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Abstract

We present a study of tensor products of bornological modules over
bornological commutative rings by means of an elementary approach.
We also present some applications to the study of modules of bounded
multilinear mappings and modules of bounded homogeneous polynomi-
als.
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1 Introduction

The notion of a bounded subset of a (real or complex) topological vector
space was introduced by Kolmogoroff [11] and von Neumann [17]. It played
such a fundamental role in functional analysis and its applications that mo-
tivated the definition and the study of more general and abstract classes of
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bounded sets, the so called bornologies. A bornology on a set X is a collec-
tion B of subsets of X (called bounded sets) that contains the singletons and
is stable under the passage to subsets and the formation of finite unions. In
addition to functional analysis [1, 9, 25], bornologies have shown to be very
useful in several contexts, such as topology [13], topological algebra [2, 25],
and noncommutative geometry and cyclic homology [16, 24].

In the present paper we are going to work in the setting of modules over a
commutative ring. In that setting bornologies were studied mainly by Pombo
during the last twenty years, who considered linearly bornologized modules in
[19, 20], bornological modules over topological rings in [21], and vectorially
bornologized modules in [18]; additionally, (not necessarily abelian) bornolog-
ical groups have been discussed recently in [22]. Moreover, Bernardes and
Pombo studied bornological topological modules in [2, 4, 5]. Our main goal
here is to complement these works by presenting a study of tensor products of
bornological modules by means of an elementary approach, which avoids the
use of the language and of the methods of category theory [14, 23].

We apply the results presented here to the study of modules of bounded
multilinear mappings and modules of bounded homogeneous polynomials. In
particular, we give a short proof of the main result obtained by Farias and
Pombo [8] by means of the tensor product technique. Let us also mention that
polynomially bornological topological vector spaces over a very general class
of topological fields were studied by Bernardes and Pombo [3].

2 Bornological modules over bornological rings

In the present work we consider the slightly more general notion of a
bornological module over a bornological ring. It has the advantage of con-
taining simultaneously the class of bornological modules over topological rings
and the class of vectorially bornologized modules that were studied by Pombo
in [21] and [18], respectively. For the first class, it is enough to consider
the topological ring (A, T ) in question endowed with the bornology of its T -
bounded subsets and for the second class it is enough to consider the ring A
in question endowed with its discrete bornology.

Our main goal in this section is to fix some terminology and to present the
basic constructions (products, inverse limits, direct sums, direct limits, etc.)
concerning bornological modules over bornological rings. These constructions
are derived from the existence of initial and final module bornologies. Al-
though our setting is slightly more general, the proofs of the existence of these
bornologies are essentially the same as the ones presented by Pombo [21] in the
case of bornological modules over topological rings. Nevertheless, since these
proofs are very short, we shall present them here for the sake of completeness.
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The basic notions and constructions concerning modules [7, 12] and borno-
logical sets [9, 10] are assumed to be known. Moreover, we usually denote the
bornology (resp. the topology) of a bornological set (resp. a topological space)
X by BX (resp. TX).

Let A be a ring (all rings are assumed to have a non-zero identity element).
A ring bornology on A is a bornology B on A satisfying the following conditions:

(RB1) B1 +B2 ∈ B whenever B1, B2 ∈ B;

(RB2) B1B2 ∈ B whenever B1, B2 ∈ B.

A bornological ring is a ring endowed with a ring bornology.

Note that if B is a ring bornology on a ring A, then B is also a ring bornology
on the opposite ring A0. We usually consider the opposite of a bornological
ring as a bornological ring in this way.

Example 1. (a) The trivial bornology on a ring A is a ring bornology.
(b) The discrete bornology on a ring A is a ring bornology.
(c) Let A be a topological ring. Recall that a subset L of A is said to be
left (resp. right) TA-bounded if for every neighborhood V of 0 in A there is
a neighborhood W of 0 in A such that WL ⊂ V (resp. LW ⊂ V ); L is TA-
bounded if it is both left and right TA-bounded. The collection B`(TA) (resp.
Br(TA), B(TA)) of all left TA-bounded (resp. right TA-bounded, TA-bounded)
subsets of A is a ring bornology on A. Of course, these three bornologies
coincide if A is commutative.

Let A be a bornological ring and let E be a left A-module (all modules are
assumed to be unitary). A left A-module bornology on E is a bornology B on
E satisfying the following conditions:

(MB1) B1 +B2 ∈ B whenever B1, B2 ∈ B;

(MB2) LB ∈ B whenever L ∈ BA and B ∈ B.

A bornological left A-module is a left A-module endowed with a left A-
module bornology.

Analogously we define the concepts of a right A-module bornology and a
bornological right A-module.

If E is a bornological right A-module, then E is a bornological left A0-
module. For this reason, we shall restrict ourselves to left modules and so we
shall omit the word “left”.

Example 2. (a) For any bornological ring A, the trivial bornology on an A-
module E is an A-module bornology.
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(b) If A is a ring endowed with the discrete bornology, then the discrete bornol-
ogy on an A-module E is an A-module bornology.
(c) Every bornological ring A may be regarded as a bornological A-module.
(d) Let X be a bornological set, A a bornological ring and F a bornological
A-module. The set B(X;F ) of all bounded mappings from X into F is a sub-
module of the product A-module FX of all mappings from X into F . Recall
that a set X of mappings from X into F is said to be equibounded if

X (B) :=
⋃
f∈X

f(B) ∈ BF whenever B ∈ BX .

The collection of all equibounded subsets ofB(X;F ) is anA-module bornology,
called the bornology of equiboundedness.
(e) Let A be a topological ring endowed with the bornology B`(TA). Let E be
a topological A-module. Recall that a subset B of E is said to be TE-bounded
if for every neighborhood V of 0 in E there is a neighborhood W of 0 in A
such that WB ⊂ V . The collection B(TE) of all TE-bounded subsets of E is
an A-module bornology on E.

Remark 3. Let G be a commutative group denoted additively. A group bornol-
ogy on G is a bornology B on G such that

−B1 ∈ B and B1 +B2 ∈ B whenever B1, B2 ∈ B.

A bornological commutative group is a commutative group endowed with a
group bornology. By considering Z endowed with the discrete bornology and
by regarding G as a Z-module, a group bornology on G is the same as a Z-
module bornology on G. In this way, bornological commutative groups can be
viewed as bornological Z-modules.

For the remaining of this section, A denotes a bornological ring.

Theorem 4. Let E be an A-module, let (Fα)α∈I be a family of bornological
A-modules and, for each α ∈ I, let fα : E → Fα be an A-linear mapping. Then
the initial bornology B on E for the family (fα)α∈I , which is given by

B = {B ⊂ E; fα(B) ∈ BFα for every α ∈ I},

is an A-module bornology. Hence, B is also the initial A-module bornology on
E for the family (fα)α∈I in the sense that if g is an A-linear mapping from a
bornological A-module G into E, then g is bounded (E endowed with B) if and
only if each of the mappings fα ◦ g is bounded.

Proof. If B1, B2 ∈ B and L ∈ BA, then

fα(B1 +B2) = fα(B1) + fα(B2) ∈ BFα and fα(LB1) = Lfα(B1) ∈ BFα

for every α ∈ I, which proves that B1 +B2 ∈ B and LB1 ∈ B.
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Example 5. (a) If E is a bornological A-module and M is a submodule of E,
then the induced bornology on M is an A-module bornology. Recall that it
consists of all bounded sets of E which are contained in M .
(b) If (Eα)α∈I is a family of bornological A-modules and E =

∏
α∈I Eα is the

product A-module, then the product bornology on E is an A-module bornol-
ogy. Recall that the sets of the form

∏
α∈I Bα, with each Bα bounded in Eα,

form a base for this bornology.
(c) Let (Eα, uαβ)α∈I be an inverse system of bornological A-modules. This
means that I is a non-empty partially ordered set, Eα is a bornological A-
module for every α ∈ I, uαβ : Eβ → Eα is a bounded A-linear mapping for
every α, β ∈ I with α ≤ β, uαα = IdEα for every α ∈ I, and uαβ ◦ uβγ = uαγ
for every α, β, γ ∈ I with α ≤ β ≤ γ. Let E = lim

←−
Eα be the inverse limit

A-module and let uα : E → Eα be the canonical mapping (α ∈ I). The inverse
limit bornology on E is the initial (A-module) bornology on E for the family
(uα)α∈I . By definition, it consists of all sets B ⊂ E such that uα(B) is bounded
in Eα for every α ∈ I. By considering E endowed with this bornology, the
following universal property holds:

For every bornological A-module F and for every family (vα)α∈I of bounded
A-linear mappings vα : F → Eα satisfying vα = uαβ ◦vβ whenever α ≤ β, there
is a unique bounded A-linear mapping v : F → lim

←−
Eα such that vα = uα ◦ v

for every α ∈ I.

Let us remark that if I is endowed with the equality relation, then lim
←−

Eα =∏
α∈I Eα and the inverse limit bornology coincides with the product bornology.

Unless otherwise specified, whenever we consider a submodule of a bornolog-
ical module (resp. a product of bornological modules, an inverse limit of an
inverse system of bornological modules) as a bornological module, the induced
bornology (resp. the product bornology, the inverse limit bornology) is implied.

Theorem 6. Let E be an A-module, let (Fα)α∈I be a family of bornological
A-modules and, for each α ∈ I, let fα : Fα → E be an A-linear mapping. Let
S be the collection of all subsets of E of the form

L1x1 + · · ·+ Lmxm + fα1(Bα1) + · · ·+ fαn(Bαn),

where m,n ∈ N∗, L1, . . . , Lm ∈ BA, x1, . . . , xm ∈ E, α1, . . . , αn ∈ I and
Bαj ∈ BFαj for 1 ≤ j ≤ n. Then S is a base for an A-module bornology B on

E, which is the final A-module bornology on E for the family (fα)α∈I in the
sense that if g is an A-linear mapping from E into a bornological A-module
G, then g is bounded (E endowed with B) if and only if each of the mappings
g ◦ fα is bounded.
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Proof. Obviously, S is a cover of E. Given C,D ∈ S, there are C ′, D′ ∈ S
such that C ∪ {0} ⊂ C ′ and D ∪ {0} ⊂ D′, and so

C ∪D ⊂ C ′ +D′ ∈ S.

Thus, S is a base for a bornology B on E. Clearly, B satisfies (MB1) and
(MB2), that is, B is an A-module bornology. Moreover, each fα is bounded,
which implies that each g ◦ fα is bounded whenever g is bounded. Conversely,
if each g ◦ fα is bounded, then g is bounded on each element of S and so g is
bounded.

Remark 7. Under the conditions of Theorem 6, ifE is generated by
⋃
α∈I fα(Fα),

then the sets of the form fα1(Bα1)+ · · ·+fαn(Bαn), where n ∈ N∗, α1, . . . , αn ∈
I and Bαj ∈ BFαj for 1 ≤ j ≤ n, form a base for the final A-module bornology.

Remark 8. Contrary to the case of initial bornologies, the final bornology on
E and the final A-module bornology on E may be different. For example,
consider A = R endowed with its usual bornology (which is given by its usual
metric) and consider F1 = F2 = R regarded as bornological R-modules. Let
E = R2 regarded as an R-module and let

f1 : x ∈ F1 7→ (x, 0) ∈ E and f2 : y ∈ F2 7→ (0, y) ∈ E.

We know that the final bornology B on E for the family (fα)α∈{1,2} is formed
by the sets of the form X ∪ f1(B1) ∪ f2(B2), where X ⊂ E is finite and
B1, B2 ⊂ F1 = F2 are bounded. Since f1([0, 1]) ∈ B, f2([0, 1]) ∈ B and
f1([0, 1])+f2([0, 1]) = [0, 1]2 6∈ B, we see that B is not an R-module bornology.

Example 9. (a) If E is a bornological A-module and M is a submodule of E,
then the quotient bornology on the quotient A-module E/M is an A-module
bornology. Recall that it consists of the canonical images in E/M of the
bounded sets of E.
(b) Let (Eα)α∈I be a family of bornological A-modules and E =

⊕
α∈I Eα the

direct sum A-module. The direct sum bornology on E is the final A-module
bornology for the family (λα)α∈I , where λα : Eα → E is the canonical injection
(α ∈ I). By Remark 7, the sets of the form λα1(Bα1) + · · ·+ λαn(Bαn), where
n ∈ N∗, α1, . . . , αn ∈ I and Bαj ∈ BEαj for 1 ≤ j ≤ n, form a base for this
bornology.
(c) Let (Eα, uβα)α∈I be a direct system of bornological A-modules. This means
that I is a non-empty partially ordered set, Eα is a bornological A-module
for every α ∈ I, uβα : Eα → Eβ is a bounded A-linear mapping for every
α, β ∈ I with α ≤ β, uαα = IdEα for every α ∈ I, and uγβ ◦ uβα = uγα
for every α, β, γ ∈ I with α ≤ β ≤ γ. Let E = lim

−→
Eα be the direct limit

A-module and let uα : Eα → E be the canonical mapping (α ∈ I). The direct



On tensor products of bornological modules 1403

limit bornology on E is the final A-module bornology on E for the family
(uα)α∈I . By Remark 7, the sets of the form uα1(Bα1) + · · ·+ uαn(Bαn), where
n ∈ N∗, α1, . . . , αn ∈ I and Bαj ∈ BEαj for 1 ≤ j ≤ n, form a base for
this bornology. By considering E endowed with this bornology, the following
universal property holds:

For every bornological A-module F and for every family (vα)α∈I of bounded
A-linear mappings vα : Eα → F satisfying vα = vβ ◦uβα whenever α ≤ β, there
is a unique bounded A-linear mapping v : lim

−→
Eα → F such that vα = v ◦ uα

for every α ∈ I.
Let us remark that if I is endowed with the equality relation, then lim

−→
Eα =⊕

α∈I Eα and the direct limit bornology coincides with the direct sum bornol-
ogy.

Unless otherwise specified, whenever we consider a quotient of a bornolog-
ical module (resp. a direct sum of bornological modules, a direct limit of a
direct system of bornological modules) as a bornological module, the quotient
bornology (resp. the direct sum bornology, the direct limit bornology) is im-
plied.

3 Bornological tensor products

Throughout this section A denotes a bornological commutative ring.

If E1, . . . , En, F are A-modules, we denote by La(E1, . . . , En;F ) the A-
module of all A-multilinear mappings from E1×· · ·×En into F , by E1⊗· · ·⊗En
the tensor product A-module of E1, . . . , En and by

φ : (x1, . . . , xn) ∈ E1 × · · · × En 7→ x1 ⊗ · · · ⊗ xn ∈ E1 ⊗ · · · ⊗ En

the canonical mapping. Moreover, given subsets B1 ⊂ E1, . . . , Bn ⊂ En, we
define

B1 ∗ · · · ∗Bn = {x1 ⊗ · · · ⊗ xn;x1 ∈ B1, . . . , xn ∈ Bn}.

We know that for each A-multilinear mapping f from E1 × · · · × En into F
there exists a unique A-linear mapping from E1 ⊗ · · · ⊗ En into F , which we
denote by uf , such that

f(x1, . . . , xn) = uf (x1 ⊗ · · · ⊗ xn)

for all (x1, . . . , xn) ∈ E1 × · · · × En. Moreover, the mapping

f ∈ La(E1, . . . , En;F ) 7→ uf ∈ La(E1 ⊗ · · · ⊗ En;F )

is an A-module isomorphism.
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If E1, . . . , En, F are bornological A-modules, the set

Lb(E1, . . . , En;F ) = La(E1, . . . , En;F ) ∩B(E1 × · · · × En;F )

of all bounded A-multilinear mappings from E1 × · · · × En into F is a sub-
module of both La(E1, . . . , En;F ) and B(E1× · · · ×En;F ). The bornology of
equiboundedness on B(E1 × · · · × En;F ) induces an A-module bornology on
Lb(E1, . . . , En;F ). Unless otherwise specified, we consider Lb(E1, . . . , En;F )
endowed with this bornology.

Theorem 10. Let E1, . . . , En be bornological A-modules. Then there exists a
unique A-module bornology B on E1⊗· · ·⊗En such that the following property
holds: for every bornological A-module F and for every A-multilinear mapping
f : E1 × · · · ×En → F , we have that f is bounded if and only if uf is bounded
(where E1 ⊗ · · · ⊗ En is endowed with B).

Proof. Let S be the collection of all sets of the form

(B1,1 ∗ · · · ∗Bn,1) + · · ·+ (B1,r ∗ · · · ∗Bn,r),

where r ∈ N∗ and Bi,1, . . . , Bi,r ∈ BEi for each 1 ≤ i ≤ n. Clearly, S is a cover
of E1 ⊗ · · · ⊗ En. If

B = (B1,1 ∗ · · · ∗Bn,1) + · · ·+ (B1,r ∗ · · · ∗Bn,r),

C = (C1,1 ∗ · · · ∗ Cn,1) + · · ·+ (C1,s ∗ · · · ∗ Cn,s)

are two elements of S, then by completing with sets of the form {0}, if neces-
sary, we may assume r = s, and so

B ∪ C ⊂ (D1,1 ∗ · · · ∗Dn,1) + · · ·+ (D1,r ∗ · · · ∗Dn,r),

where Di,j = Bi,j ∪Ci,j ∈ BEi for each 1 ≤ i ≤ n and 1 ≤ j ≤ r. Hence, S is a
base for a bornology B on E1 ⊗ · · · ⊗ En. Since the sum of two elements of S
is obviously an element of S and since

LB ⊂ (LB1,1 ∗B2,1 ∗ · · · ∗Bn,1) + · · ·+ (LB1,r ∗B2,r ∗ · · · ∗Bn,r) ∈ S

whenever L ∈ BA andB is as above, it follows that B is an A-module bornology.
Moreover, the canonical mapping φ : E1×· · ·×En → E1⊗· · ·⊗En is bounded
if E1 ⊗ · · · ⊗ En is endowed with B. Hence, f = uf ◦ φ is bounded whenever
uf is bounded. Conversely, if f is bounded and B is as above, then

uf (B) = f(B1,1 × · · · ×Bn,1) + · · ·+ f(B1,r × · · · ×Bn,r) ∈ BF ,

proving that uf is bounded.
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It remains to prove the uniqueness of B. Suppose B′ is an A-module bornol-
ogy on E1 ⊗ · · · ⊗ En which has also the property stated in the theorem. Let
G = E1 ⊗ · · · ⊗En endowed with B and G′ = E1 ⊗ · · · ⊗En endowed with B′.
In the diagram

E1 × · · · × En
φ //

φ
&&

G′

G′
Id

>>

the identity mapping Id is obviously bounded. Hence, by our hypothesis on
B′, φ = Id ◦φ : E1× · · ·×En → G′ is bounded. This implies that S ⊂ B′, and
so B ⊂ B′. Moreover, we see from the diagram

E1 × · · · × En
φ //

φ
&&

G

G′
Id

??

and from our hypothesis on B′ that Id : G′ → G is bounded, and so B′ ⊂ B.

The bornology B obtained in Theorem 10 is called the tensor product
bornology on E1 ⊗ · · · ⊗ En. It follows from the proof of Theorem 10 that
if Si is a base for the bornology BEi (1 ≤ i ≤ n), then the sets of the form

(B1,1 ∗ · · · ∗Bn,1) + · · ·+ (B1,r ∗ · · · ∗Bn,r),

where r ∈ N∗ and Bi,1, . . . , Bi,r ∈ Si for each 1 ≤ i ≤ n, form a base for B.

Unless otherwise specified, whenever we consider a tensor product of bornolog-
ical modules as a bornological module the tensor product bornology is implied.

Proposition 11 (Commutativity). Let E1, . . . , En be bornological A-modules
and let π be a permutation of {1, . . . , n}. Consider the unique A-linear mapping

α : E1 ⊗ · · · ⊗ En → Eπ(1) ⊗ · · · ⊗ Eπ(n)

which maps x1 ⊗ · · · ⊗ xn into xπ(1) ⊗ · · · ⊗ xπ(n). Then α is a bornological
A-module isomorphism.

Proposition 12 (Associativity). Let E1, . . . , En be bornological A-modules and
let G be the bornological A-module obtained by putting some choice of paren-
theses in the expression E1⊗ · · · ⊗En. Consider the unique A-linear mapping

β : E1 ⊗ · · · ⊗ En → G

which maps x1⊗· · ·⊗xn in the expression obtained from x1⊗· · ·⊗xn by putting
the same choice of parentheses as before. Then β is a bornological A-module
isomorphism.
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In fact, we know that the mappings α and β are A-module isomorphisms.
That these mappings are bounded and have bounded inverses follow immedi-
ately from the form of the basic bounded sets in the tensor product bornology.

Theorem 13. Let E1, . . . , En, F be bornological A-modules. Then

ψ : f ∈ Lb(E1, . . . , En;F ) 7→ uf ∈ Lb(E1 ⊗ · · · ⊗ En;F )

is a bornological A-module isomorphism.

Proof. We know that

f ∈ La(E1, . . . , En;F ) 7→ uf ∈ La(E1 ⊗ · · · ⊗ En;F )

is an A-module isomorphism and, by Theorem 10, f is bounded if and only
if uf is bounded. Thus, ψ is an A-module isomorphism. It remains to prove
that ψ and ψ−1 are bounded.

Let X be an equibounded subset of Lb(E1, . . . , En;F ) and let

B = (B1,1 ∗ · · · ∗Bn,1) + · · ·+ (B1,r ∗ · · · ∗Bn,r)

be a basic bounded set for the tensor product bornology on E1 ⊗ · · · ⊗ En.
Then(

ψ(X )
)
(B) =

⋃
f∈X

(
f(B1,1 × · · · ×Bn,1) + · · ·+ f(B1,r × · · · ×Bn,r)

)
⊂ X (B1,1 × · · · ×Bn,1) + · · ·+ X (B1,r × · · · ×Bn,r) ∈ BF .

This proves that ψ(X ) is an equibounded subset of Lb(E1 ⊗ · · · ⊗ En;F ).
Conversely, let Y be an equibounded subset of Lb(E1 ⊗ · · · ⊗ En;F ) and

let C = C1 × · · · × Cs be a basic bounded set for the product bornology on
E1 × · · · × En. Then(

ψ−1(Y)
)
(C) =

⋃
f∈ψ−1(Y)

f(C1 × · · · × Cs) =
⋃

f∈ψ−1(Y)

uf (C1 ∗ · · · ∗ Cs)

= Y(C1 ∗ · · · ∗ Cs) ∈ BF ,

proving that ψ−1(Y) is an equibounded subset of Lb(E1, . . . , En;F ).

Proposition 14. If E1, . . . , En, F1, . . . , Fn are bornological A-modules and u1 :
E1 → F1, . . . , un : En → Fn are bounded A-linear mappings, then the unique
A-linear mapping

u1 ⊗ · · · ⊗ un : E1 ⊗ · · · ⊗ En → F1 ⊗ · · · ⊗ Fn

which satisfies

(u1 ⊗ · · · ⊗ un)(x1 ⊗ · · · ⊗ xn) = u1(x1)⊗ · · · ⊗ un(xn)

is bounded.
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Proof. Indeed, if B = (B1,1 ∗ · · · ∗ Bn,1) + · · · + (B1,r ∗ · · · ∗ Bn,r) is a basic
bounded set in E1 ⊗ · · · ⊗ En, then (u1 ⊗ · · · ⊗ un)(B) = (u1(B1,1) ∗ · · · ∗
un(Bn,1)) + · · ·+ (u1(B1,r) ∗ · · · ∗ un(Bn,r)) is bounded in F1 ⊗ · · · ⊗ Fn.

Proposition 15. If E1, . . . , En, F1, . . . , Fn are bornological A-modules, then

Φ : Lb(E1;F1)× · · · × Lb(En;Fn)→ Lb(E1 ⊗ · · · ⊗ En;F1 ⊗ · · · ⊗ Fn)

given by
Φ(u1, . . . , un) = u1 ⊗ · · · ⊗ un

is a bounded A-multilinear mapping.

Proof. Clearly, Φ is A-multilinear. If Xj is an equibounded subset of Lb(Ej;Fj)
(1 ≤ j ≤ n) and B = (B1,1∗· · ·∗Bn,1)+· · ·+(B1,r∗· · ·∗Bn,r) is a basic bounded
set in E1⊗ · · · ⊗En, then Φ(X1× · · · ×Xn)(B) ⊂ (X1(B1,1) ∗ · · · ∗ Xn(Bn,1)) +
· · ·+ (X1(B1,r) ∗ · · · ∗ Xn(Bn,r)), which is a bounded set in F1⊗ · · · ⊗Fn. This
proves that Φ(X1×· · ·×Xn) is an equibounded subset of Lb(E1⊗· · ·⊗En;F1⊗
· · · ⊗ Fn).

In view of Theorem 10, there corresponds to the mapping Φ of Proposi-
tion 15 a unique bounded A-linear mapping (called canonical)

Lb(E1;F1)⊗ · · · ⊗ Lb(En;Fn)→ Lb(E1 ⊗ · · · ⊗ En;F1 ⊗ · · · ⊗ Fn),

which associates to each element u1⊗ · · ·⊗un of the tensor product the linear
mapping u1⊗· · ·⊗un : E1⊗· · ·⊗En → F1⊗· · ·⊗Fn. This canonical mapping
is not necessarily injective nor surjective, so that the notation u1 ⊗ · · · ⊗ un
can lead to confusion. So, unless otherwise specified, u1⊗ · · · ⊗ un will denote
the bounded A-linear mapping given by Proposition 14.

Proposition 16. Let (E
(1)
α1 )α1∈I1 , . . . , (E

(n)
αn )αn∈In be families of bornological

A-modules and let I = I1 × · · · × In. Then the canonical A-linear mapping

Ψ :
( ∏
α1∈I1

E(1)
α1

)
⊗ · · · ⊗

( ∏
αn∈In

E(n)
αn

)
→

∏
(α1,...,αn)∈I

(
E(1)
α1
⊗ · · · ⊗ E(n)

αn

)
,

which satisfies

Ψ
(
(x(1)

α1
)α1∈I1 ⊗ · · · ⊗ (x(n)

αn )αn∈In
)

=
(
x(1)
α1
⊗ · · · ⊗ x(n)

αn

)
(α1,...,αn)∈I ,

is bounded.

Proof. Consider the A-multilinear mapping

f :
( ∏
α1∈I1

E(1)
α1

)
× · · · ×

( ∏
αn∈In

E(n)
αn

)
→

∏
(α1,...,αn)∈I

(
E(1)
α1
⊗ · · · ⊗ E(n)

αn

)
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given by f
(
(x

(1)
α1 )α1∈I1 , . . . , (x

(n)
αn )αn∈In

)
=
(
x

(1)
α1 ⊗ · · · ⊗ x

(n)
αn

)
(α1,...,αn)∈I . The

inclusion

f
(( ∏

α1∈I1

B(1)
α1

)
× · · · ×

( ∏
αn∈In

B(n)
αn

))
⊂

∏
(α1,...,αn)∈I

(
B(1)
α1
∗ · · · ∗B(n)

αn

)
shows that f is bounded. Hence Ψ = uf is bounded by Theorem 10.

We know that the mapping Ψ in the above proposition is not necessarily
injective nor surjective. There is a well-known particular case in which Ψ is
an A-module isomorphism, namely:

Ψ :
(∏
α∈I

Eα

)
⊗ F →

∏
α∈I

(Eα ⊗ F ),

where (Eα)α∈I is any family of A-modules and F is a finitely generated free
A-module ([7], Chapter II, §3, Corollary 3 to Proposition 7). Nevertheless,
even in this particular case, if Eα (α ∈ I) and F are endowed with A-module
bornologies, it is still not necessarily true that Ψ is a bornological A-module
isomorphism, as the next example shows. However, we shall see later (Propo-
sition 20) that under some additional conditions we get a positive result.

Example 17. Let K be a non-trivially valued commutative field with absolute
value | · | and identity element 1. Consider K endowed with the bornology
formed by the sets which are bounded with respect to the absolute value |·|. Let
E = K regarded as a bornological K-vector space and let F = K regarded as
a K-vector space but endowed with the trivial bornology. Then the canonical
mapping Ψ : EN ⊗ F → (E ⊗ F )N is a K-vector space isomorphism and is
bounded by Proposition 16. We shall prove that Ψ−1 is not bounded. Since
Ψ−1

(
(xn ⊗ yn)n∈N

)
= (xnyn)n∈N ⊗ 1,

Ψ−1
(
({1} ∗ F )N

)
= EN ∗ {1}.

Clearly ({1}∗F )N is a bounded subset of (E⊗F )N, but we claim that EN ∗{1}
is not a bounded subset of EN ⊗ F . In fact, suppose that our claim is false.
Then EN ∗ {1} must be contained in a basic bounded set of the form[(∏

n∈N

Bn,1

)
∗ F
]

+ · · ·+
[(∏

n∈N

Bn,r

)
∗ F
]
,

where Bn,j is bounded in E (1 ≤ j ≤ r, n ∈ N). For each n ∈ N, let

cn = sup{|λ|;λ ∈ Bn,1 ∪ . . . ∪Bn,r} <∞

and choose xn ∈ E such that |xn| > ncn. We may write

(xn)n∈N ⊗ 1 =
r∑
j=1

(
(bn,j)n∈N ⊗ yj

)
=
( r∑
j=1

yjbn,j

)
n∈N
⊗ 1,
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where bn,j ∈ Bn,j and yj ∈ F (1 ≤ j ≤ r, n ∈ N). Hence,

ncn < |xn| =
∣∣ r∑
j=1

yjbn,j
∣∣ ≤ cn

r∑
j=1

|yj|

for every n ∈ N, which is impossible.

Let (E
(1)
α1 , u

(1)
β1α1

)α1∈I1 , . . . , (E
(n)
αn , u

(n)
βnαn

)αn∈In be direct systems of bornolog-
ical A-modules. For each 1 ≤ j ≤ n, consider the bornological A-module

E(j) = lim
−→

E(j)
αj

and let u
(j)
αj : E

(j)
αj → E(j) be the canonical bounded A-linear mapping (αj ∈ Ij).

Consider the product set I = I1 × · · · × In endowed with the following partial
order relation:

(α1, . . . , αn) ≤ (β1, . . . , βn)⇐⇒ α1 ≤ β1, . . . , αn ≤ βn.

For each (α1, . . . , αn) ≤ (β1, . . . , βn) in I, we define

w(β1,...,βn)(α1,...,αn) = u
(1)
β1α1
⊗ · · · ⊗ u(n)

βnαn

which is a bounded A-linear mapping. It is easy to show that(
E(1)
α1
⊗ · · · ⊗ E(n)

αn , w(β1,...,βn)(α1,...,αn)

)
(α1,...,αn)∈I

is a direct system of bornological A-modules. Consider the bornological A-
module

E = lim
−→

(E(1)
α1
⊗ · · · ⊗ E(n)

αn )

and, for each (α1, . . . , αn) ∈ I, let

w(α1,...,αn) : E(1)
α1
⊗ · · · ⊗ E(n)

αn → E

be the canonical bounded A-linear mapping. Now, for each (α1, . . . , αn) ∈ I,
we define

h(α1,...,αn) = u(1)
α1
⊗ · · · ⊗ u(n)

αn

which is a bounded A-linear mapping. Since

h(α1,...,αn) = h(β1,...,βn) ◦ w(β1,...,βn)(α1,...,αn)

whenever (α1, . . . , αn) ≤ (β1, . . . , βn) in I, there exists a unique bounded A-
linear mapping

h : E → E(1) ⊗ · · · ⊗ E(n)

such that h(α1,...,αn) = h ◦ w(α1,...,αn) for every (α1, . . . , αn) ∈ I.
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Theorem 18. The mapping

h : lim
−→

(E(1)
α1
⊗ · · · ⊗ E(n)

αn )→ (lim
−→

E(1)
α1

)⊗ · · · ⊗ (lim
−→

E(n)
αn )

is a bornological A-module isomorphism.

Proof. Let

λ(j)
αj

: E(j)
αj
→
⊕
βj∈Ij

E
(j)
βj

(αj ∈ Ij, 1 ≤ j ≤ n) and

λ(α1,...,αn) : E(1)
α1
⊗ · · · ⊗ E(n)

αn →
⊕

(β1,...,βn)∈I

(E
(1)
β1
⊗ · · · ⊗ E(n)

βn
)

((α1, . . . , αn) ∈ I) be the canonical injections. We define a bounded A-
multilinear mapping f : E(1)×· · ·×E(n) → E in the following way: given x(1) ∈
E(1), . . . , x(n) ∈ E(n), we choose a representative (x

(j)
αj )αj∈Ij ∈

⊕
αj∈Ij E

(j)
αj of

the class x(j) in E(j) = lim
−→

E(j)
αj

for each 1 ≤ j ≤ n, and then define

f(x(1), . . . , x(n)) = the class of (x(1)
α1
⊗ · · · ⊗ x(n)

αn )(α1,...,αn)∈I in E.

In order to prove that f is well-defined, it is enough to show that if

(y(1)
α1

)α1∈I1 = (x(1)
α1

)α1∈I1 + λ(1)
α (z(1)

α )− λ(1)
β (u

(1)
βα(z(1)

α ))

(where α ≤ β in I1 and z
(1)
α ∈ E(1)

α are fixed) and

(y(2)
α2

)α2∈I2 = (x(2)
α2

)α2∈I2 , . . . , (y
(n)
αn )αn∈In = (x(n)

αn )αn∈In ,

then the class of (y
(1)
α1 ⊗· · ·⊗y

(n)
αn )(α1,...,αn)∈I is equal to the class of (x

(1)
α1 ⊗· · ·⊗

x
(n)
αn )(α1,...,αn)∈I . But this follows from the fact that (y

(1)
α1 ⊗· · ·⊗y

(n)
αn )(α1,...,αn)∈I =

(x
(1)
α1 ⊗ · · · ⊗ x

(n)
αn )(α1,...,αn)∈I + (t(α1,...,αn))(α1,...,αn)∈I , where

(t(α1,...,αn))(α1,...,αn)∈I =
∑

(α2,...,αn)∈I2×···×In

[
λ(α,α2,...,αn)(z

(1)
α ⊗ x(2)

α2
⊗ · · · ⊗ x(n)

αn )

− λ(β,α2,...,αn)

(
w(β,α2,...,αn)(α,α2,...,αn)(z

(1)
α ⊗ x(2)

α2
⊗ · · · ⊗ x(n)

αn )
)]
.

Now, it is easy to see that f is A-multilinear. Since

f
(
u(1)
α1

(B(1)
α1

)× · · · × u(n)
αn (B(n)

αn )
)

= w(α1,...,αn)(B
(1)
α1
∗ · · · ∗B(n)

αn )

is bounded in E whenever B
(j)
αj is bounded in E

(j)
αj for each 1 ≤ j ≤ n, it

follows that f is bounded. By Theorem 10, there is a unique bounded A-linear
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mapping g : E(1)⊗· · ·⊗E(n) → E such that f(x(1), . . . , x(n)) = g(x(1)⊗· · ·⊗x(n))
for every (x(1), . . . , x(n)) ∈ E(1)× · · · ×E(n). It remains to prove that g = h−1.
Since

g
(
h
(
w(α1,...,αn)(x

(1)
α1
⊗ · · · ⊗ x(n)

αn )
))

= g
(
h(α1,...,αn)(x

(1)
α1
⊗ · · · ⊗ x(n)

αn )
)

= g
(
u(1)
α1

(x(1)
α1

)⊗ · · · ⊗ u(n)
αn (x(n)

αn )
)

= w(α1,...,αn)(x
(1)
α1
⊗ · · · ⊗ x(n)

αn ),

we see that g ◦ h is the identity mapping on E. On the other hand, since

h
(
g
(
u(1)
α1

(x(1)
α1

)⊗ · · · ⊗ u(n)
αn (x(n)

αn )
))

= h
(
w(α1,...,αn)(x

(1)
α1
⊗ · · · ⊗ x(n)

αn )
)

= h(α1,...,αn)(x
(1)
α1
⊗ · · · ⊗ x(n)

αn )

= u(1)
α1

(x(1)
α1

)⊗ · · · ⊗ u(n)
αn (x(n)

αn ),

h ◦ g is the identity mapping on E(1) ⊗ · · · ⊗ E(n).

The isomorphism given in the above theorem is said to be canonical.

Now, let (E
(1)
α1 )α1∈I1 , . . . , (E

(n)
αn )αn∈In be families of bornological A-modules.

By partially ordering Ij through the equality relation and by defining u
(j)
αjαj as

the identity mapping on E
(j)
αj (αj ∈ Ij), we obtain a direct system (E

(j)
αj , u

(j)
βjαj

)αj∈Ij
of bornological A-modules so that

lim
−→

E(j)
αj

=
⊕
αj∈Ij

E(j)
αj

as bornological A-modules (1 ≤ j ≤ n). In the present case, the partial order
relation on the product I = I1 × · · · × In is also the equality relation and so

lim
−→

(E(1)
α1
⊗ · · · ⊗ E(n)

αn ) =
⊕

(α1,...,αn)∈I

(E(1)
α1
⊗ · · · ⊗ E(n)

αn )

as bornological A-modules. Therefore, we obtain from the previous theorem
the following

Corollary 19. The bornological A-modules⊕
(α1,...,αn)∈I

(E(1)
α1
⊗ · · · ⊗ E(n)

αn ) and
(⊕
α1∈I1

E(1)
α1

)
⊗ · · · ⊗

(⊕
αn∈In

E(n)
αn

)
are canonically isomorphic.

As an application of this corollary, let us establish the following
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Proposition 20. Let K be a complete non-trivially valued commutative field
and consider K endowed with the bornology defined by its absolute value. Let
(Eα)α∈I be a family of bornological K-vector spaces and let F be a bornological
K-vector space. If F is finite-dimensional and separated, then the canonical
mapping

Ψ :
(∏
α∈I

Eα

)
⊗ F →

∏
α∈I

(Eα ⊗ F )

is a bornological K-vector space isomorphism.

Recall that F separated means that {0} is the only bounded vector sub-
space of F ([10], Chapter 1, §3, Definition 2).

Proof. If n = dimF then F is isomorphic as a bornological K-vector space
to the product vector space Kn endowed with the product bornology ([10],
Chapter 1, §3, Proposition 12). Thus, it is enough to prove the proposition in
the case F = Kn. For this purpose, let us observe that for every bornological
K-vector space E, the mapping

θ : x ∈ E 7→ x⊗ 1 ∈ E ⊗K

is a bornological K-vector space isomorphism. Indeed, this follows easily from
the fact that θ−1(x⊗ a) = ax for all a ∈ K and x ∈ E.

Now, consider the following finite sequence of canonical bornological K-
vector space isomorphisms:(∏

α∈I

Eα
)
⊗Kn →

((∏
α∈I

Eα
)
⊗K

)n → (∏
α∈I

Eα
)n →∏

α∈I

(Eα)n

→
∏
α∈I

(Eα ⊗K)n →
∏
α∈I

(Eα ⊗Kn),

where the first and the fifth isomorphisms come from Corollary 19, the second
and the fourth isomorphisms come from the observation in the previous para-
graph, and the third isomorphism is obvious. Since the composition of these
isomorphisms is exactly the mapping Ψ, the proof is complete.

For the remaining of this section we shall assume all the notations fixed in
the paragraph before Theorem 18.

Let (Fλ, vλµ)λ∈J be an inverse system of bornological A-modules. Consider
the product set K = I1×· · ·× In×J endowed with the following partial order
relation:

(α1, . . . , αn, λ) ≤ (β1, . . . , βn, µ)⇐⇒ α1 ≤ β1, . . . , αn ≤ βn, λ ≤ µ.
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For each (α1, . . . , αn, λ) ≤ (β1, . . . , βn, µ) in K, consider the bounded A-linear
mapping

Φ(α1,...,αn,λ)(β1,...,βn,µ) : Lb(E(1)
β1
, . . . , E

(n)
βn

;Fµ)→ Lb(E(1)
α1
, . . . , E(n)

αn ;Fλ)

given by

Φ(α1,...,αn,λ)(β1,...,βn,µ)(ϕ) = vλµ ◦ ϕ ◦ (u
(1)
β1α1
× · · · × u(n)

βnαn
),

where

(u
(1)
β1α1
× · · · × u(n)

βnαn
)(x(1)

α1
, . . . , x(n)

αn ) = (u
(1)
β1α1

(x(1)
α1

), . . . , u
(n)
βnαn

(x(n)
αn )).

E
(1)
α1 × · · · × E

(n)
αn

u
(1)
β1α1

×···×u(n)βnαn //

Φ(α1,...,αn,λ)(β1,...,βn,µ)
(ϕ)

��

E
(1)
β1
× · · · × E(n)

βn

ϕ

��
Fλ Fµvλµ
oo

It is easy to show that(
Lb(E(1)

α1
, . . . , E(n)

αn ;Fλ),Φ(α1,...,αn,λ)(β1,...,βn,µ)

)
(α1,...,αn,λ)∈K

is an inverse system of bornological A-modules. Consider the bornological
A-module

F = lim
←−

Fλ

and let vλ : F → Fλ be the canonical bounded A-linear mapping (λ ∈ J). For
each (α1, . . . , αn, λ) ∈ K, consider the bounded A-linear mapping

Ψ(α1,...,αn,λ) : Lb(E(1), . . . , E(n);F )→ Lb(E(1)
α1
, . . . , E(n)

αn ;Fλ)

given by
Ψ(α1,...,αn,λ)(ϕ) = vλ ◦ ϕ ◦ (u(1)

α1
× · · · × u(n)

αn ).

E
(1)
α1 × · · · × E

(n)
αn

u
(1)
α1
×···×u(n)αn //

Ψ(α1,...,αn,λ)
(ϕ)

��

E(1) × · · · × E(n)

ϕ

��
Fλ Fvλ
oo

Clearly,

Ψ(ϕ) =
(
Ψ(α1,...,αn,λ)(ϕ)

)
(α1,...,αn,λ)∈K ∈ lim

←−
Lb(E(1)

α1
, . . . , E(n)

αn ;Fλ).

In this way we obtain an A-linear mapping

Ψ : Lb(E(1), . . . , E(n);F )→ lim
←−
Lb(E(1)

α1
, . . . , E(n)

αn ;Fλ).
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Theorem 21. The mapping

Ψ : Lb(lim−→ E(1)
α1
, . . . , lim

−→
E(n)
αn ; lim

←−
Fλ)→ lim

←−
Lb(E(1)

α1
, . . . , E(n)

αn ;Fλ)

is a bornological A-module isomorphism.

The case n = 1 of the above theorem (linear case) was obtained in [10] in
the context of bornological vector spaces over a non-discrete complete valued
field. The linear and the multilinear cases were established in [8] in the con-
text of bornological modules over a commutative topological ring. The proof
presented in [8] of the linear case works as well in the present context and so
we shall omit it. Our goal here is to give a different proof of the multilinear
case by using tensor products.

Proof. By Theorems 13 and 18,

Ψ1 : ϕ ∈ Lb(E(1), . . . , E(n);F ) 7→ uϕ ∈ Lb(E(1) ⊗ · · · ⊗ E(n);F ),

Ψ2 : u ∈ Lb(E(1) ⊗ · · · ⊗ E(n);F ) 7→ u ◦ h ∈ Lb(E;F )

are bornological A-module isomorphisms. By the case n = 1 of the theorem,
the mapping

Ψ3 : Lb(E;F )→ lim
←−
Lb(E(1)

α1
⊗ · · · ⊗ E(n)

αn ;Fλ)

given by Ψ3(w) = (vλ ◦ w ◦ w(α1,...,αn))(α1,...,αn,λ)∈K is a bornological A-module
isomorphism. In view of Theorem 13, the mapping

Ψ4 : lim
←−
Lb(E(1)

α1
, . . . , E(n)

αn ;Fλ)→ lim
←−
Lb(E(1)

α1
⊗ · · · ⊗ E(n)

αn ;Fλ)

given by Ψ4

(
(f(α1,...,αn,λ))(α1,...,αn,λ)∈K

)
=
(
uf(α1,...,αn,λ)

)
(α1,...,αn,λ)∈K is also a

bornological A-module isomorphism. Now, fix ϕ ∈ Lb(E(1), . . . , E(n);F ). By
definition,

Ψ3(Ψ2(Ψ1(ϕ))) = (vλ ◦ uϕ ◦ h ◦ w(α1,...,αn))(α1,...,αn,λ)∈K .

Since

(vλ ◦ uϕ ◦ h ◦ w(α1,...,αn))(x
(1)
α1
⊗ · · · ⊗ x(n)

αn )

= (vλ ◦ ϕ ◦ (u(1)
α1
× · · · × u(n)

αn ))(x(1)
α1
, . . . , x(n)

αn ),

we see that Ψ3(Ψ2(Ψ1(ϕ))) = Ψ4(Ψ(ϕ)), and so Ψ = Ψ−1
4 ◦Ψ3 ◦Ψ2 ◦Ψ1.
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The isomorphism given in the above theorem is said to be canonical.

Now, let (E
(1)
α1 )α1∈I1 , . . . , (E

(n)
αn )αn∈In , (Fλ)λ∈J be families of bornological A-

modules. By partially ordering Ij through the equality relation and by defining

u
(j)
αjαj as the identity mapping on E

(j)
αj (αj ∈ Ij), we obtain a direct system

(E
(j)
αj , u

(j)
βjαj

)αj∈Ij of bornological A-modules so that

lim
−→

E(j)
αj

=
⊕
αj∈Ij

E(j)
αj

as bornological A-modules (1 ≤ j ≤ n). Analogously, by partially ordering J
through the equality relation and by defining vλλ as the identity mapping on Fλ
(λ ∈ J), we obtain an inverse system (Fλ, vλµ)λ∈J of bornological A-modules
so that

lim
←−

Fλ =
∏
λ∈J

Fλ

as bornological A-modules. In the present case, the partial order relation on
the product K = I1 × · · · × In × J is also the equality relation and so

lim
←−
Lb(E(1)

α1
, . . . , E(n)

αn ;Fλ) =
∏

(α1,...,αn,λ)∈K

Lb(E(1)
α1
, . . . , E(n)

αn ;Fλ)

as bornological A-modules. Therefore, we obtain from the previous theorem
the following

Corollary 22. The bornological A-modules

Lb
(⊕
α1∈I1

E(1)
α1
, . . . ,

⊕
αn∈In

E(n)
αn ;
∏
λ∈J

Fλ

)
and

∏
(α1,...,αn,λ)∈K

Lb(E(1)
α1
, . . . , E(n)

αn ;Fλ)

are canonically isomorphic.

4 Bounded homogeneous polynomials on bornolog-

ical modules

Throughout this section m ∈ N∗ is fixed and A denotes a bornological
commutative ring with identity element e 6= 0 such that m!e is invertible in A.

Let E and F be A-modules. Recall that a mapping p : E → F is said
to be an m-homogeneous polynomial if there is an A-multilinear mapping
f : Em → F such that

p(x) = f(x, . . . , x) for all x ∈ E.
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Note that in this case the mapping g : Em → F given by

g(x1, . . . , xm) = (m!e)−1
∑
π∈Sm

f(xπ(1), . . . , xπ(m))

(where Sm denotes the symmetric group of {1, . . . ,m}) is a symmetric A-
multilinear mapping which also satisfies

p(x) = g(x, . . . , x) for all x ∈ E.

Thus, we can always get a symmetric multilinear mapping in the definition
of a homogeneous polynomial. We denote by Pa(mE;F ) the A-module of all
m-homogeneous polynomials from E into F . Moreover, we define

E⊗m = E ⊗ · · · ⊗ E︸ ︷︷ ︸
m times

and x⊗m = x⊗ · · · ⊗ x︸ ︷︷ ︸
m times

(x ∈ E).

Finally, γm(E) denotes the submodule of E⊗m generated by the set {x⊗m;x ∈
E} and

θ : x ∈ E 7→ x⊗m ∈ γm(E)

is called the canonical mapping.

The following result will be very useful for our purposes:

Lemma 23. Let G,G′ be two commutative groups and f a symmetric Z-
multilinear mapping from Gm into G′. Then, for every (x1, . . . , xm) ∈ Gm,

m!f(x1, . . . , xm) =
∑

ε1,...,εm∈{0,1}

(−1)m−(ε1+···+εm)f̂(ε1x1 + · · ·+ εmxm),

where f̂(x) = f(x, . . . , x) (x ∈ G).

Proof. Argue as in [15] or [6].

Given an A-module E, we define δ : Em → E⊗m by

δ(x1, . . . , xm) = (m!e)−1
∑
π∈Sm

xπ(1) ⊗ · · · ⊗ xπ(m).

Note that δ is a symmetric A-multilinear mapping and δ(x, . . . , x) = x⊗m for
all x ∈ E. Hence, by Lemma 23,

δ(x1, . . . , xm) = (m!e)−1
∑

ε1,...,εm∈{0,1}

(−1)m−(ε1+···+εm)(ε1x1 + · · ·+ εmxm)⊗m,

which proves that δ actually maps Em into γm(E). From now on, we consider
δ as a mapping from Em into γm(E), which is said to be canonical. Note
that θ(x) = δ(x, . . . , x) for all x ∈ E, where θ : E → γm(E) is the canonical
mapping. This shows that θ is an m-homogeneous polynomial.
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Lemma 24. Let E and F be A-modules. For each m-homogeneous polynomial
p from E into F there exists a unique A-linear mapping from γm(E) into F ,
which we denote by vp, such that

p(x) = vp(x
⊗m) for all x ∈ E.

Moreover, the mapping

p ∈ Pa(mE;F ) 7→ vp ∈ La(γm(E);F )

is an A-module isomorphism.

E
p //

θ ##

F

γm(E)

vp

<<

Proof. Given p ∈ Pa(mE;F ) there exists by definition an A-multilinear map-
ping fp : Em → F such that p(x) = fp(x, . . . , x) for all x ∈ E. If vp is the
restriction of ufp to γm(E), then

p(x) = fp(x, . . . , x) = ufp(x⊗ · · · ⊗ x) = vp(x
⊗m) for all x ∈ E.

The uniqueness of vp follows immediately from the fact that γm(E) is generated
by the elements of the form x⊗m. Clearly the mapping p→ vp is A-linear. So,
it remains to show that it is onto. For this purpose, fix v ∈ La(γm(E);F ) and
let δ : Em → γm(E) be the canonical mapping. Then f = v ◦ δ : Em → F is
an A-multilinear mapping and so

p(x) = f(x, . . . , x) (x ∈ E)

defines an m-homogeneous polynomial from E into F . Since

p(x) = f(x, . . . , x) = v(δ(x, . . . , x)) = v(x⊗m) for all x ∈ E,

v = vp and the proof is complete.

If E and F are bornological A-modules, the set

Pb(mE;F ) = Pa(mE;F ) ∩B(E;F )

of all bounded m-homogeneous polynomials from E into F is a submodule of
both Pa(mE;F ) and B(E;F ). The bornology of equiboundedness on B(E;F )
induces an A-module bornology on Pb(mE;F ). Unless otherwise specified,
we consider Pb(mE;F ) endowed with this bornology. Moreover, we consider
γm(E) endowed with the bornology induced by the tensor product bornology
on E⊗m, and so the canonical mappings

θ : E → γm(E) and δ : Em → γm(E)

are bounded.
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Theorem 25. Let E and F be bornological A-modules. If p : E → F is an
m-homogeneous polynomial, then p is bounded if and only if vp is bounded.
Moreover,

ψ : p ∈ Pb(mE;F ) 7→ vp ∈ Lb(γm(E);F )

is a bornological A-module isomorphism.

Proof. Let X be an equibounded subset of Pb(mE;F ). For each p ∈ X , let
fp : Em → F be a symmetric A-multilinear mapping such that

p(x) = fp(x, . . . , x) for all x ∈ E.

By Lemma 23,

fp(x1, . . . , xm) = (m!e)−1
∑

ε1,...,εm∈{0,1}

(−1)m−(ε1+···+εm)p(ε1x1 + · · ·+ εmxm)

for every (x1, . . . , xm) ∈ Em. This formula shows that {fp; p ∈ X} is an
equibounded subset of Lb(E, · · · , E;F ), and therefore {ufp ; p ∈ X} is an equi-
bounded subset of Lb(E⊗m;F ) by Theorem 13. Since vp is the restriction of
ufp to γm(E), we conclude that

ψ(X ) = {vp; p ∈ X}

is an equibounded subset of Lb(γm(E);F ). This proves that ψ really maps
Pb(mE;F ) into Lb(γm(E);F ) and is a bounded mapping. On the other hand,
if Y is an equibounded subset of Lb(γm(E);F ), then

ψ−1(Y) = Y ◦ θ

is an equibounded subset of Pb(mE;F ) because θ is bounded. Thus, ψ is onto
and ψ−1 is also a bounded mapping.

If E,F are two bornological A-modules and u : E → F is a bounded
A-linear mapping, we define

u⊗m = u⊗ · · · ⊗ u︸ ︷︷ ︸
m times

,

which is a bounded A-linear mapping from E⊗m into F⊗m. Since

u⊗m(x⊗m) =
(
u(x)

)⊗m
for all x ∈ E,

it follows that u⊗m(γm(E)) ⊂ γm(F ). We denote by

γm(u) : γm(E)→ γm(F )
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the bounded A-linear mapping obtained by restricting u⊗m to γm(E).

Let (Eα, uβα)α∈I be a direct system of bornological A-modules. Consider
the bornological A-module

E = lim
−→

Eα

and let uα : Eα → E be the canonical bounded A-linear mapping (α ∈ I). For
each α ≤ β in I, we define

wβα = γm(uβα) : γm(Eα)→ γm(Eβ),

which is a bounded A-linear mapping. It is easy to show that(
γm(Eα), wβα

)
α∈I

is a direct system of bornological A-modules. For each α ∈ I, let

wα : γm(Eα)→ lim
−→

γm(Eα)

be the canonical bounded A-linear mapping. Now, for each α ∈ I, we define

hα = γm(uα) : γm(Eα)→ γm(E),

which is a bounded A-linear mapping. Since hα = hβ ◦ wβα whenever α ≤ β
in I, there exists a unique bounded A-linear mapping

h : lim
−→

γm(Eα)→ γm(E)

such that hα = h ◦wα for every α ∈ I. The mapping h is said to be canonical.
We summarize this discussion in the following

Proposition 26. The canonical mapping

h : lim
−→

γm(Eα)→ γm(lim
−→

Eα)

is a bounded A-linear mapping.

Since a direct sum is a special case of direct limit, we obtain the following

Corollary 27. For every family (Eα)α∈I of bornological A-modules, the canon-
ical mapping

h :
⊕
α∈I

γm(Eα)→ γm
(⊕
α∈I

Eα

)
,

which satisfies

h
(
(x⊗mα )α∈I

)
=
∑
α∈I

(
λα(xα)

)⊗m
(where λα : Eα →

⊕
β∈I Eβ is the canonical injection), is a bounded A-linear

mapping.
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The mapping h in the above corollary (and, in particular, the mapping h
in Proposition 26) is not necessarily a bornological A-module isomorphism for
algebraic reasons. For example, let K be a commutative field of characteristic
zero and consider E1 = E2 = F = K regarded as K-vector spaces. Since
dim γ2(E1) = dim γ2(E2) = 1 and dim γ2(E1⊕E2) = dimLa(γ2(E1⊕E2);F ) =
dimPa(2(E1 ⊕ E2);F ) = 3, the K-vector spaces

γ2(E1 ⊕ E2) and γ2(E1)⊕ γ2(E2)

are not isomorphic.

The result corresponding to Corollary 22 (and, in particular, to Theo-
rem 21) is also not necessarily true for modules of homogeneous polynomials.
For example, let K, E1, E2 and F be as in the previous paragraphy. Since
dimPa(2E1;F ) = dimPa(2E2;F ) = 1, the K-vector spaces

Pa(2(E1 ⊕ E2);F ) and Pa(2E1;F )× Pa(2E2;F )

are not isomorphic.

References

[1] M. Akkar, Espaces vectoriels bornologiques K-convexes, Indag. Math. 73
(1970), 82–95.

[2] N. C. Bernardes Jr. and D. P. Pombo Jr., Bornological topological modules,
Math. Japonica 40 (1994), 455–459.

[3] N. C. Bernardes Jr. and D. P. Pombo Jr., Polynomially bornological topo-
logical vector spaces, Acta Sci. Math. (Szeged) 68 (2002), 279–290.

[4] N. C. Bernardes Jr. and D. P. Pombo Jr., Mackey convergence and
bornological topological modules, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat.
Natur. Rend. Lincei (9) Mat. Appl. 21 (2010), 299-304.

[5] N. C. Bernardes Jr. and D. P. Pombo Jr., On the internal duality between
topological modules and bornological modules, Boll. Unione Mat. Italiana
(9) V (2012), 113–119.

[6] J. Bochnak and J. Siciak, Polynomials and multilinear mappings in topo-
logical vector spaces, Studia Math. 39 (1971), 59–76.

[7] N. Bourbaki, Algebra I, Chapters 1–3, Springer-Verlag (1989).

[8] M. F. Farias and D. P. Pombo Jr., A universal property of bornological
modules and topological modules of multilinear mappings, Indian J. Math.
53 (2011), no. 1, 125–161.



On tensor products of bornological modules 1421

[9] H. Hogbe-Nlend, Bornologies and Functional Analysis, Notas de
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(1989).

Received: June 1, 2014


