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Abstract

Let £ > 1 and h > 1 arbitrary but fixed positive integers. Let
us consider the numbers such that in their prime factorization there
are k primes with exponent h and the remainder of the primes have
exponente greater than h. Let Py ;(x) be the number of these numbers
not exceeding x. We prove the formula

ha'/?(log log z)F~1

Pn(z) ~ Apgr i —1)ogx

where Ap11 is a constant defined in this article.

Let K > 1, h > 1 and t > 1 arbitrary but fixed positive integers.
Let us consider the numbers such that in their prime factorization there
are k primes with exponent A and the ¢ primes remaining have expo-
nent greater than h. Let Ay j,+(x) be the number of these numbers not
exceeding x. We prove the formula

ha'/"(loglog z)F~!
(k—1)!logz

Apni(x) ~ Ap st

where A; 511 is a constant defined in this article.

Let E¢p(x) be the number of h-ful numbers with exactly t distinct
prime factors in their prime factorization. We prove the asymptotic
formula
ha'/"(loglog z)t 1

(t —1)!ogx

Et,h(l“) ~
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In particular if h = 1 then we obtain the following well-known Landau’s

Theorem (log ] -
x(loglogx) ™
E ~

() (t—1D'logz ’

where E j(x) is the number of numbers not exceeding = with exactly ¢
distinct prime factors in their prime factorization.

Mathematics Subject Classification: 11A99, 11B99
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1 Introduction, Notation and Lemmas

Let n be a number such that its prime factorization if of the form
n=pypst - pit,

where a; > h+1(i=1,2,...,t), (h > 1) is fixed and py,pa,...,p; (t > 1) are
the different primes in the factorization. Note that the a; (i = 1,2,...,t) and
t are variable.

These number are well known, they are called (h + 1)-ful numbers.

There exist various studies on the distribution of these numbers using not
elementary methods (see [1]).

Let C, be the sequence of (h + 1)-ful numbers and let Cj1(x) be the
number of (h + 1)-ful numbers that do not exceed z. It is well known (see [2]
for an elementary proof) that

Cn ~ Ch+1nh+17 (1>

Chyr(x) ~ bh+1l’h;“, (2)

where by, and ¢,y are positive constants. Note that C,, depends of h + 1.
For sake of simplicity we use this notation.

In this article C' denotes a (h + 1)-ful number.

From (1) we can obtain without difficulty the following lemma.

Lemma 1.1 The following series are convergent. That is, we have

<1 >, log C,,
g A 2o = B

Let us consider the sequence P, of the numbers whose prime factorization
is of the form

ai .a at . h h
n=py'pe’ D Pie1 Piaks
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where a; > h+1 (i = 1,2,...,t) are variable, (h > 1) is fixed, (¢ > 1) is
variable, (k > 1) is fixed and py,po,...,prr are the different primes in the
factorization. Note that the sequence P, depends of k and h. For sake of
simplicity we use this notation.

We shall denote these numbers in the compact form Cp}---pl where C
denotes the (h+ 1)-ful number p{'p3? ... pf* and p} - - - p} denotes pl ;- pf.,.
The number of these numbers not exceeding = we shall denote Py ()

In this article we prove the asymptotic formula

ha'/"(loglog x)*~!

Pk,h(x) ~ Apgr (k — 1)! log 7

Let us consider the sequence E, of the (h + 1)-ful numbers with ¢ different
prime factors, where ¢t > 1 is a fixed positive integer. Note that the sequence
E,, depends of t and h + 1. For sake of simplicity we use this notation.

We shall denote these numbers in the compact form E.

The number of these numbers not exceeding = we shall denote Ejj.1(z).

Let us consider the sequence A,, of the numbers whose prime factorization
is of the form

pyps’ - 'p?tpgﬂ o 'p?—i-k:’
where a; > h+1 (i =1,2,...,t) are variable, (h > 1) is fixed, (¢ > 1) is fixed,
(k > 1) is fixed and py, po, . . ., prox are the different primes in the factorization.
Note that the sequence A,, depend of k, h and t. For sake of simplicity we use
this notation.

We shall denote these numbers in the compact form Ep} ---p} where E

ai a2

denotes the (h+ 1)-ful numbers with ¢ different prime factors p{*p3* - - - pf* and
P+ pi denotes p ;- - ppyy.
The number of these numbers not exceeding = we shall denote Ay p,+(z).
Since in this case the F numbers are (h+ 1)-ful numbers, Lemma 1.1 imply
that the following series are convergent, that is

=1 >, log E,
z:l l/h = At,h+1 z:l 1/h = Bt,h+1' (3>

In this article we prove the asymptotic formula

ha'/"(log log x)*!
(k— 1)!ogx

Ak,h,t(x) ~ At,h—i—l
On the other hand (2) imply that from a certain value of x we have

Eppir(2) < (14 bprz™ (e > 0). (4)

Let m(x) be the number of primes not exceeding x. We shall need the prime
number Theorem which we shall use as a lemma.
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Lemma 1.2 The following formula holds
(@) = o+ @

where |f(x)] < M if £ > 2 and f(z) — 0.

X

log z”’

Let us consider the numbers whose prime factorization is of the form

Pip2 - .. Pk,

where k£ > 2 is fixed and py, po, . . ., pr are different primes.
Let Bi(z) be the number of these numbers not exceeding x. We have the
following theorem (Landau’s Theorem) which we shall use as a lemma (see

[1])-
Lemma 1.3 The following asymptotic formula holds

z(loglog z)*! z(loglog z)F!
B p—
() (k —1)!log x /@) (k—1)!logax’

where |f(z)] < M if x >3 and f(x) — 0. Note that f(x) and M depend of k.

We shall also need the following two lemmas whose proofs are simple.
Lemma 1.4 The nonnegative function (x> e) (k> 2)
log log x ot
fla) = LOBIBT)
og x

is bounded. That is, there exist H > 0 such that f(x) < H. Note that f(x)
and H depend of k.

Lemma 1.5 The function (¢ > 1)

B log log (%)

log log x
is increasing from a certain value of x. Note that f(z) depends of c.
In this article we also prove the asymptotic formula (see (4))

ha'/"(loglog x)t!
(t —1)!ogz

Euh(x) ~

In particular if h = 1 then we obtain the following well-known Landau’s The-
orem
z(loglog x)~!

(t—1)ogax ’
where E; () is the number of numbers not exceeding = with exactly ¢ distinct
prime factors in their prime factorization.

Et,l (x) ~
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2 Main Lemmas

The method of proof in the following Lemma 2.1 is similar to the method used
in [4]. For sake of completeness we give the proof. Note that the meaning of
E is different here.

Lemma 2.1 Let € > 0. There exists x. such that if x > x. then we have
the following inequality
h.l’l/h
loga

Ay pi(x) < (Appsr +€) (5)

Proof. We have

Therefore (lemma 1.2

)
Al,h,t(l‘) = Z 1 — Fl(l') = Z 1 — Fl(l')

B pisE Egﬁpﬁ%
Eh
1 1
Th Th 1
- 2o (B)-ro- i
B< X g E<% £ og (2—%>
o\ ah 1
+ =] = —~ — Fi()
<z \E7") E7]og %)
h
hat 1 1
= T T+ Gi(z) — Fi(z) (6)
logzr ;=% Ex ] _ logEh
—ot logx%

1 1
E log ET:
T h o
B< 1— =827
logxh
we obtain the sequence
1 1
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Note that if F; < E,, then

1
1 1 1 1 1 log2+log B} 1 1 logE;
T T S—T——T =71 75 =17 T
Ef | _ logEl EF | _ logE] EF log 2 B hlog 2 EF
log QEYL% log QEZ.%
(8)
and if F; is fixed then
. 1 1 1
lim — I = _1- (9)
Kty 50 log El Er
i ] — ——i i
log 2Enﬁ

T T -+ > T (10)
i= log B i=1 Br log B/ i=k+1 7 log EJt
1 1 — ll g 1 T v ]- Zl
log 2E,} log 2E} log 2E}
where (see (8))
nooq 1 nooq 1 & logE
Z 1 1 < Z 1 + hlog 2 Z 1 - (11>
i=kt1 B | losBl =1 B 082 i—kt1 E}
logQEnﬁ
There exists k such that (e > 0) (see (3))
Fo1
Appi1 — €< Z — < A pa,s (12)
i=1 B
1 >, log F;
%8 o (13)
hlog2 .55, pr
Ifn>k+1,(11), (12) and (13) give
"1 1
i=k+1 Bl | _ log B}
logQEnﬁ
On the other hand (see(9))
k k
. 1 1 1
lim »  — =) -
n oozzl Ezh 1 logEih i=1 Ezh
1
log2EnF
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Consequently there exists n’ > k + 1 such that for all n > n’ we have
k k k
1 1 1 1
d—r—€<) —x - <) —tfe (15)

i=1 B i=1 B} | _ logB] i=1 B
1
log2Enﬁ

(12) and (15) give
| 1
Apppr —2e < Z T — < App te
i=1

T (16)
i1 logEih

1
log 2E,

Therefore for all n > n’ we have (see (10), (14) and (16))

L | 1
At,h-l—l — 3¢ S Z T T S At7h+1 + 3€. (17)
i=1 [F log B}
1 1 — 71
log 2E.}
Consequently

I — = At (18)
i=1 F 1 log E}
v — T
logQEnﬁ
Now, we have
. LA 1 i 1
Jim | > =Y 1 T
i=1 El-h 1 log B/ i=1 El-h 1 log E*
L — 1
log 2E} logQEy{‘_*_1
1
: =~ 1 1 1 1 1 log2E}
- nhirolo Z 1 T Z 1 1 1 ] 2“
i—1 E’ih 1 log E} i=1 E’Zﬁ 1 log B Er?Jr og
I I
log 2, log2E]" |
=0 (19)
and .
1 log2FE
li 0og n+1 = 0. (20)
n—00 my log 2
n+1
(19) and (20) give
1 1 "1 1
nlLHOlO > i D — | =0 (21)
=1 Bl { log B/ i=1 B 4 log B
T ¢ I
log 2E log 2E£‘_,'_1
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Therefore (see (18))

) "1 1
h_}m - T = At,h+17 (22)
" oe =1 Ezh 1 10g Eih
log 2E,}
i LA | 1
lim Z - T = At,h+1' (23)
Sy 500 log B!
i ] o
logQEnF_’_1
The function of = (F; fixed, E; < E,,)
1 1
T (24)
Eih 1 — log B
logzh

is decreasing in the interval [QhEn, 2hEn+1). Therefore if x € [QhEn, 2hEn+1)
we have

"1 1 "1 1 "1 1
I — <> — <Y — I (25)
i=1 B} | _ g B i=1 B} | _lsB" =1 B} _ logBE}
logQEiLl log log 2E}
Consequently (22), (23) and (25) give
1 1
lim ——— = Ainpr (26)
z OOEgih Enr 1 — logE;t
2 L
logz™®
There exists xy such that (lemma 1.2)
Th Th x
<€ 1 > xg, thatisif E < —,
’f (E%) P P By
Th Th x x
— || <M 1 2< —< that is 1 — < E < —.
f(E%) < if S oI Zo, at is if 7 <o

Therefore (see(6))

W\ zh 1
Gi(@)l = | X f (E—) Ty
E<:h log 2—%>

x% x% 1
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zr 1 1
S € 1 1 +M33'0 Z T
ES% En log (2—%) %<E<Qih log (2_’%)
1
ehxn 1 1 1
= 1 1 T + M - (27)
08T i By luly <5< log (21
0 logxh 0 Eh
Now (see(4))
1 1 Mx Mx 1
Mzy ) ——~ < Mo Y o2 1 ;] e (T) < ] ;(1+e)bh+1xh+1
L-<B<Z log <%) B<z 108 08 0g
(28)
and (see (26))
eha® 1 1 ehx® 1 1 ehx®
log x IO T = log x IO T = lo x(At’hH—i_e)
g Eg% Ehl_llogEg g E<z Ewq _ logEn g
ogw

Consequently (27), (28) and (29) give

Ci(z) = o <1§g_x) . (30)

Equations (6), (26) and (30) give

hZL‘l/h l‘l/h
A () = A log +o0 <1ng> — Fyi(x)
Now, Fi(z) > 0, therefore (31) gives

h.l’l/h :L‘l/h
Ay pi(z) < Apppr——+o <

hZL‘l/h
< (A .
log x) < (A +e) log x
That is, equation (5). The lemma is proved.

The method of proof in the following Lemma 2.2 is similar to the method used
in [5]. For sake of completeness we give the proof. Note that the meaning of
E is different here.

Lemma 2.2 Let € > 0. There exists x. such that if x > x. then we have
the following inequality

hat/"(loglog z)F—1
Apnt(x) < (Apper +€) (k(— f’)' ligi: (k> 2).

(32)
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Proof. Let P, be the product of the first k£ primes, that is, P, = 2.3 =6, P; =
2.3.5 = 30, etc. We have

Akﬁ,t(l’) = Z Z 1-— Fk(l‘) = Z Z 1-— Fk(ZL’)

=\ L — 1) ﬁ)
B<zn (k —1)!log (E%
18\ k-1
loglog(%)
BT
k_l 0g 10, Q?L
haw (1og logx%) 1 oglog ™
(k—1)!logz Fe E% 1 logEj
k logxh
+ Gi(z) — Fi(2). (33)
Substituting z = P'E,, into
1 1
L 1
B< 2 En 1— 105152
k logxh
we obtain the sequence

(34)
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Note that if F; < E,, then

1
1 1 <L 1 _ 1 log P, + log £ :LjL 1 logE
EF 1 ogEF 1_ log B E% log B, E% hlog Py Eh
log Py E'n% log Py EZ%
(35)
and if E; is fixed then
1 1 1
m — —=—7 (36)
Ly 1 log B, T E}
log PLE}
We have (see (34))
z”: 1 1 B Z 1 1 N z”: 1 1 (37)
i=1 Eﬁ 1 10gE: i=1 Ei% 1 logE}lb1 i=j+1 Eﬁ 1 logE}lb1 ’
log P, B} log P, E} log P, E
where (see (35))
Z il 1 < Z 11 1 logE (38)
i=j+1 B} 4 logE! =41 B hlog Py, =, Eh
log P, EJr
There exists j such that (e > 0) (see (3))
J
At,h-l—l —€e< Z Eﬁ (39>
i=1 I,
1 >, log F; - (40)
; €
hlog Py iZj11 EP
Ifn>j+1,(38),(39) and (40) give
"1 1
0< Y ————— <2e (41)
i=j+1 B} | _ log Bl
log PLE
On the other hand (see (36))
| 1 71
lim > — — =2 T
TS B 1 _ g5 i-1 B
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Consequently there exists n’ > j 4+ 1 such that for all n > n’ we have
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i1 71 1 i1
YT €<y — — <) —7 te (42)
i=1 B} i=1 Bl 1— log B} i=1 [}
1
log P, E}
(39) and (42) give
i1 1
Appp1 —2e < Z T < A e (43)
i=1 Fh logE
z 1— ——tr
log P, E}
Therefore for all n > n’ we have (see (37), (41) and (43))
1 1
Appp1 —3e < Z — 1 < A p1 + 3e (44)
i= 1Eh 1 — logE'h
longEi‘
Consequently
| 1
lim > 1 — = Appir (45)
TS B | _ losBf
1
longEnF
Now, we have
, G| 1 wll 1
lim > —T 1 > T T
T iE B 1 _ logEl i—1 BF log B
1 1
log Py E log P B,
1
. "1 1 "1 1 1 log P.E}
= ll_}Hl Z -1 1 Z 1 1 - 1 log P, =
TR liEEBE g Bl S B _legBl Er, 08Tk
1
log P, E,} longEnz_1
=0 (46)
and
1 log PLE
lim —— 2kt _ (47)
n—o0 Enﬁ+1 1Og Pk:
(46) and (47) give
"1 1 "1 1
lim | Y — -y — = 0. (48)
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Therefore (see (45))

o1 1
lim » —————— = Apt, (49)
n—oo i=1 Fh log EI
i 1 — —i
log P, E,l
o1 1
lim > — —— = Aypt (50)
TS B | _ _logBl
1
longEnﬁ_,_1
The function of z (F; fixed, E; < E,)
1 1
T T (51)
EBEhr log B
i ] — i
logzh

is decreasing in the interval [P,fEn, P,ffEnH). Therefore if x € [P,ffEn, P,fEnH)
we have

"1 1 LA | 1 "1 1
> T — <> — T<> —r T (52)
=1 B _ _log EN =L B} | _ log EN i-1 B log B
1 1
log P,EJ, | logz log P, EX
Consequently (49), (50) and (52) give
. 1 1
Jim Yo o = A (53)
B< Er 1 — logEit
k logz®
The function of = (E fixed)
1 k—1
log log (%)
0<|— B/
log log xn

is increasing from a certain value of z (see lemma 1.5) and

) k—1
=1.

log log (x

log log

lim

T— 00

SHS|
= S| =

Let us consider the function

% k—1
1 1 , log log (2—%>

log log Tw
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There exists xg such that

1
Appir — €< Y — < Appyr t e
E<I—% Eh
<3
Now
1 1 1

i Yoo ¥

1 1
E<£%Eh]_—logEh E<£%E
=7 >
k

1 1
Appyr —26< > — T < Appyr +2¢
pezq By logER
ph 1
k logz®h

and if £ < % we have
k

0<1-— T < €
log log %
(56) and (57) give
I; k-1
log log (’3 : )
1 1 T
0< T il I —EZ < (Apptr + 2¢)e.
pety B7q _ loaBR log log x#%
Py logxh

1 k—1
1 1 loglog(x'i)
0 < Z 1 ol I —EZ
2 p<z Ex 1_110gE£ log log 2%
ogx

IA
(]
=
IN
Ly

1
" h
x—%<E§L,Eh]_—IOgE
P ph
k k logxh

(58) and (59) give

1 k—1
1 1 loglog(x'i)
lim — —|1- £ =0
IHOOESﬁ Ehl logE{z loglogxh

(54)

(55)

(56)

(57)

(59)

(60)
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(53) and (60) give

1 loglogxzh
hm E T 1 = At7h+1. (61)
T p e B ] — logET
S5T T
Py logzh

There exists xy such that (lemma 1.3)

ot
()

<M if P <X < that is 1 L < <2
1 T, 18 if E< .
- k_E—i 0 ap Pk

<e if - > x9, thatisif Egﬁ,
0

S

=

Therefore
< % k—1
1 1 | loglog <$—1>
€T h €Th =
B (k= 1)!1og (24
% k—1
< / (x%) - (10g10g (_%
- e Ew )| E% (1. 1\ o
ESPI? (k — 1)!log <E%)
( % k—1 % k—1
1 loglog(xi) (loglog(‘”i)
< € x’; En T +M.T0 Z d T
ES% En (k; — 1)l log (2—%) %<E<PL]'? (k — 1)1 log (2’;)
1 k—1
loglog<%)
ER
k-1 og lo xL
chaw (1og logm%) 1 loglog T
0 logzh
( % k—1
log log x—l)
ET . (62)
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MzoH MzxoH 1
S oot (@) = g+ )

and (see (61))

kil og log x
ehx® (log logx%) 1 loglog
(k—1)!logz ES%E 1 1ogE1%
0 logzh
1 k—1
loglog(%)
ER
1 1\ k-1 loglogx%
ehzn (1og logxh) 1
<
< (k—1)!ogx Eg:ih E* 1_ log EF
TP logx%
k—1
cha® (1og log x%)
(At,h—l—l + 6). (64)

<
- (k—1)!logz
Consequently (62), (63) and (64) give

Gla) = o (x%(log log x)k_l) ' (65)

log x
Equations (33), (61) and (65) give
1/h (1001 k—1 /h(1oo] k—1
hz'/"(loglog x) o[ (log log x) _ Fiw).
(k— 1)!ogx log x
Now, Fy(x) > 0, therefore (66) gives
ha'/"(loglog x)*~! '/ (log log z)*!
(k— 1)!logx log x

ha'/"(loglog x)*~!
(k—1)!logx

Akz,h,t(x) = At,h—i—l

< (App1+e)

That is, equation (32). The lemma is proved.

Lemma 2.1 and Lemma 2.2 can be united in the following lemma.

Lemma 2.3 Let € > 0. There exists x. such that if x > x. then we have
the following inequality
ha'/"(loglog x)*~!

(k—1)!loga

Akz,h,t(x) S (At,h—H + 6) (k’ Z 1). (67)
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Lemma 2.4 Let € > 0. There exists x. such that if x > x. then we have
the following inequality
ha'/"(log log x)*~!
(k— 1)!ogz

Pin(x) < (Apt1 +€) (k=1). (68)

Proof. The proof is the same as Lemma 2.1 and Lemma 2.2. In the proofs
of Lemma 2.1 and Lemma 2.2 we replace Ay p+(z) by Pyn(z), E by C, E; by
Ci, B, by Cr, Apper by Angr, Engr by Cryy and By (x) by Chpa(z). The

lemma is proved.

3 Main Results

Theorem 3.1 We have the following asymptotic formula

hat/"(loglog x)*!
(k—1)!logx

Ak,h,t(x) ~ At,h+1 (k 2 1) (69)

Proof. In the sums (see (6) and (33))

Z_ _h h
B3 ool <%

are generated undesirable numbers. The number of these undesirable numbers
not exceeding x is Fj(x) (k > 1). Let us consider the number (we take h = 1)

pip2 Pkl

This number is undesirable when some primes p; appear in the prime factor-
ization of the 2 — ful number with ¢ different prime factors E. For example
the number

DAD2DsPADEDEPIPIPEPADE D), (70)

where k = 4 and ¢t = 8 is undesirable. This number is

P1P2DEPEPSPEPEP PP (71)

This number can be generated in various ways. For example equation (70) is
one way, we obtain this way if withdraw one prime p3 and one prime p, of
(71). We obtain other way if we withdraw one prime pg and one prime py of
(71). This new way is

D1P2PSP10PE PRSP Papie- (72)
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Clearly we can withdraw of (71) two primes with exponent greater than 2. In
contrary case we do not obtain a 2 — ful number. The number of possible
ways is then bounded by (S) Therefore if kK <t we have

Filr) < (f)Akl,h,t(m(;) A apala) e+ (k ' 1)A1,h,t(x>+<,i> Bypa ().
In particular )
Fi(z) < (i)zQJH1($). (74)

If £ >t we have

Filr) < (i)Ak_l,h,xx) + @ A apal@) -+ @ A aala).(75)

Equations (73), (74), (75), (67) and (4) give

lim @)
z—00 z(loglogx)k—1 )
logx

That is
/" (log log x)*~!

log

pu@:o< ) (k> 1). (76)

Finally equations (31), (66) and (76) give equation (69). The theorem is
proved.

Theorem 3.2 We have the following asymptotic formula

ha'/"(loglog x)*~!

(k— 1)!logx (77)

Prn(z) ~ Apa

Proof. We have N
Z A1 = Apgr.
=1

Let € > 0. There exists n such that

i €
Z A1 > Appr — 5

t=1

Now, we have (see (69))

Py p(x) > zn:Ak,h,t(JU)

t=1
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n hal/"(log log z:)F—1 2" (log log )1
_ §:<AUH1 (loglog z) +0< (loglog z) ))

= (k—1)!logz log =
_ E": 4 ha'/"(log log x)*~! N /" (loglog x)*~!
- \&= bt (k—1)!logz ¢ log
- (A ) hat/"(log log x)*! /" (loglog x)*!
- G (k—1)!logx log =
/" (log log x)*!

Equations (68) and (78) give (77), since € is arbitrarily small. The theorem is
proved.

Let us consider the A-ful numbers with exactly ¢ distinct primes in their prime

factorization. If h = 1 we obtain the numbers with exactly ¢ distinct primes
in their prime factorization. The number of these numbers not exceeding x is
(see the introduction) FE; p(x).

Theorem 3.3 The following asymptotic formula holds

hat/"(log log x)t~1
(t—1logz

Et,h(x) ~ (79)

Proof. Let us consider the numbers whose prime factorization is of the form

Pl .. pl

where t > 1 and h > 1 are fixed and py, po, . . ., p; are different primes.
Let B:p(x) be the number of these numbers not exceeding x. We have the
following asymptotic formula

ha'/"(loglog )t~
(t—1Dogx

By p(x) ~ (80)

The proof of this formula is an immediate consequence of Lemma 1.2 and
Lemma 1.3.
We have (see (80), (67) and (4))

Ein(x) = Bip(x)+Aiapi(x)+Aropna(z)+ -+ Ay pi1(z) + Ep i ()
ha'/"(log log z)t~!

~ B ~
(@) (t—1)ogz

The theorem is proved.

If h =1 then we obtain as corollary of Theorem 3.3 the following well-known
Landau’s result.
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Corollary 3.4 The following asymptotic formula holds
z(loglog x)~!

E ~
() (t—1lloga
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