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Abstract

In this work, a class of indefinite Quasi-hyperbolic type of Kac-Moody algebras
QHA® is considered. As a first step these algebras are realized as a graded Lie
algebra of Kac-Moody type. To understand the structure of these algebras the
homological and spectral sequence theory is applied. Here the components of the
homology modules upto level three are computed. The structure of the
components of the maximal ideal upto level four is also determined.
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1 Introduction
The theory of Kac-Moody Lie algebras is one of the modern fields of

mathematical research and has got interesting connections and applications to
various fields of Mathematical research, Combinatorics, Number Theory, Non-
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linear differential equations, etc. A lot of work has been carried out for the finite
and affine type of Kac-Moody algebras, whereas the structure of indefinite
Kac-Moody algebras remains to be dealt with in detail.

Determination of the structure and multiplicities of roots of higher levels for
Kac-Moody algebras is still an open problem. Feingold and Frenkel [2] computed

level 2 root multiplicities for the hyperbolic Kac-Moody algebra HAf), Kang
[5,6,8] has determined the structure and obtained the root multiplicities for roots

upto level 5 for HA® and for roots upto level 3 for HAY . In [7], some root

multiplicities are determined for the indefinite type of Kac-Moody algebra HA(.

Sthanumoorthy and Uma Maheswari [11,14,15] have computed the multiplicities
of roots for a particular class of extended-hyperbolic Kac-Moody algebra

EHA® . This class of extended — hyperbolic Kac — Moody algebras was defined

in Sthanumoorthy and Uma Maheswari [12]. A new class of indefinite
non-hyperbolic Kac-Moody algebra called Quasi-Hyperbolic were introduced by
Uma Maheswari [16]. In [17,18], another classes of indefinite non-hyperbolic
Kac-Moody type QHG, and QHAS’ were considered. The homology modules

and structure of the components of the maximal ideal upto level 4 were computed.

In this work, we are going to consider a class of a Quasi- Hyperbolic indefinite
type of Kac-Moody algebra QHA®; We first give a realization for QHA®
whose associated with the GCM ,22 21 ,01 ,Z where a > 2, aeZ" as a

0 -2 2 -a

—a —a —a 2
graded Lie algebra of Kac-Moody type and then using the homological techniques
developed by Benkart et al. [1] and Kang [5-8], we compute the homology
module upto level three and the structure of the components of the maximal ideal
upto level four.

2 Preliminaries

2.1. Kac-Moody algebras: We recall some preliminary results needed for the
construction of graded Lie algebra. For further details on Kac-Moody algebras
and root systems, one can refer to ( [4], [10], & [19] ).

Definition 2.1 [10]: An integer matrix A=(a;);;., is a Generalized Cartan

Matrix (abbreviated as GCM) if it satisfies the following conditions:

(1) aGi=2 v i=12,....n

(i) a=0 < @i=0V i,j=12,...n

(i) &< 0 v i,j=1.2,...,n.

Let us denote the index set of A by N = {1,....,n}. A GCM A is said to
decomposable if there exist two non-empty subsets I, J < Nsuchthatl UJ=N
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and aj = ai = 0 V iel and jeJ. If A is not decomposable, it is said to be
indecomposable.

Definition 2.2 [4]: A realization of a matrix A=(a;);;_, isatriple (H,n,n")
where | is the rank of A, His a 2n - | dimensional complex vector space, n
={a,...,,} and ¥ ={o;,...,a'} are linearly independent subsets of H* and
H respectively, satisfying «;(e') =4a; for i, j = 1,....n. n is called the root
basis. Elements of 1 are called simple roots. The root lattice generated by 1 is

Q=> Z«;.

i=1
Definition 2.3[4]:The Kac-Moody algebra g(A) associated with a GCM
A=(a;);,, isthe Liealgebra generated by the elements &; , fi,i=12,...,n andH
with the following defining relations :
[hh] =0, hh'eH ; [e,f,]=6,a

el =a,(Me, ; [hf]=—amf  ijeN

(ade;) e, =0 ; (adf))™ f, =0 ,Vizj ijeN
The Kac-Moody algebra g(A) has the root space decomposition
g(A) = @an(A) where g, (A) ={x € g(A) /[h,x] = a(h)x, for all he H}. AN

element o, o 20 inQiscalled arootif g, 0. Let Q= 22+ai_ Q has
i=1

a partial ordering “ <> definedby o < B if p—a € Q+ Where o,BeQ.
Definition 2.4 [4]: For any ¢eQ and a:Zkiai, define support of ¢,
i=1

written as supp o , by suppa ={i e N /k; # O} Let A(= A(A)) denote the set
of all roots of g(A) and A, the set of all positive roots of g(A). We have

A =—A, ad A=A UA .
Definition 2.5 [4]:A GCM A is called symmetrizable if DA is symmetric for
some diagonal matrix D = diag(qs,...,qn), with gi> 0 and gi’s are rational numbers.
Proposition 2.6 [4]:A GCM A:(aij)i”J. _, Is symmetrizable if and only if
there exists an invariant, bilinear, symmetric, non degenerate form on g(A).
Definition 2.7[4]: A g(A) module V is called highest weight module with highest
weight A eh” if there exists a nonzero v € V such that

M n“.v=0

(i) h.v=a(h)v, Vheh

(i) U(Q(A)) . v = V, where U(g(A)) denotes the universal enveloping

algebra of g(A).
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A highest weight module V with highest weight A has the weight space
decomposition V = @ V, ,whereV, ={veV /hv=A(h)v, Vheh}.

Aeh
Definition 2.8[4]: To every GCM A is associated a Dynkin diagram S(A)
defined as follows: (A) has n vertices and vertices i and j are connected by max
{Jaij|,|aji]} number of lines if aijj. aji< 4 and there is an arrow pointing towards i
if jaij] > 1. If  aij. ai> 4, 1 and j are connected by a bold faced edge, equipped
with the ordered pair  (|aij| , |aji])) of integers.
Theorem 2.9 [19]: Let A be a real n x n matrix satisfying (m1), (m2) and (m3).
(ml) Aisindecomposable;
(m2) aij<0fori#j;
(m3)  aij= 0 implies aji =0
Then one and only one of the following three possibilities holds for both A and
'A:
(i) det A #0; there existsu > 0 such that A u>0; Av>0 implies v> 0 or v=0;
(ii) corank A=1; there exists u> 0 suchthat Au=0; Av>0 implies Av=0;
(iii) there exists u> 0 such that Au<0; Av>0,v> Oimply v=0.
Then A is of finite, affine or indefinite type iff (i), (ii) or (iii) (respectively) is
satisfied.
Definition 2.10[19]: A Kac- Moody algebra g(A) is said to be of finite,
affine or indefinite type if the associated GCM A is of finite, affine or indefinite
type respectively.

Definition 2.11[16]: Let A=(g;);,, be an indecomposable GCM of indefinite

type. We define the associated Dynkin diagram S(A) to be of Quasi Hyperbolic
(QH) type if S(A) has a proper connected sub diagram of hyperbolic types with
n-1 vertices. The GCM A is of QH type if S(A) is of QH type. We then say the
Kac-Moody algebra g(A) is of QH type.

2.2 General construction of graded Lie algebra ( Benkartetal ., [1] ):
Let us start with G ,the Lie algebra over a field of characteristic zero. Let V, V'
be two G — modules. Let y : V' ® V — G, a G — module homomorphism.

Define G,=G,G,=V,G,=V'; G,=>.G, (resp.G_=>G_,) denote the
n>1 n>1

free Lie algebra generated by V' (respectively, V); Gn ( respectively, G.)
for n > 1 is the space of all products of n vectors from V' (respectively V). Then

G=>_ G, isgiven a Lie algebra structure by defining the Lie bracket [,]
as follows: Vv a,beG, veV,weV'’

[a,v] = av = —[v,aland [a,w] = aw=-[w,a]

[a, b] denote the bracket operation in G, [w,v]= w(wW®V)=—[v,w]
By extending this Lie bracket operation, G:ZGn becomes a graded Lie

nez

algebra which is generated by its local partG , + G, +G,.
For n>1 define the subspaces, 1,, ={xeG,, |(ad G,,)""x = 0}, define
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l=@l1, and 1 ,=> 1,1 =» 1, Then the subspacesi, , I and

nez + n>1 N’
| are all graded ideals of G and I is the maximal graded ideal trivially intersecting
the local part G, +G,+G,.Let L, =G, /I, forn>1,
Consider L=LG V.V y)=G /| &G,&G, /I,
=.®L,0L, 9L, oL, ®L,®..,where L,=G,, L =G, L,=G,.
Then L=®__, L, becomes a graded Lie algebra generated by its local part V @&

neZ —n

GeVandL=G/I.

By the suitable choice of V (written as the direct sum of irreducible highest
weight modules), the contragradient V* of V, the basis elements and the
homomorphism vy : V' ® V — ¢, form the graded Lie algebra L = L(g®, V, V",
y) . For further details one can refer to ( [1] , [5] ).

Theorem 2.12[1]: L isaZ™™ —graded algebra.

Theorem 2.13[1]: Let ¢ : A(C) — L be the Lie algebra homomorphism sending E;
— €j, Fi > fi, Hi > hi. Then ¢ has kernel as I(C) and I(C) is the largest graded
ideal of A(C) trivially intersecting the span of Hi,..., Hpm Also
¢:AC)/1(C) > L isanisomorphism.

Proposition 2. 14[1]: The matrix C has rank 2n — | and C is symmetrizable.

We now recall the definition of homology of Lie algebra ( Garland and
Lepowsky, [3] ) and Hochschild-Serre spectral sequence (Kang, [5] ).

Let V be a module over a Lie algebra G. Define the space Cq(G,V) for g >0 of g —
dimensional chains of the Lie algebra G with coefficients in V to be A% (G)®V.
The differential d, =C,(G,V)—>C_,(G,V) is defined to be

d, (@A ng, ®V) = Z(—l)s“’l([gs,gt]) AGAAG A AG AL AG) BV

1<s<t<q
+ Z:(—l)s(gl AN AGg A ,) B YL,
1<s<q

for veV,g,,..,9,€G. For q < 0, define Cq(G,V) = 0 and dq = 0. Then
d,od,, =0. The homology of the complex (C, d) = {Cqy(G, V), dq} is called the
homology of the Lie algebra G with coefficients in V and is denoted by Hq(G,V).
When V = C, we write Hq(G) for Hq(G,C).
Assume now that G, V, Cq(G,V) are completely reducible modules in the category
O over a Kac-Moody algebra g(A) with dq having g(A)-module homomorphisms.
Let I be an ideal of G and L = G/I. Define a filtration {Kp = K,C} of the complex
{C,d} by KpCp+qg={01 A Q2 A ... AQp+q® V| gi € | fOr p+1 <i < p+q}.

This gives rise to a spectral sequence {E[),q d : E[,'q - Ei)fr,qﬂ—l} such that
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E2 = H,(L,H,(1,V)), where Eoq'S are determined by

pa —
E,q =Kerd :Ej, —>E; . )Nmd :E, .., —E, ) with  boundary

homomorphisms d

r+1

. r r r
‘Epq 2 Ep g The modules E;, become stable for r

> max(p,q +1) for each (p,q) and is denoted by E_,. The spectral sequence

{E..d,} converges to Hn(G,V) in the following sense : H (G,V)= & E’ .
p+g=n

Then we get the following Hochschild-Serre five term exact sequence ([5]).
H2(G,V) — Ha(L,Ho(1,V) = Ho(L,H1(1,V)) — H1(G,V) — Hi(L,Ho(l,V)) — 0.

Take L = G/I, where G=,,G, is the free Lie algebra generated by the
subspace G1and 1 =& 1, the graded ideal of G generated by the subspace Im
for m > 2. Then L=@®__, L becomes a graded Lie algebra generated by the

n>1"—n
subspace Ly = G1. Let J=1/[ 1, 1]. J is an L-module via adjoint action generated
by the subspace Jm. Form <n<2m,Jy = In. If In and Gz are modules over a
Kac-Moody algebra g(A) then Gn has a g(A)-module structure for every
xeg(A),veGweG, ,, x-[v,w]=[x-v,w]+[v,x-w]. I also has a similar
module structure and we have the induced module structure of the homogeneous
subspaces Ln, Jn. Then we have the following theorem proved in Kang [5].

Theorem 2.15[5]: There is an isomorphism of g(A) - modules
H;(L,J)=H,,,(L), forj>1. Inparticular Im+1 = (G1 ® Im) / Hs(L)m+1.
Now, for arbitrary j > m, set 10=>" 1 ; then 19 is an ideal of G

generated by the subspace lj. We consider the quotient algebra L9 = G/19). Let
NO=10/ |- In this notation L = L™,
Then we have an important relation: 1, = (G, ®1,)/H;(L"),,,.

And, there exists a spectral sequence {E'pq dr: E'pq 2 E'prg+r-1}cONVErging to
H.(L") suchthatand EZ,=H (L'"?)®A%(,,) and

p.g —
H,(L'Y) = E, ®E;, @ E, ® Eg.

Lemma 2.16[5]: In the above notation, Ha(L) = Im_

Let us recall the Kostant’s formula for symmetrizable Kac-Moody algebras [9]:
For a symmetrizable GCM A=(a,)],,, let ACh”, A",A denote the root

system of g(A), positive and negative roots, respectively, of g(A). Then we have

the triangular decomposition : g(A) = n- @ h @ n*, where n* = ® g,.Let

aeA”

S={1,...,s} be a subset of N = {I,...,n} and gs ,the subalgebra of g(A) generated
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by the elements e;, fi, i =1, ..., s and h. Let A’ denote the set of positive roots
generated by au, ..., asand A; =-A;. Then gs has the corresponding triangular
decomposition: g, =n; @h@n.,where n; = @ g,andA, =A; UA; is the root

aelg

system of gs. LetA“(s)=A"\A;, n*(S)= @ g,.Then g(A) = n(S) ® gs ®
aeh®(S)

n*(S). Let W(S)={weW /WA NA" = A"(S)}. For & e h* denote by V(A), the
irreducible highest weight module over g(A) and V(A) the irreducible highest
weight module over gs.

Theorem 2.17[9]: (Kostant’s formula) H; (n‘(S),\} (1) = Wﬁs)v WA+ p)—p).
1(w)=]

Lemma 2.18[5]: Suppose W=Ww' r; and I(w)=I(w)+1. ThenweW(S) if and
only ifw e W(s)and W'(a;) € A"(S).

3 Realization for QHA?

In this section, we are going to consider a class of a Quasi- Hyperbolic
indefinite type of Kac-Moody algebra QHA®; We first give a realization for

QHA® whose associated GCM is (2 -1 o -a), where a > 2, acZ* and this
-2 2 -1 -a
0 -2 2 -a

-a —a —a 2

GCM is symmetrizable; This algebra is obtained from the algebra A® associated
with the GCM A =[ 2 7} OJ The associated Dynkin diagram of QHA@is

-2 2 -1
0 -2 2

represented as

1 2 3
~ )
) ) \
(a,a) (a,a (a,a)
4

Consider the Kac-Moody algebra associated with the GCM A%,

Let (h, IT, TTV) be the realization of A with IT={ay 02,03}and IT ={o1" 02" 03"}
Then the relations obtained from the symmetric, non degenerate bilinear form is
given as follows:

(o,00) =2, (az,02) =-1, (a1,03) =0, (a1,04) =0, (02,01) = -1, (o2,00) = 1,

(a2,03) = -1/2, (a3,01) = 0, (0t3,02) = -1/2, (0t3,03) =1/2. Let x, be the element in h*
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such that a, () =0, a,(ay)=0,a,(ey)=1and (a,,a,) :%(Sa2 -5a+2).

Define x=a1+(2—a)a2+(2—3a)a3+573a;. Set as = -h. Form the matrix

2 -1 0 -a
-2 2 -1 -a
0 -2 2 -a
-a —-a —-a 2

symmetrizable GCM of Quasi- Hyperbolic type QHAY.

Let V be the integrable highest weight irreducible module over G with the
highest weight ) as defined earlier. Let V" be the contragradient of V and v be the
mapping as defined earlier. Let G be the Kac-Moody algebra associated with the

C=(<a,a;>),. Then C = where a > 2, aeZ" is the

2 -1 0 _ x
GCM | , , 1]Form the graded Lie algebra L(G®, V, V', y).
0 -2 2

Then L=g(C) and L is a symmetrizable Kac-Moody algebra of Quasi-
hyperbolic type associated with the GCM C. Thus we have given the realization
for this quasi hyperbolic family as a graded Lie algebra of Kac Moody type.

Next, we compute the homology modules of the Kac-Moody algebra for QHA®.

We note that, from the realization of L =QHA® asL=L, ®L,®L, =G/l and

using the involutive automorphism, it is sufficient to study only about the negative
part L =G_/I..

Computation of Homology Modules :

LetS={12,3} cN={1,2,34} Letgsis the Kac-Moody Lie algebra A%,
Here A" (S) ={k,e, +K,a, +Kqo, +K,a, € A" 1K, # O}, As be the root system of gs.

The only reflection of length 1 in W(S) is ra.
ra(p)=p-os ;ra(p)—p=—os  Hi(l)=V(-0).

The reflections of length 2 in W(S) are r arq, 1 ar2, 1 4r3.

rari(p) —p=-(1+a)os— az; rar 2(p) — p = -(1+a)os — a2;r ar3(p) — p = -(1+a)os — 03.
By Kostant’s formula,

Ha(L-)={V(-(1+a)os— 01 )®V(-(1+a)os — a2)® (-(1+a)os— 03 )}

The reflections of length 3 in W(S) are rarirz, rarirs, rarira, rarary, rarars, rarofa,
I 4l 3, 4l 3r2, I al 3la.

rarir2 (p) - p=-(1+3a)as— 02 —201;  rarurz(p) - p=-(1+2a)os— az— o
rarura(p) - p=-a(l+a)as—(1+a)or; rarari(p) - p=-(1+4a)as—3 a2 —ou;
rarar3(p) - p = -(1+3a)os— o3 —202;  rarara(p) - p = -a(l+a)os —(1+a)oz;
rarari(p) - p=-(1+2a)as —03—011; rarara(p) - p =-(1+4a)os —303 —02;
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rarara(p) - p = -a(l+a)os —(1+a)oz;

Hence, by Kostant formula,
Ha(L.) = {V(-(1+3a)os — a2 —201)® V(-(1+2a)0s — 03— a1) @V (-a(1+a)os —(1+a)ay)
®V(-(1+4a)os—302—a1)DV(-(1+4a)os—302—01) DV (- (1+3a)au—a3 —202)
@ V(-a(1l+a)as —(1+a)az) @ V(-(1+2a)os —03—01)
®V(-(1+4a)as—3az—02) DV (-a(1+a)os—(1+a)az) }
31)
The other homology modules Ha(L.), Hs(L-), Hes(L-) etc. can be computed in a
similar manner.

4  Structure of the Maximal Ideal in QHA®

In this section, we study the structure of the components of maximal ideal
upto level 4. Since the ideal I- of G- is generated by the homological subspace 1-2,

we may write |_=1®. For j > 2, we write 1=>" 1, 19=G/1"and

n>j
ND = 137109 ysing the homological approach and Hochschild — Serre
spectral sequences theory together with the representation theory of Kac-Moody
algebra, we can determine other components of the maximal ideals in QHAEf).

To determine | -2:

Since G_ is free and |_ is generated by the subspace l., from the
Hochschild —Serre five term exact sequence and using Lemma 2.15 we get,
I, =H,(L);
Ho(L) ={V(-(1+a)os— o1 )DV(-(1+a)os— a2)® (-(1+a)os— 03)}.

I, ={V(-(1+a)as— a1 )BV(-(1+a)ou— 02)® (-(1+a)os— 03)}

To determine | .3

We have, 1 =V ®I1_)/H (L) 1,y i22
When j = 2, L® coincides with the subspace n=(S) for S = {1, 2, 3} and
therefore we can compute H,(L?) , using the Kostant formula.
H,y(L?) ={V(-(1+3a)0s — 02 —201)®D V(-(1+2a)as— az— a1) @V (-a(1+a)os —(1+a)as)
®V(-(1+4a)os—302—01) DV (-(1+4a)0s—302—01) DV (-(1+3a)os—a3 —202)
@ V(-a(1+a)os—(1+a)az) @ V(-(1+2a)ou —a3 —a1)
®V(-(1+4a)as—3az—a2)®V(-a(l+a)as—(1+a)as)}, by equation (3.1)
Sincea>2, H,(L?®),=0 andweobtain | ,=V®I,)/H, (L) ,=V®I,.

To determine the structure of | _4:
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To find the structure of I 4, we need to find the structure of Hz(L & ).4.

Consider the short exact sequence, 0 —N® 51® 1% 50 and the
corresponding spectral sequence {E;vq}converging to H, (L®) such that

EZ, =H, (L®)®A%(1_,). We start with the sequence, 0—E;,—%—>EZ, —0.

pa —
Since the spectral sequence converges to  H.(L®)), we have
H,(L®) =E;, ®E;,. But H () =92, 191=L, =V and

Ero=El,=H,(L®)=LP/N? LP1=L, =V, Ej,=E;,=0. .. dzis surjective.
Since E;,=Ej, =1, d2 becomesanisomorphism. Thus E; =E; =0.
Now, consider the sequence 0— E3,—%—E?, —0.

By Kostant formula, E2,=H,(L?) E2, =V ®I, and since V®I,is a direct
sum of irreducible highest weight m,odules over A? of level 3, by comparing
the levels of both terms, dx E;,—>E?, is trivial. So E,=EZ, and
Er,=E3, =E2,2V®I,,

1® isgeneratedby 1, .. H,(L®)=1,=VQI,.

But H,(LY)=zE;,®E;, ®E;,. It follows that Ej,=E;,=0. Therefore we
find that either E;,=00r d,:E;, —>E;, issurjective.

In the first case, E;,=0, this implies that d,:E, —E;, is trivial and that

d, :E3, — E2,is surjective in the sequence 0— E; ,—%—>E3,—%>E;, —0.
Thus EZ,=E3,=Ker(d;:E3,— Ej,)Im(d;:0—Ej o)

= EJ,=EZ, = Hy(L?)
By comparing levels, we see that d,:E%, —Ej5, is trivial. Since EZ,=A%(1_,),
Efw = Ei,o and EJ, = E;l =Ker(d, : E;l — ESVZ)/Im(d2 : Eio - E;l) =
Ker (d,:E3; —>E2,). Since d,:E;, —»>EZ, is surjective, A?(1_,)=E2,=E2 /Kerd,
=(I,®1_,)Kerd, . Therefore Kerd, =S?(l_,). Hence E;,=S*(l,).
If E,isnonzeroand d,:EZ, — E,is surjective, since EZ,=E2is irreducible,
d, E}, >E;, IS an isomorphism. Thus E;,=E;,=0 and
Hy(L?) =E3 =E5,=E5,/Im(d,:E3, ~Ej5))
= A*(1,)Im(d, :E5, > E},).
Since all the modules, here are completely reducible over A?,
Im(d, : E2, — E2,) = A2(1,)/Hy(L?)  Weget, d,:E;, — E3,is trivial.
Thus E3 =E3, =Ker(d,:EZ;, > E§,)/Im(d, : EZ, —EZ;) =Ker(d, : EZ, - EZ,).
Since Imd, = A’(1_,)/Hy(L®) =EZ, /Ker d, =(1_, ®1_,) / Ker dy,
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= Kerd, =S%*(1,)® Hy(L?) .. E5, ®E;, =S?(1_,)® Hy(L?)

Consider 0—>EZ,—%—>E;, —»0. By comparing levels, we see that
d,:EZ, >EZ, is trivial. Thus E;,=E?,=V®A?*(l_,). By comparing the
levels of the terms in the sequence 0—E},—%—>E}, >0, we getd,=0.
Therefore E;,=E;,=E,=V®A?(l_,). Since Ej,is a sub module of
Eo,=A(1,). . Hy(L9)= Hy(L?) @S?(1,) @V ®A* (1)) @M, where M is a
direct sum of level 6 irreducible representations of A® . Therefore
H,(L®), =S%(1,) and 1, =V ®1,)/H,(LD), =V ®I1,)/S*(l,).

From the above results, we get the structure of the components of the maximal
ideal I- (upto level 4) in the Quasi — hyperbolic Kac-Moody algebra QHA® .

Thus we have proved the following structure theorem.

Theorem 4.1: With the usual notations, let L=@__ L  be the realization of

neZ —n
2 -1 0 -a
QHA® associated with the GCM |_, , _; _,| wherea>2,aeZ". Then we

0 -2 2 -a
-a —a —a 2
have following :
I) I, ={V(-(1+a)os— 01 )DV(-(1+a)as— 02)® (-(1+a)os— 03)}.
i) | ,=V®I,.

i)  1,=(V®I,)/S*(l,).

5 Conclusion

In this work, we have considered a class of quasi hyperbolic Kac-Moody algebra
QHA®and determined the structure of the components in the graded ideals upto

level four. This work gives further scope for understanding the complete structure
of this indefinite, quasi hyperbolic algebra.
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