a b d c         . 

Since M' is a prime -ring therefore either n n

n ( ( ), ( )) 0a b     or  

n n

nG ( ( ), ( )) 0d c    , for all a, b, c, d  M, ,  and n  N. 

If n n

nG ( ( ), ( )) 0d c     for all c, d  M,  and n  N then 

n n

n ( ( ), ( )) 0a b    .Hence, we get F is a generalized (σ, τ) - higher 

homomorphism.                                                                                                            

But if n n

nG ( ( ), ( )) 0d c     for all c, d  M,  and n  N then we get F is 

a  (σ, τ)  - higher anti- homomorphism. 

 

Proposition (3.2): 

Let F = ( fi )iN be a generalized Jordan (σ, τ) - higher homomorphism from a -

ring M into 2-torsion free -ring M', such that  aba = aba, for all a, b  M 

and , , a'b'a' = a'b'a', for all a', b'  M' and ,   , 
2 2i i i i i i i n i, ,            and i i,   are commutative for all i N, then F 

is a generalized Jordan triple (σ, τ) - higher homomorphism. 

 

Proof: 

Replace  ab + ba  for  b  in the definition (2.2), we get: 

 

n

n n
i i i i

i i i i

i 1 i 1

( α(a ) (a )α )

( ( ))α ( (a )) ( (a ))α ( ( ))

f a b b a b b a a

f a b b a f b b a a   
 

      

          
 

n n
i i i i i i i i i i

i i i i

i 1 i 1

( ( ))α ( (a) ( ) ( ) ( )) ( (a) ( ) ( ) ( ))α ( ( ))f a b b a f b b a a         
 

          

2 2

2 2

n i i
i j j j j j j

i j j j j

i 1 j 1 j 1

n i i
j j j j j j i

j j j j i

i 1 j 1 j 1

( ( ))α ( (a) ( ( )) ( (b) ( ( ))

( (a) ( ( )) ( (b) ( ( )) α (a))

f a b a

f b f a

      

      

  

  

 
       

 

 
    

 

  

  
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Since a'b'a' = a'b'a', for all a', b'  M' and ,   , 
2 2i i i i i i i n i, ,            and i i,   are commutative. 
n n

i i n i i i i n i i

i i i i i i

i 1 i 1

n
i i n i i

i i i

i 1

( ( ))α ( (a) ( ( )) 2 ( ( ))α ( (b) ( ( ))

( ( )) ( (a)α ( ( )

f a b f a a

f b a

       

   

 

 





      

 

 



…(1) 

 

On the other hand: 
n n( α(a ) (a )α ) ( αa α a α α )f a b b a b b a a f a b a b a b a b a a              

Since aba = aba, for all a, b  M and ,  
n n

i i n i i i i n i i

i i i i i i

i 1 i 1

n

( ( ))α ( (a) ( ( )) ( ( )) ( (a)α ( ( ))

2 (aα )

f a b f b a

f b a

        

 

      



 

 

…(2) 

Compare (1) and (2), we get: 
n

i i n i i

n i i i

i 1

2 (aα ) 2 ( ( ))α ( (b) ( ( ))f b a f a a   



     

Since M' is a 2-torsion free -ring, we get: 
n

i i n i i

n i i i

i 1

(aα ) ( ( ))α ( (b) ( ( ))f b a f a a   



    . 

Hence, F is a generalized Jordan triple (σ,τ) -  higher homomorphism. 
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