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Abstract 

 

In this work, a class of indefinite Quasi-hyperbolic type of Kac-Moody algebras 
(2)
4QHA  is considered. As a first step these algebras are realized as a graded Lie 

algebra of Kac-Moody type. To understand the structure of these algebras the 

homological and spectral sequence theory is applied. Here the components of the 

homology modules upto level three are computed. The structure of the 

components of the maximal ideal upto level four is also determined. 
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1 Introduction 

 
The theory of Kac-Moody Lie algebras is one of the modern fields of 

mathematical research and has got interesting connections and applications to 

various fields of Mathematical research, Combinatorics, Number Theory, Non-  
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linear differential equations, etc. A lot of work has been carried out for the finite 

and affine type of Kac-Moody algebras, whereas the structure of indefinite 

Kac-Moody algebras remains to be dealt with in detail. 

Determination of the structure and multiplicities of roots of higher levels for 

Kac-Moody algebras is still an open problem. Feingold and Frenkel [2] computed 

level 2 root multiplicities for the hyperbolic Kac-Moody algebra  
(1)

1HA , Kang 

[5,6,8] has determined the structure and obtained the root multiplicities for roots 

upto level 5 for
(1)

1HA and for roots upto level 3 for 
(2)

2HA . In [7], some root 

multiplicities are determined for the indefinite type of Kac-Moody algebra (1)
nHA . 

Sthanumoorthy and Uma Maheswari [11,14,15] have computed the multiplicities 

of roots for a particular class of extended–hyperbolic Kac–Moody algebra 
(1)

1EHA . This class of extended – hyperbolic Kac – Moody algebras was defined 

in Sthanumoorthy and Uma Maheswari [12]. A  new class of indefinite 

non-hyperbolic Kac-Moody algebra called Quasi-Hyperbolic were introduced by 

Uma Maheswari [16]. In [17,18], another classes of indefinite non-hyperbolic 

Kac-Moody type
2QHG  and (1)

2QHA were considered. The homology modules 

and structure of the components of the maximal ideal upto level 4 were computed.  

 

In this work, we are going to consider a class of a Quasi- Hyperbolic indefinite 

type of Kac-Moody algebra (2)
4QHA ; We first give a realization for (2)

4QHA   

whose associated with the GCM 
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 where a > 2, aZ+ as a 

graded Lie algebra of Kac-Moody type and then using the homological techniques 

developed by Benkart et al. [1] and Kang [5-8], we compute the homology 

module upto level three and the structure of the components of the maximal ideal 

upto level four. 

 

 

2 Preliminaries 
 

2.1. Kac-Moody algebras: We recall some preliminary results needed for the 

construction of graded Lie algebra. For further details on Kac-Moody algebras 

and root systems, one can refer to ( [4], [10], & [19] ).  

Definition 2.1 [10]:  An integer matrix 
n

jiijaA 1,)(   is a Generalized Cartan 

Matrix (abbreviated as GCM) if it satisfies the following conditions: 

(i) aii = 2    i =1,2,….,n 

(ii) aij = 0    aji = 0   i, j = 1,2,…,n 

(iii) aij  0   i, j = 1,2,…,n.  

Let us denote the index set of A  by N = {1,…,n}. A GCM A  is said to 

decomposable if there exist two non-empty subsets I, J   N such that I  J = N  
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and aij = aji = 0   i I and jJ.  If A is not decomposable, it is said to be 

indecomposable.    

Definition 2.2 [4]: A realization of a matrix 
n

jiijaA 1,)(   is a triple ( H,  , v ) 

where l is the rank of A,  H is a  2n - l dimensional complex vector space, 

},...,{ 1 n  and v },...,{ 1

v

n

v   are linearly independent subsets of  H* and 

H respectively, satisfying  
ij

v

ij a)(  for i, j = 1,….,n.    is called the root 

basis. Elements of    are called simple roots. The root lattice generated by    is

.
1

i

n

i

ZQ 


  

Definition 2.3[4]:The Kac-Moody algebra g(A) associated with a GCM 
n

jiijaA 1,)(   is the Lie algebra generated by the elements ei , fi, ni ,...,2,1  and H  

with the following defining relations :  

N    ji,  j,i   ,0)(;0)(

,,)(],[;)(],[

],[;,,0],[

11

''









j

a

ij

a

i

jjjjjj

v

iijji

fadfeade

Njifhfheheh

feHhhhh

ijij





 

The Kac-Moody algebra g(A) has the root space decomposition 

)()( AgAg
Q



 }.,)(],/[)({)( where HhallforxhxhAgxAg  

An 

element  ,  0   in Q is called a root if 0g . Let .
1

i

n

i

ZQ 


  Q has 

a partial ordering “ ” defined by    if   Q +, where  , βQ . 

Definition 2.4 [4]: For any Q  and ,
1

i

n

i
ik 



  define support of  , 

written as supp   , by supp }.0/{  ikNi  Let ))(( A denote the set 

of all roots of g(A) and 
  the set of all positive roots of  g(A). We have  

     and  
  . 

Definition 2.5 [4]:A GCM A is called symmetrizable if  DA is symmetric for 

some diagonal matrix D = diag(q1,…,qn), with qi> 0 and qi’s are rational numbers. 

Proposition 2.6 [4]:A GCM n

jiijaA 1,)(    is  symmetrizable if  and  only  if  

there exists an invariant, bilinear, symmetric,  non degenerate  form  on g(A). 

Definition 2.7[4]: A g(A) module V is called highest weight module with highest 

weight *h  if there exists a nonzero v ∊ V such that  

(i) n+ . v = 0 

(ii) hh  h    (h)v, v.  

(iii) U(g(A)) . v = V, where U(g(A)) denotes the universal enveloping 

algebra of g(A). 
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A highest weight module V with highest weight   has the weight space 

decomposition }.h   , )(./{V  where,   *
hvhvhVvVV

h







   

Definition 2.8[4]: To every GCM A is associated a  Dynkin diagram S(A) 

defined as follows:  (A) has n vertices and vertices i and j are connected by max 

{|aij|,|aji|} number of lines if  aij . aji  4 and there is an arrow pointing towards i 

if |aij| > 1. If   aij. aji> 4, i and j are connected by a bold faced edge, equipped 

with the ordered pair  (|aij| , |aji|)  of  integers.  

Theorem 2.9 [19]: Let A be a real n x n matrix satisfying (m1), (m2) and (m3).    

 (m1)   A is indecomposable;  

 (m2)   aij ≤ 0 for i ≠ j;  

 (m3)   aij = 0 implies aji =0  

Then one and only one of the following three possibilities holds for both A and  
tA: 

(i) det A  ≠ 0; there exists u  > 0 such that A u > 0; Av ≥ 0 implies v > 0 or v = 0;  

(ii) co rank A=1;  there exists u > 0 such that  Au = 0;  Av ≥ 0  implies Av = 0; 

(iii) there exists u > 0 such  that Au < 0; Av ≥ 0, v ≥  0 imply  v = 0 . 

Then A is of finite, affine or indefinite type iff (i), (ii) or (iii) (respectively) is 

satisfied. 

Definition 2.10[19]:  A  Kac- Moody algebra  g(A) is said to be of finite, 

affine or indefinite type if the associated  GCM A is of finite, affine or indefinite 

type respectively.  

Definition 2.11[16]: Let A=
n

jiija 1,)(   be an indecomposable GCM of indefinite 

type. We define the associated Dynkin diagram S(A) to be of Quasi Hyperbolic 

(QH) type if S(A) has a proper connected sub diagram of hyperbolic types with 

n-1 vertices. The GCM A is of QH type if S(A) is of QH type. We then say the 

Kac-Moody algebra g(A) is of QH type. 

 

2.2 General construction of graded Lie algebra ( Benkart et al ., [1] ): 

Let us start with G ,the Lie algebra over a field of characteristic zero. Let V, V   

be two G – modules. Let  : V  V  G, a G – module homomorphism.  

Define VGVGGG   110 ,, ;

 



 
1n

nGG  (resp. 


 
1n

nGG ) denote the 

free Lie algebra generated by  V    (respectively, V); Gn  ( respectively, G-n) 

for n > 1 is the space of all products of n vectors from V   ( respectively V). Then  







n nGG  is given a Lie algebra structure by defining the Lie bracket [,]    

as follows:   a, b ∊ G,  v ∊ V, w ∊V   

    [a, ]  =  a.  =  [, a] and  [a, w]  =  a.w = [w, a]  

    [a, b] denote the bracket operation in G, ],[ )(    ],[ wvvwvw      

By extending this Lie bracket operation,  




zn

nGG  becomes a graded Lie 

algebra which is generated by its local part
101 GGG 
.  

For n1 define the subspaces, }0) (|{ 1

1  

 xGadGxI n

nn  , define  
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n
zn
II


   and      

1 1
  ,

n n nn IIII  .Then the subspaces I  , I  and 

I are all graded ideals of G and I is the maximal graded ideal trivially intersecting 

the local part .101 GGG 
Let 

nnn IGL   / , for n > 1; 

Consider  
  IGGIGVVGLL //),,,( 0

...,... 21012   LLLLL where .  ,  , 111100   GLGLGL
 

Then 
nn LL   becomes a graded Lie algebra generated by its local part V  

G  V and L = G / I.  

By the suitable choice of V (written as the direct sum of irreducible highest 

weight modules), the contragradient V* of V, the basis elements and the 

homomorphism   : V*  V  ge, form the graded Lie algebra L = L(ge, V, V*, 

ψ) . For further details one can refer to ( [1] , [5] ). 

 

Theorem 2.12[1]:  L is a Zn+m –graded algebra. 

 

Theorem 2.13[1]: Let  : A(C)  L be the Lie algebra homomorphism sending Ei 

 ei, Fi  fi, Hi  hi. Then  has kernel as I(C) and I(C) is the largest graded 

ideal of A(C) trivially intersecting the span of H1,…, Hn+m. Also

LCICA )(/)(:   is an isomorphism. 

 

Proposition 2. 14[1]: The matrix C has rank 2n – l and C is symmetrizable. 

 

We now recall the definition of homology of Lie algebra ( Garland and 

Lepowsky, [3] ) and Hochschild-Serre spectral sequence (Kang, [5] ). 

 

Let V be a module over a Lie algebra G. Define the space Cq(G,V) for q > 0 of q – 

dimensional chains of the Lie algebra G with coefficients in V to be .)( VGq   

The differential ),(),( 1 VGCVGCd qqq   is defined to be 















qs1

sqs1

s

qts1

qts1ts

1ts

q1q

.v,g)g...ĝ...(g1)(

v)g...ĝ...ĝ...g])g,([g1)(v)g...(gd

 

for .,...,, 1 GggVv q   For q < 0, define Cq(G,V) = 0 and dq = 0. Then 

.01 qq dd   The homology of the complex (C, d) = {Cq(G, V), dq} is called the 

homology of the Lie algebra G with coefficients in V and is denoted by Hq(G,V). 

When  V = C, we write Hq(G) for Hq(G,C).  

Assume now that G, V, Cq(G,V) are completely reducible modules in the category 

O over a Kac-Moody algebra g(A) with dq having g(A)-module homomorphisms. 

Let I be an ideal of G and L = G/I. Define a filtration {Kp = KpC} of the complex 

{C, d} by KpCp+q = {g1  g2  …  gp+q  v | gi  I for p+1  i  p+q}. 

This gives rise to a spectral sequence }EE:d,{E r

1rqr,p

r

qp,r

r

qp,   such that  
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V)),(I,H(L,HE qp

2

qp,  where s'Er

qp, are determined by

)EE:)/Im(dEE:Ker(dE r

qp,

r

1rqr,pr

r

1rqr,p

r

qp,r

1r

qp,  


with boundary 

homomorphisms .EE:d r

rq1,rp

r

qp,1r    The modules 
r

qp,E  become stable for r 

> max(p,q +1) for each (p,q) and is denoted by .E qp,


 The spectral sequence 

},{ , r

r

qp dE  converges to Hn(G,V) in the following sense : .),( ,




 qp

nqp
n EVGH  

Then we get the following Hochschild-Serre five term exact sequence ([5]).  

 

H2(G,V)  H2(L,H0(I,V)  H0(L,H1(I,V))  H1(G,V)  H1(L,H0(I,V))  0. 

 

Take  L = G/I, where 
nn GG 1  is the free Lie algebra generated by the 

subspace G1 and 
nmn II   the graded ideal of G generated by the subspace Im 

for m  2. Then 
nn LL 1  becomes a graded Lie algebra generated by the 

subspace L1 = G1. Let J = I / [ I, I]. J is an L-module via adjoint action generated 

by the subspace Jm.  For m  n < 2m , Jn   In.. If Im and G1 are modules over a 

Kac-Moody algebra g(A) then Gn has a g(A)-module structure for every 

,,),( 1 nGwGvAgx ].,[],[],[ wxvwvxwvx   In also has a similar 

module structure and we have the induced module structure of the homogeneous 

subspaces Ln, Jn. Then we have the following theorem proved in Kang [5]. 

 

Theorem 2.15[5]: There is an isomorphism of g(A) – modules 

),(),( 2 LHJLH jj   for j  1. In particular Im+1  (G1  Im) / H3(L)m+1.  

Now, for arbitrary j  m, set ;)(

njn

j II    then )( jI  is an ideal of G 

generated by the subspace Ij. We consider the quotient algebra L(j) = G/I(j). Let 

N(j)=I(j)/ I(j-1). In this notation L = L(m).  

Then we have an important relation: .)(/)( 1

)(

311   j

j

jj LHIGI
 

 And, there exists a spectral sequence {Er
p,q ,dr: Er

p,q Er
p-r,q+r-1}converging to 

)( )(

*

jLH  such that and )()( 1

)1(2

, 

  j

qj

pqp ILHE  and  

.)( 3,02,11,20,3

)(

3

  EEEELH j    

 

Lemma 2.16[5]: In the above notation, H2(L)  Im. 

 

Let us recall the Kostant’s formula for symmetrizable Kac-Moody algebras [9]: 

For a symmetrizable GCM A= n

jiija 1,)(  , let   ђ*, ,   denote the root 

system of g(A), positive and negative roots, respectively, of g(A). Then we have 

the triangular decomposition : g(A) = n  h  n+, where .


gn


  Let 

S={1,…,s} be a subset of N = {1,…,n} and gs ,the subalgebra of g(A) generated  
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by the elements ei, fi, i = 1, …, s and h. Let 
 s denote the set of positive roots 

generated by 1, …, s and .ΔΔ ss

   Then gs has the corresponding triangular 

decomposition: ,nhng sss

  where 


gn
s

s 

  and
  sss  is the root 

system of gs. Let
  ss \)( , 


gSn

S )(

)(


  .Then g(A) = n(S)  gs  

n+(S). Let )}.(/{)( SwWwSW    For   h* denote by ),(λV
~

 the 

irreducible highest weight module over g(A) and V(λ) the irreducible highest 

weight module over gs.  

Theorem 2.17[9]: (Kostant’s formula ) ).)(())(),((

)(
)(

~

 




 wVVSnH

jwl
SWw

j  

Lemma 2.18[5]: Suppose jrww '  and 1)'()(  wlwl . Then )(SWw  if and 

only if w  W(s) and (S).Δ)(αw j

   

 

3  Realization  for (2)

4QHA  

 

In this section, we are going to consider a class of a Quasi- Hyperbolic 

indefinite type of Kac-Moody algebra (2)
4QHA ; We first give a realization for 

(2)
4QHA  whose associated GCM is 





























2

220

122

012

aaa

a

a

a , where a > 2, aZ+ and this 

GCM is symmetrizable; This algebra is obtained from the algebra (2)
4A  associated 

with the GCM A =
.

220

122

012























 

The associated Dynkin diagram of (2)
4QHA is 

represented as  

                   1         2        3 

 
                     ( 

                      

                       (a,a)       (a,a)   (a,a)  

                       

                          4   

 

                         4                   

Consider the Kac-Moody algebra associated with the GCM (2)
4A . 

Let (h, , ) be the realization of A with ={α1,α2,α3}and v ={α1
v
,α2

v
,α3

v}  

Then the relations obtained from the symmetric, non degenerate bilinear form is 

given as follows:  

(α1,α1) = 2,  (α1,α2) = -1, (α1,α3) = 0,  (α1,α4) = 0, (α2,α1) = -1, (α2,α2) = 1,  

(α2,α3) = -1/2, (α3,α1) = 0, (α3,α2) = -1/2, (α3,α3) =1/2. Let 
'

4 be the element in h*  
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such that ).255(
25

16
),( and 1)( ,0)( ,0)( 2'

4

'

43

'

42

'

41

'

4  aavvv     

Define '

4321
4

5
)32()2(λ 

a
aa  . Set α5 = -λ. Form the matrix

4

1,),(  jijiC  . Then C = 





























2

220

122

012

aaa

a

a

a  where a > 2, a Z+ is the 

symmetrizable GCM of Quasi- Hyperbolic type .QHA(2)

4  

 Let V be the integrable highest weight irreducible module over G with the 

highest weight λ as defined earlier. Let V* be the contragradient of V and ψ be the 

mapping as defined earlier. Let G be the Kac-Moody algebra associated with the 

GCM 























220

122

012
. Form the graded Lie algebra L(Ge, V, V*, ψ).  

Then g(C)L   and L is a symmetrizable Kac-Moody algebra of Quasi- 

hyperbolic type associated with the GCM C. Thus we have given the realization 

for this quasi hyperbolic family as a graded Lie algebra of Kac Moody type.  

Next, we compute the homology modules of the Kac-Moody algebra for .QHA
(2)
4

We note that, from the realization of L = (2)
4QHA  as IGLLLL /01  

 and 

using the involutive automorphism, it is sufficient to study only about the negative 

part ./   IGL   

 

Computation of Homology Modules :  

 

Let S = {1,2,3}  N = {1,2,3,4}  Let gs is the Kac-Moody Lie algebra .A(2)

4   

Here }.0/{)( 4

'

44332211   kkkkkS   s be the root system of gs.    

 

The only reflection of length 1 in W(S) is r4. 

r 4 (ρ) = ρ – α4    ; r 4 (ρ) – ρ= – α4     H1(L-)  V(-α4). 

 

The reflections of length 2 in W(S) are r 4r1, r 4r2, r 4r3.  

r 4r 1(ρ) – ρ = -(1+a)α4 – α1; r 4r 2(ρ) – ρ = -(1+a)α4 – α2;r 4r3(ρ) – ρ = -(1+a)α4 – α3. 

By Kostant’s formula, 

H2(L-){V(-(1+a)α4 – α1 )V(-(1+a)α4 – α2) (-(1+a)α4 – α3 )}. 

 

The reflections of length 3 in W(S) are r 4 r1r2, r 4 r1r3, r 4 r1r4, r4r2r1, r4r2r3, r4r2r4,  

r 4r 3r1, r 4r 3r2, r 4r 3r4. 

r 4r1r2 (ρ) - ρ= -(1+3a)α4 – α2 –2α1;    r 4 r1r3(ρ) - ρ = -(1+2a)α4 – α3 – α1;  

r 4 r1r4(ρ) - ρ = -a(1+a)α4 –(1+a)α1 ;  r4r2r1(ρ) - ρ = -(1+4a)α4 –3 α2 –α1;  

r4r2r3(ρ) - ρ = -(1+3a)α4 – α3 –2α2;   r4r2r4(ρ) - ρ = -a(1+a)α4 –(1+a)α2 ; 

r 4r 3r1(ρ) - ρ = -(1+2a)α4 –α3 –α1;    r 4r 3r2(ρ) - ρ = -(1+4a)α4 –3α3 –α2; 
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r 4r 3r4(ρ) - ρ = -a(1+a)α4 –(1+a)α3; 

 

Hence, by Kostant formula,  

H3(L-)  {V(-(1+3a)α4 – α2 –2α1) V(-(1+2a)α4 – α3 – α1) V(-a(1+a)α4 –(1+a)α1) 

          V(-(1+4a)α4–3α2–α1)V(-(1+4a)α4–3α2–α1)V(-(1+3a)α4–α3 –2α2)  

          V(-a(1+a)α4 –(1+a)α2)  V(-(1+2a)α4 –α3 –α1) 

         V(-(1+4a)α4–3α3–α2)V(-a(1+a)α4–(1+a)α3)} 

                                                              (3.1)                                                                                    

The other homology modules H4(L-), H5(L-), H6(L-) etc. can be computed in a 

similar manner. 
 

4  Structure of the Maximal Ideal in
(2)
4QHA  

 

In this section, we study the structure of the components of maximal ideal 

upto level 4. Since the ideal I of G is generated by the homological subspace I2, 

we may write .)2(

  II  For j  2, we write    
jn

jj

n

j IGLII )()()( /, and

./ )1()()( 

  jjj IIN  Using the homological approach and Hochschild – Serre 

spectral sequences theory together with the representation theory of Kac-Moody 

algebra, we can determine other components of the maximal ideals in .QHA(2)

4  
 

To determine I -2:   

 

Since G_ is free and I_ is generated by the subspace I-2 from the 

Hochschild –Serre five term exact sequence and using Lemma 2.15 we get, 

);(22   LHI  
H2(L-)   {V(-(1+a)α4 – α1 )V(-(1+a)α4 – α2) (-(1+a)α4 – α3 )}. 

  
2I   {V(-(1+a)α4 – α1 )V(-(1+a)α4 – α2) (-(1+a)α4 – α3 )}.  

 

To determine I -3: 

 

We have, .2)(/)( )1(

)(

3)1(   jLHIVI j

j

jj  

When j = 2, (2)L
 coincides with the subspace n(S) for S = {1, 2, 3} and 

therefore we can compute )(LH (2)

3   , using the Kostant formula. 

)(LH (2)
3  {V(-(1+3a)α4 – α2 –2α1) V(-(1+2a)α4 – α3 – α1) V(-a(1+a)α4 –(1+a)α1) 

          V(-(1+4a)α4–3α2–α1)V(-(1+4a)α4–3α2–α1)V(-(1+3a)α4–α3 –2α2)  

          V( -a(1+a)α4 –(1+a)α2)  V(-(1+2a)α4 –α3 –α1) 

         V(-(1+4a)α4–3α3–α2)V(-a(1+a)α4–(1+a)α3)},   by equation (3.1) 

Since a > 2, 0)(LH 3-

(2)

3   
and we obtain .)(/)( 23

)2(

323   IVLHIVI   

 

To determine the structure of I 4: 
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To find the structure of I 4, we need to find the structure of H3(L
)3(


)-4.  

Consider the short exact sequence, 0 0LLN (2)(3)(2)    and the 

corresponding spectral sequence }{ ,

r

qpE converging to H )( )3(

* L such that  

).(IΛ)(LHE 2

q(2)

p

2

qp,   We start with the sequence, 0.EE0 2

0,1

d2

2,0
2 

 
Since the spectral sequence converges to ),(LH (3)

* 
we have 

.EE)(LH 0,11,0

(3)

1



  But VL]L,/[LL)(LH 1

(3)(3)(3)(3)

1  
and 

V,L]L,/[LL)(LHEE 1

(2)(2)(2)

1

(2)

1

2

1,01,0  

 0.EE 3

0,10,1    d2 is surjective.  

Since ,IE 2

2

1,0

2

2,0  E   d2   becomes an isomorphism. Thus 0EE 3

2,02,0  . 

Now, consider the sequence 0.EE0 2

1,1

d2

3,0
2 

 

By Kostant formula, )(LHE (2)

3

2

3,0 
; 2

2

1,1 IVE 
 
and since 2IV  is a direct 

sum of irreducible highest weight modules over (2)
4A  of level 3, by comparing 

the levels of both terms, d2:
2

1,1

2

3,0 EE  is trivial. So 2
3,0

3
3,0 EE  and 

.IVEEE 2

2

1,1

3

1,11,1 

 
 

)3(

I  is generated by 
3I    .IVI)(LH 23

(3)

2    

But  .EEE)(LH 0,21,12,0

(3)

2



  It follows that 0.EE 4

0,20,2   Therefore we 

find that either 0E3

0,2  or 3

0,2

3

3,03 EE:d 
 
is surjective. 

In the first case, 0E3

0,2  , this implies that 3

0,2

3

3,03 EE:d   is trivial and that  

2

0,2

2

2,12 EE:d  is surjective in the sequence 0.EEE0 2

0,2

d2

2,1

d2

4,0
22 

 
Thus )E0:)/Im(dEE:Ker(dEE 3

3,03
3
0,2

3
3,03

4
3,03,0 

 
    =  2

0,3

3

0,3 EE )( )2(
3 LH  

By comparing levels, we see that 2

2,1

2

4,02 EE:d   is trivial. Since ),(IΛE 2
22

0,2    

2

4,0

3

4,0 EE   and )EE:)/Im(dEE:Ker(dEE 2

2,1

2

4,02

2

0,2

2

2,12

3

2,12,1  

).EE:(dKer 2
0,2

2
2,12  Since 2

0,2

2

2,12 EE:d  is surjective, 2
2
2,1

2
0,22

2 /KerdEE)(IΛ 

222 d)/Ker II(    . Therefore Ker ).(ISd 2

2

2   Hence ).(ISE 2

2

2,1 

   

If 
3

0,2E is nonzero and 3

0,2

3

3,03 EE:d  is surjective, since 2

3,0

3

3,0 EE  is irreducible, 

3

2,0

3

0,33 : EEd  is an isomorphism. Thus 0EE 4

3,03,0  and  

)EE:Im(d / EEE)(LH 2
0,2

2
2,12

2
0,2

3
0,2

3
3,0

(2)
3                

).EE:)/Im(d(IΛ 2

0,2

2

2,122

2    

Since all the modules, here are completely reducible over (2)
4A , 

)():Im( 2
22

2,0
2

1,22  IEEd / )(LH (2)
3  .  We get, 2

2,1

2

4,02 EE:d  is trivial.  

Thus ):Im(/):(Ker 2
1,2

2
0,42

2
2,0

2
1,22

3
1,21,2 EEdEEdEE 

).:( 2

2,0

2

1,22 EEdKer   

Since )(Im 2

2

2  Id / )(H )2(
3 L Ker / E2

2,1 Ker / )II(d 222   2d ,  
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   Ker   )( 2
2

2 ISd )( )2(
3 LH    

 )( 2

2

1,20,3 ISEE )( )2(
3 LH  

Consider 0.EE0 2

3,1

d2

5,0
2  By comparing levels, we see that  

2

1,2

2

3,12 EE:d   is trivial. Thus  ).(IΛVEE 2

22

1,2

3

1,2   By comparing the 

levels of the terms in the sequence 0,EE0 3

1,2

d3

4,0
3  we get 0d3  . 

Therefore ).(IΛVEEE 2

22

1,2

4

1,21,2 

 
 

Since 
0,3E is a sub module of 

).(IΛE 2

32

0,3    )( )3(

3 LH )( )2(
3 LH ,M))(()( 2

2
2

2   IVIS  where M is a 

direct sum of level 6 irreducible representations of (2)
4A . Therefore 

)()(LH 2

2

4

(3)

3   IS
 
and ).(/)()(/)( 2

2

34

)3(

334   ISIVLHIVI  
 

From the above results, we get the structure of the components of the maximal 

ideal I- (upto level 4) in the Quasi – hyperbolic Kac-Moody algebra (2)
4QHA . 

 

Thus we have proved the following structure theorem. 

 

Theorem 4.1: With the usual notations, let 
nZn LL   be the realization of 

(2)
4QHA  associated with the GCM 





























2

220

122

012

aaa

a

a

a

 where a > 2, aZ+. Then we 

have following : 

i) 
2I  {V(-(1+a)α4 – α1 )V(-(1+a)α4 – α2) (-(1+a)α4 – α3 )}. 

ii) .23   IVI  

iii) ).(/)( 2

2

34   ISIVI  

 

 

5 Conclusion 

In this work, we have considered a class of quasi hyperbolic Kac-Moody algebra 
(2)
4QHA and determined the structure of the components in the graded ideals upto 

level four. This work gives further scope for understanding the complete structure 

of this indefinite, quasi hyperbolic algebra.   
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