International Mathematical Forum, Vol. 9, 2014, no. 21, 993 - 1012 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.4460

Asymptotic Formulas Composite Numbers III

Rafael Jakimczuk

División Matemática, Universidad Nacional de Luján Buenos Aires, Argentina

Copyright © 2014 Rafael Jakimczuk. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let $k \geq 1$ and $h \geq 1$ arbitrary but fixed positive integers. Let us consider the numbers such that in their prime factorization there are k primes with exponent h and the remainder of the primes have exponente greater than h. Let $P_{k,h}(x)$ be the number of these numbers not exceeding x. We prove the formula

$$P_{k,h}(x) \sim A_{h+1} \frac{hx^{1/h}(\log\log x)^{k-1}}{(k-1)!\log x},$$

where A_{h+1} is a constant defined in this article.

Let $k \geq 1$, $h \geq 1$ and $t \geq 1$ arbitrary but fixed positive integers. Let us consider the numbers such that in their prime factorization there are k primes with exponent h and the t primes remaining have exponent greater than h. Let $A_{k,h,t}(x)$ be the number of these numbers not exceeding x. We prove the formula

$$A_{k,h,t}(x) \sim A_{t,h+1} \frac{hx^{1/h}(\log\log x)^{k-1}}{(k-1)!\log x},$$

where $A_{t,h+1}$ is a constant defined in this article.

Let $E_{t,h}(x)$ be the number of h-ful numbers with exactly t distinct prime factors in their prime factorization. We prove the asymptotic formula

$$E_{t,h}(x) \sim \frac{hx^{1/h}(\log\log x)^{t-1}}{(t-1)!\log x}.$$

In particular if h=1 then we obtain the following well-known Landau's Theorem

 $E_{t,1}(x) \sim \frac{x(\log \log x)^{t-1}}{(t-1)! \log x},$

where $E_{t,1}(x)$ is the number of numbers not exceeding x with exactly t distinct prime factors in their prime factorization.

Mathematics Subject Classification: 11A99, 11B99

Keywords: Composite numbers, counting functions, asymptotic formulas

1 Introduction, Notation and Lemmas

Let n be a number such that its prime factorization if of the form

$$n = p_1^{a_1} p_2^{a_2} \cdots p_t^{a_t},$$

where $a_i \ge h+1$ $(i=1,2,\ldots,t)$, $(h \ge 1)$ is fixed and p_1,p_2,\ldots,p_t $(t \ge 1)$ are the different primes in the factorization. Note that the a_i $(i=1,2,\ldots,t)$ and t are variable.

These number are well known, they are called (h + 1)-ful numbers.

There exist various studies on the distribution of these numbers using not elementary methods (see [1]).

Let C_n be the sequence of (h+1)-ful numbers and let $C_{h+1}(x)$ be the number of (h+1)-ful numbers that do not exceed x. It is well known (see [2] for an elementary proof) that

$$C_n \sim c_{h+1} n^{h+1},\tag{1}$$

$$C_{h+1}(x) \sim b_{h+1} x^{\frac{1}{h+1}},$$
 (2)

where b_{h+1} and c_{h+1} are positive constants. Note that C_n depends of h+1. For sake of simplicity we use this notation.

In this article C denotes a (h + 1)-ful number.

From (1) we can obtain without difficulty the following lemma.

Lemma 1.1 The following series are convergent. That is, we have

$$\sum_{n=1}^{\infty} \frac{1}{C_n^{1/h}} = A_{h+1} \qquad \sum_{n=1}^{\infty} \frac{\log C_n}{C_n^{1/h}} = B_{h+1}.$$

Let us consider the sequence P_n of the numbers whose prime factorization is of the form

$$n = p_1^{a_1} p_2^{a_2} \cdots p_t^{a_t} p_{t+1}^h \cdots p_{t+k}^h,$$

where $a_i \geq h+1$ $(i=1,2,\ldots,t)$ are variable, $(h \geq 1)$ is fixed, $(t \geq 1)$ is variable, $(k \geq 1)$ is fixed and $p_1, p_2, \ldots, p_{t+k}$ are the different primes in the factorization. Note that the sequence P_n depends of k and k. For sake of simplicity we use this notation.

We shall denote these numbers in the compact form $Cp_1^h \cdots p_k^h$ where C denotes the (h+1)-ful number $p_1^{a_1} p_2^{a_2} \dots p_t^{a_t}$ and $p_1^h \cdots p_k^h$ denotes $p_{t+1}^h \cdots p_{t+k}^h$.

The number of these numbers not exceeding x we shall denote $P_{k,h}(x)$

In this article we prove the asymptotic formula

$$P_{k,h}(x) \sim A_{h+1} \frac{hx^{1/h}(\log\log x)^{k-1}}{(k-1)!\log x}.$$

Let us consider the sequence E_n of the (h+1)-ful numbers with t different prime factors, where $t \geq 1$ is a fixed positive integer. Note that the sequence E_n depends of t and h+1. For sake of simplicity we use this notation.

We shall denote these numbers in the compact form E.

The number of these numbers not exceeding x we shall denote $E_{t,h+1}(x)$.

Let us consider the sequence A_n of the numbers whose prime factorization is of the form

$$p_1^{a_1}p_2^{a_2}\cdots p_t^{a_t}p_{t+1}^h\cdots p_{t+k}^h$$

where $a_i \geq h+1$ $(i=1,2,\ldots,t)$ are variable, $(h \geq 1)$ is fixed, $(t \geq 1)$ is fixed, $(k \geq 1)$ is fixed and $p_1, p_2, \ldots, p_{t+k}$ are the different primes in the factorization. Note that the sequence A_n depend of k, h and t. For sake of simplicity we use this notation.

We shall denote these numbers in the compact form $Ep_1^h \cdots p_k^h$ where E denotes the (h+1)-ful numbers with t different prime factors $p_1^{a_1} p_2^{a_2} \cdots p_t^{a_t}$ and $p_1^h \cdots p_k^h$ denotes $p_{t+1}^h \cdots p_{t+k}^h$.

The number of these numbers not exceeding x we shall denote $A_{k,h,t}(x)$.

Since in this case the E numbers are (h+1)-ful numbers, Lemma 1.1 imply that the following series are convergent, that is

$$\sum_{n=1}^{\infty} \frac{1}{E_n^{1/h}} = A_{t,h+1} \qquad \sum_{n=1}^{\infty} \frac{\log E_n}{E_n^{1/h}} = B_{t,h+1}. \tag{3}$$

In this article we prove the asymptotic formula

$$A_{k,h,t}(x) \sim A_{t,h+1} \frac{hx^{1/h}(\log\log x)^{k-1}}{(k-1)!\log x}.$$

On the other hand (2) imply that from a certain value of x we have

$$E_{t,h+1}(x) \le (1+\epsilon)b_{h+1}x^{\frac{1}{h+1}} \qquad (\epsilon > 0).$$
 (4)

Let $\pi(x)$ be the number of primes not exceeding x. We shall need the prime number Theorem which we shall use as a lemma.

Lemma 1.2 The following formula holds

$$\pi(x) = \frac{x}{\log x} + f(x) \frac{x}{\log x},$$

where $|f(x)| \leq M$ if $x \geq 2$ and $f(x) \rightarrow 0$.

Let us consider the numbers whose prime factorization is of the form

$$p_1p_2\ldots p_k$$
,

where $k \geq 2$ is fixed and p_1, p_2, \ldots, p_k are different primes.

Let $B_k(x)$ be the number of these numbers not exceeding x. We have the following theorem (Landau's Theorem) which we shall use as a lemma (see [1]).

Lemma 1.3 The following asymptotic formula holds

$$B_k(x) = \frac{x(\log\log x)^{k-1}}{(k-1)!\log x} + f(x)\frac{x(\log\log x)^{k-1}}{(k-1)!\log x},$$

where $|f(x)| \leq M$ if $x \geq 3$ and $f(x) \to 0$. Note that f(x) and M depend of k.

We shall also need the following two lemmas whose proofs are simple.

Lemma 1.4 The nonnegative function $(x \ge e)$ $(k \ge 2)$

$$f(x) = \frac{(\log \log x)^{k-1}}{\log x}$$

is bounded. That is, there exist H > 0 such that $f(x) \leq H$. Note that f(x) and H depend of k.

Lemma 1.5 The function (c > 1)

$$f(x) = \frac{\log \log \left(\frac{x}{c}\right)}{\log \log x}$$

is increasing from a certain value of x. Note that f(x) depends of c.

In this article we also prove the asymptotic formula (see (4))

$$E_{t,h}(x) \sim \frac{hx^{1/h}(\log\log x)^{t-1}}{(t-1)!\log x}.$$

In particular if h = 1 then we obtain the following well-known Landau's Theorem

$$E_{t,1}(x) \sim \frac{x(\log \log x)^{t-1}}{(t-1)! \log x},$$

where $E_{t,1}(x)$ is the number of numbers not exceeding x with exactly t distinct prime factors in their prime factorization.

2 Main Lemmas

The method of proof in the following Lemma 2.1 is similar to the method used in [4]. For sake of completeness we give the proof. Note that the meaning of E is different here.

Lemma 2.1 Let $\epsilon > 0$. There exists x_{ϵ} such that if $x \geq x_{\epsilon}$ then we have the following inequality

$$A_{1,h,t}(x) \le (A_{t,h+1} + \epsilon) \frac{hx^{1/h}}{\log x}.$$
 (5)

Proof. We have

$$Ep^{h} \leq x,$$

$$p^{h} \leq \frac{x}{E},$$

$$E \leq \frac{x}{p^{h}} \leq \frac{x}{2^{h}},$$

$$\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}} \geq 2.$$

Therefore (lemma 1.2)

$$A_{1,h,t}(x) = \sum_{E \leq \frac{x}{2^h}} \sum_{p^h \leq \frac{x}{E}} 1 - F_1(x) = \sum_{E \leq \frac{x}{2^h}} \sum_{p \leq \frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}} 1 - F_1(x)$$

$$= \sum_{E \leq \frac{x}{2^h}} \pi \left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right) - F_1(x) = \sum_{E \leq \frac{x}{2^h}} \frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}} \frac{1}{\log\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right)}$$

$$+ \sum_{E \leq \frac{x}{2^h}} f\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right) \frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}} \frac{1}{\log\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right)} - F_1(x)$$

$$= \frac{hx^{\frac{1}{h}}}{\log x} \sum_{E \leq \frac{x}{2^h}} \frac{1}{E^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E^{\frac{1}{h}}}{1}} + G_1(x) - F_1(x). \tag{6}$$

Substituting $x = 2^h E_n$ into

$$\sum_{E \le \frac{x}{2^h}} \frac{1}{E^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E^{\frac{1}{h}}}{\log x^{\frac{1}{h}}}}$$

we obtain the sequence

$$\sum_{i=1}^{n} \frac{1}{E_i^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_i^{\frac{1}{h}}}{\log 2E_h^{\frac{1}{h}}}}.$$
 (7)

Note that if $E_i \leq E_n$ then

$$\frac{1}{E_i^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_i^{\frac{1}{h}}}{\log 2E_n^{\frac{1}{h}}}} \le \frac{1}{E_i^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_i^{\frac{1}{h}}}{\log 2E_i^{\frac{1}{h}}}} = \frac{1}{E_i^{\frac{1}{h}}} \frac{\log 2 + \log E_i^{\frac{1}{h}}}{\log 2} = \frac{1}{E_i^{\frac{1}{h}}} + \frac{1}{h \log 2} \frac{\log E_i}{E_i^{\frac{1}{h}}} \tag{8}$$

and if E_i is fixed then

$$\lim_{n \to \infty} \frac{1}{E_i^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_i^{\frac{1}{h}}}{\log 2E_n^{\frac{1}{h}}}} = \frac{1}{E_i^{\frac{1}{h}}}.$$
 (9)

We have (see (7))

$$\sum_{i=1}^{n} \frac{1}{E_{i}^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_{i}^{\frac{1}{h}}}{\log 2E_{h}^{\frac{1}{h}}}} = \sum_{i=1}^{k} \frac{1}{E_{i}^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_{i}^{\frac{1}{h}}}{\log 2E_{h}^{\frac{1}{h}}}} + \sum_{i=k+1}^{n} \frac{1}{E_{i}^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_{i}^{\frac{1}{h}}}{\log 2E_{h}^{\frac{1}{h}}}}, \quad (10)$$

where (see (8))

$$\sum_{i=k+1}^{n} \frac{1}{E_i^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_i^{\frac{1}{h}}}{\log 2E_n^{\frac{1}{h}}}} \le \sum_{i=k+1}^{n} \frac{1}{E_i^{\frac{1}{h}}} + \frac{1}{h \log 2} \sum_{i=k+1}^{n} \frac{\log E_i}{E_i^{\frac{1}{h}}}.$$
 (11)

There exists k such that $(\epsilon > 0)$ (see (3))

$$A_{t,h+1} - \epsilon < \sum_{i=1}^{k} \frac{1}{E_i^{\frac{1}{h}}} < A_{t,h+1},$$
 (12)

$$\frac{1}{h\log 2} \sum_{i=k+1}^{\infty} \frac{\log E_i}{E_i^{\frac{1}{h}}} < \epsilon. \tag{13}$$

If $n \ge k + 1$, (11), (12) and (13) give

$$0 \le \sum_{i=k+1}^{n} \frac{1}{E_i^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_i^{\frac{1}{h}}}{\log 2E_n^{\frac{1}{h}}}} \le 2\epsilon.$$
 (14)

On the other hand (see(9))

$$\lim_{n \to \infty} \sum_{i=1}^{k} \frac{1}{E_i^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_i^{\frac{1}{h}}}{\log 2E_n^{\frac{1}{h}}}} = \sum_{i=1}^{k} \frac{1}{E_i^{\frac{1}{h}}}.$$

Consequently there exists n' > k + 1 such that for all $n \ge n'$ we have

$$\sum_{i=1}^{k} \frac{1}{E_i^{\frac{1}{h}}} - \epsilon \le \sum_{i=1}^{k} \frac{1}{E_i^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_i^{\frac{1}{h}}}{\log 2E_i^{\frac{1}{h}}}} \le \sum_{i=1}^{k} \frac{1}{E_i^{\frac{1}{h}}} + \epsilon. \tag{15}$$

(12) and (15) give

$$A_{t,h+1} - 2\epsilon \le \sum_{i=1}^{k} \frac{1}{E_i^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_i^{\frac{1}{h}}}{\log 2E_i^{\frac{1}{h}}}} \le A_{t,h+1} + \epsilon.$$
 (16)

Therefore for all $n \ge n'$ we have (see (10), (14) and (16))

$$A_{t,h+1} - 3\epsilon \le \sum_{i=1}^{n} \frac{1}{E_i^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_i^{\frac{1}{h}}}{\log 2E_i^{\frac{1}{h}}}} \le A_{t,h+1} + 3\epsilon.$$
 (17)

Consequently

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{E_i^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_i^{\frac{1}{h}}}{\log 2E_i^{\frac{1}{h}}}} = A_{t,h+1}. \tag{18}$$

Now, we have

$$\lim_{n \to \infty} \left(\sum_{i=1}^{n} \frac{1}{E_{i}^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_{i}^{\frac{1}{h}}}{\log 2E_{n}^{\frac{1}{h}}}} - \sum_{i=1}^{n+1} \frac{1}{E_{i}^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_{i}^{\frac{1}{h}}}{\log 2E_{n+1}^{\frac{1}{h}}}} \right)$$

$$= \lim_{n \to \infty} \left(\sum_{i=1}^{n} \frac{1}{E_{i}^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_{i}^{\frac{1}{h}}}{\log 2E_{n}^{\frac{1}{h}}}} - \sum_{i=1}^{n} \frac{1}{E_{i}^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_{i}^{\frac{1}{h}}}{\log 2E_{n+1}^{\frac{1}{h}}}} - \frac{1}{E_{n+1}^{\frac{1}{h}}} \frac{\log 2E_{n+1}^{\frac{1}{h}}}{\log 2} \right)$$

$$= 0 \tag{19}$$

and

$$\lim_{n \to \infty} \frac{1}{E_{n+1}^{\frac{1}{h}}} \frac{\log 2E_{n+1}^{\frac{1}{h}}}{\log 2} = 0. \tag{20}$$

(19) and (20) give

$$\lim_{n \to \infty} \left(\sum_{i=1}^{n} \frac{1}{E_i^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_i^{\frac{1}{h}}}{\log 2E_n^{\frac{1}{h}}}} - \sum_{i=1}^{n} \frac{1}{E_i^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_i^{\frac{1}{h}}}{\log 2E_{n+1}^{\frac{1}{h}}}} \right) = 0.$$
 (21)

Therefore (see (18))

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{E_i^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_i^{\frac{1}{h}}}{\log 2E_i^{\frac{1}{h}}}} = A_{t,h+1}, \tag{22}$$

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{E_i^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_i^{\frac{1}{h}}}{\log 2E_{n+1}^{\frac{1}{h}}}} = A_{t,h+1}.$$
(23)

The function of x (E_i fixed, $E_i \leq E_n$)

$$\frac{1}{E_i^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_i^{\frac{1}{h}}}{\log x^{\frac{1}{h}}}} \tag{24}$$

is decreasing in the interval $[2^h E_n, 2^h E_{n+1}]$. Therefore if $x \in [2^h E_n, 2^h E_{n+1}]$ we have

$$\sum_{i=1}^{n} \frac{1}{E_{i}^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_{i}^{\frac{1}{h}}}{\log 2E_{n+1}^{\frac{1}{h}}}} \le \sum_{i=1}^{n} \frac{1}{E_{i}^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_{i}^{\frac{1}{h}}}{\log x^{\frac{1}{h}}}} \le \sum_{i=1}^{n} \frac{1}{E_{i}^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_{i}^{\frac{1}{h}}}{\log 2E_{n}^{\frac{1}{h}}}}.$$
 (25)

Consequently (22), (23) and (25) give

$$\lim_{x \to \infty} \sum_{E \le \frac{x}{2^h}} \frac{1}{E^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E^{\frac{1}{h}}}{\log x^{\frac{1}{h}}}} = A_{t,h+1}. \tag{26}$$

There exists x_0 such that (lemma 1.2)

$$\left| f\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right) \right| < \epsilon \quad if \quad \frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}} \ge x_0, \quad that \ is \ if \quad E \le \frac{x}{x_0^h},$$

$$\left| f\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right) \right| \le M \quad if \quad 2 \le \frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}} < x_0, \quad that \ is \ if \quad \frac{x}{x_0^h} < E \le \frac{x}{2^h}.$$

Therefore (see(6))

$$|G_1(x)| = \left| \sum_{E \le \frac{x}{2^h}} f\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right) \frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}} \frac{1}{\log\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right)} \right|$$

$$\leq \sum_{E \le \frac{x}{2^h}} \left| f\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right) \left| \frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}} \frac{1}{\log\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right)} \right|$$

$$\leq \epsilon \sum_{E \leq \frac{x}{x_0^h}} \frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}} \frac{1}{\log\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right)} + Mx_0 \sum_{\frac{x}{x_0^h} < E \leq \frac{x}{2^h}} \frac{1}{\log\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right)} \\
= \frac{\epsilon h x^{\frac{1}{h}}}{\log x} \sum_{E \leq \frac{x}{x_0^h}} \frac{1}{E^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E^{\frac{1}{h}}}{\log x^{\frac{1}{h}}}} + Mx_0 \sum_{\frac{x}{x_0^h} < E \leq \frac{x}{2^h}} \frac{1}{\log\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right)}. (27)$$

Now (see(4))

$$Mx_0 \sum_{\frac{x}{x_0^h} < E \le \frac{x}{2^h}} \frac{1}{\log\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right)} \le Mx_0 \sum_{E \le x} \frac{1}{\log 2} = \frac{Mx_0}{\log 2} E_{t,h+1}(x) \le \frac{Mx_0}{\log 2} (1+\epsilon) b_{h+1} x^{\frac{1}{h+1}}$$
(28)

and (see (26))

$$\frac{\epsilon h x^{\frac{1}{h}}}{\log x} \sum_{E \le \frac{x}{x_0^h}} \frac{1}{E^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E^{\frac{1}{h}}}{\log x^{\frac{1}{h}}}} \le \frac{\epsilon h x^{\frac{1}{h}}}{\log x} \sum_{E \le \frac{x}{2^h}} \frac{1}{E^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E^{\frac{1}{h}}}{\log x^{\frac{1}{h}}}} \le \frac{\epsilon h x^{\frac{1}{h}}}{\log x} (A_{t,h+1} + \epsilon).$$
(29)

Consequently (27), (28) and (29) give

$$G_1(x) = o\left(\frac{x^{\frac{1}{h}}}{\log x}\right). \tag{30}$$

Equations (6), (26) and (30) give

$$A_{1,h,t}(x) = A_{t,h+1} \frac{hx^{1/h}}{\log x} + o\left(\frac{x^{1/h}}{\log x}\right) - F_1(x).$$
 (31)

Now, $F_1(x) \ge 0$, therefore (31) gives

$$A_{1,h,t}(x) \le A_{t,h+1} \frac{hx^{1/h}}{\log x} + o\left(\frac{x^{1/h}}{\log x}\right) \le (A_{t,h+1} + \epsilon) \frac{hx^{1/h}}{\log x}.$$

That is, equation (5). The lemma is proved.

The method of proof in the following Lemma 2.2 is similar to the method used in [5]. For sake of completeness we give the proof. Note that the meaning of E is different here.

Lemma 2.2 Let $\epsilon > 0$. There exists x_{ϵ} such that if $x \geq x_{\epsilon}$ then we have the following inequality

$$A_{k,h,t}(x) \le (A_{t,h+1} + \epsilon) \frac{hx^{1/h} (\log \log x)^{k-1}}{(k-1)! \log x} \qquad (k \ge 2).$$
 (32)

Proof. Let P_k be the product of the first k primes, that is, $P_2 = 2.3 = 6$, $P_3 = 2.3.5 = 30$, etc. We have

$$Ep_1^h p_2^h \dots p_k^h \le x,$$

$$p_1^h p_2^h \dots p_k^h \le \frac{x}{E},$$

$$E \le \frac{x}{p_1^h p_2^h \dots p_k^h} \le \frac{x}{P_k^h},$$

$$\frac{x}{E} \ge P_k^h,$$

$$\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}} \ge P_k \ge 6.$$

Therefore (lemma 1.3)

$$A_{k,h,t}(x) = \sum_{E \leq \frac{x}{P_k^h}} \sum_{p_1^h \dots p_k^h \leq \frac{x}{E}} 1 - F_k(x) = \sum_{E \leq \frac{x}{P_k^h}} \sum_{p_1 \dots p_k \leq \frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}} 1 - F_k(x)$$

$$= \sum_{E \leq \frac{x}{P_k^h}} B_k \left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}} \right) - F_k(x) = \sum_{E \leq \frac{x}{P_k^h}} \frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}} \frac{\left(\log\log\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right)\right)^{k-1}}{(k-1)! \log\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right)}$$

$$+ \sum_{E \leq \frac{x}{P_k^h}} f\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}} \right) \frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}} \frac{\left(\log\log\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right)\right)^{k-1}}{(k-1)! \log\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right)} - F_k(x)$$

$$= \frac{hx^{\frac{1}{h}} \left(\log\log x^{\frac{1}{h}}\right)^{k-1}}{(k-1)! \log x} \sum_{E \leq \frac{x}{P_k^h}} \frac{1}{E^{\frac{1}{h}}} \frac{\left(\frac{\log\log\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right)}{\log\log x^{\frac{1}{h}}}\right)^{k-1}}{1 - \frac{\log E^{\frac{1}{h}}}{\log x^{\frac{1}{h}}}}$$

$$+ G_k(x) - F_k(x). \tag{33}$$

Substituting $x = P_k^h E_n$ into

$$\sum_{E \le \frac{x}{P_h^h}} \frac{1}{E^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E^{\frac{1}{h}}}{\log x^{\frac{1}{h}}}}$$

we obtain the sequence

$$\sum_{i=1}^{n} \frac{1}{E_i^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_i^{\frac{1}{h}}}{\log P_i E_i^{\frac{1}{h}}}}.$$
 (34)

Note that if $E_i \leq E_n$ then

$$\frac{1}{E_{i}^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_{i}^{\frac{1}{h}}}{\log P_{k} E_{n}^{\frac{1}{h}}}} \leq \frac{1}{E_{i}^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_{i}^{\frac{1}{h}}}{\log P_{k} E_{i}^{\frac{1}{h}}}} = \frac{1}{E_{i}^{\frac{1}{h}}} \frac{\log P_{k} + \log E_{i}^{\frac{1}{h}}}{\log P_{k}} = \frac{1}{E_{i}^{\frac{1}{h}}} + \frac{1}{h \log P_{k}} \frac{\log E_{i}}{E_{i}^{\frac{1}{h}}} \tag{35}$$

and if E_i is fixed then

$$\lim_{n \to \infty} \frac{1}{E_i^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_i^{\frac{1}{h}}}{\log P_b E_n^{\frac{1}{h}}}} = \frac{1}{E_i^{\frac{1}{h}}}.$$
 (36)

We have (see (34))

$$\sum_{i=1}^{n} \frac{1}{E_i^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_i^{\frac{1}{h}}}{\log P_k E_n^{\frac{1}{h}}}} = \sum_{i=1}^{j} \frac{1}{E_i^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_i^{\frac{1}{h}}}{\log P_k E_n^{\frac{1}{h}}}} + \sum_{i=j+1}^{n} \frac{1}{E_i^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_i^{\frac{1}{h}}}{\log P_k E_n^{\frac{1}{h}}}}, \quad (37)$$

where (see (35))

$$\sum_{i=j+1}^{n} \frac{1}{E_i^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_i^{\frac{1}{h}}}{\log P_k E_n^{\frac{1}{h}}}} \le \sum_{i=j+1}^{n} \frac{1}{E_i^{\frac{1}{h}}} + \frac{1}{h \log P_k} \sum_{i=j+1}^{n} \frac{\log E_i}{E_i^{\frac{1}{h}}}.$$
 (38)

There exists j such that $(\epsilon > 0)$ (see (3))

$$A_{t,h+1} - \epsilon < \sum_{i=1}^{j} \frac{1}{E_i^{\frac{1}{h}}} < A_{t,h+1},$$
 (39)

$$\frac{1}{h\log P_k} \sum_{i=j+1}^{\infty} \frac{\log E_i}{E_i^{\frac{1}{h}}} < \epsilon. \tag{40}$$

If $n \ge j + 1$, (38), (39) and (40) give

$$0 \le \sum_{i=j+1}^{n} \frac{1}{E_i^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_i^{\frac{1}{h}}}{\log P_k E_h^{\frac{1}{h}}}} \le 2\epsilon. \tag{41}$$

On the other hand (see (36))

$$\lim_{n \to \infty} \sum_{i=1}^{j} \frac{1}{E_i^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_i^{\frac{1}{h}}}{\log P_k E_h^{\frac{1}{h}}}} = \sum_{i=1}^{j} \frac{1}{E_i^{\frac{1}{h}}}.$$

Consequently there exists n' > j+1 such that for all $n \ge n'$ we have

$$\sum_{i=1}^{j} \frac{1}{E_i^{\frac{1}{h}}} - \epsilon \le \sum_{i=1}^{j} \frac{1}{E_i^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_i^{\frac{1}{h}}}{\log P_t E_i^{\frac{1}{h}}}} \le \sum_{i=1}^{j} \frac{1}{E_i^{\frac{1}{h}}} + \epsilon. \tag{42}$$

(39) and (42) give

$$A_{t,h+1} - 2\epsilon \le \sum_{i=1}^{j} \frac{1}{E_i^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_i^{\frac{1}{h}}}{\log P_h E_i^{\frac{1}{h}}}} \le A_{t,h+1} + \epsilon. \tag{43}$$

Therefore for all $n \ge n'$ we have (see (37), (41) and (43))

$$A_{t,h+1} - 3\epsilon \le \sum_{i=1}^{n} \frac{1}{E_i^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_i^{\frac{1}{h}}}{\log P_k E_n^{\frac{1}{h}}}} \le A_{t,h+1} + 3\epsilon. \tag{44}$$

Consequently

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{E_i^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_i^{\frac{1}{h}}}{\log P_b E_i^{\frac{1}{h}}}} = A_{t,h+1}. \tag{45}$$

Now, we have

$$\lim_{n \to \infty} \left(\sum_{i=1}^{n} \frac{1}{E_{i}^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_{i}^{\frac{1}{h}}}{\log P_{k} E_{n}^{\frac{1}{h}}}} - \sum_{i=1}^{n+1} \frac{1}{E_{i}^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_{i}^{\frac{1}{h}}}{\log P_{k} E_{n+1}^{\frac{1}{h}}}} \right)$$

$$= \lim_{n \to \infty} \left(\sum_{i=1}^{n} \frac{1}{E_{i}^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_{i}^{\frac{1}{h}}}{\log P_{k} E_{n}^{\frac{1}{h}}}} - \sum_{i=1}^{n} \frac{1}{E_{i}^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_{i}^{\frac{1}{h}}}{\log P_{k} E_{n+1}^{\frac{1}{h}}}} - \frac{1}{E_{n+1}^{\frac{1}{h}}} \frac{\log P_{k} E_{n+1}^{\frac{1}{h}}}{\log P_{k}} \right)$$

$$= 0 \tag{46}$$

and

$$\lim_{n \to \infty} \frac{1}{E_{n+1}^{\frac{1}{h}}} \frac{\log P_k E_{n+1}^{\frac{1}{h}}}{\log P_k} = 0. \tag{47}$$

(46) and (47) give

$$\lim_{n \to \infty} \left(\sum_{i=1}^{n} \frac{1}{E_i^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_i^{\frac{1}{h}}}{\log P_k E_n^{\frac{1}{h}}}} - \sum_{i=1}^{n} \frac{1}{E_i^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_i^{\frac{1}{h}}}{\log P_k E_{n+1}^{\frac{1}{h}}}} \right) = 0.$$
 (48)

Therefore (see (45))

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{E_i^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_i^{\frac{1}{h}}}{\log P_h E_i^{\frac{1}{h}}}} = A_{t,h+1},\tag{49}$$

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{E_i^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_i^{\frac{1}{h}}}{\log P_k E_{n+1}^{\frac{1}{h}}}} = A_{t,h+1}.$$
(50)

The function of x (E_i fixed, $E_i \leq E_n$)

$$\frac{1}{E_i^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_i^{\frac{1}{h}}}{\log x^{\frac{1}{h}}}} \tag{51}$$

is decreasing in the interval $\left[P_k^h E_n, P_k^h E_{n+1}\right)$. Therefore if $x \in \left[P_k^h E_n, P_k^h E_{n+1}\right)$ we have

$$\sum_{i=1}^{n} \frac{1}{E_{i}^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_{i}^{\frac{1}{h}}}{\log P_{k} E_{n+1}^{\frac{1}{h}}}} \leq \sum_{i=1}^{n} \frac{1}{E_{i}^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_{i}^{\frac{1}{h}}}{\log x^{\frac{1}{h}}}} \leq \sum_{i=1}^{n} \frac{1}{E_{i}^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E_{i}^{\frac{1}{h}}}{\log P_{k} E_{n}^{\frac{1}{h}}}}.$$
 (52)

Consequently (49), (50) and (52) give

$$\lim_{x \to \infty} \sum_{E \le \frac{x}{P_h^h}} \frac{1}{E^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E^{\frac{1}{h}}}{\log x^{\frac{1}{h}}}} = A_{t,h+1}.$$
 (53)

The function of x (E fixed)

$$0 < \left(\frac{\log \log \left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right)}{\log \log x^{\frac{1}{h}}}\right)^{k-1} < 1$$

is increasing from a certain value of x (see lemma 1.5) and

$$\lim_{x \to \infty} \left(\frac{\log \log \left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}} \right)}{\log \log x^{\frac{1}{h}}} \right)^{k-1} = 1.$$

Let us consider the function

$$\sum_{E \leq \frac{x}{P_k^h}} \frac{1}{E^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E^{\frac{1}{h}}}{\log x^{\frac{1}{h}}}} \left(1 - \left(\frac{\log \log \left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}} \right)}{\log \log x^{\frac{1}{h}}} \right)^{k-1} \right).$$

There exists x_0 such that

$$A_{t,h+1} - \epsilon \le \sum_{E \le \frac{x_0}{P_h^h}} \frac{1}{E^{\frac{1}{h}}} \le A_{t,h+1} + \epsilon.$$
 (54)

Now

$$\lim_{x \to \infty} \sum_{E \le \frac{x_0}{P_h^h}} \frac{1}{E^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E^{\frac{1}{h}}}{\log x^{\frac{1}{h}}}} = \sum_{E \le \frac{x_0}{P_h^h}} \frac{1}{E^{\frac{1}{h}}}.$$
 (55)

Therefore there exist $x_1 > x_0$ such that if $x \ge x_1$ we have (see (54) and (55))

$$A_{t,h+1} - 2\epsilon \le \sum_{E \le \frac{x_0}{P_h^k}} \frac{1}{E^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E^{\frac{1}{h}}}{\log x^{\frac{1}{h}}}} \le A_{t,h+1} + 2\epsilon \tag{56}$$

and if $E \leq \frac{x_0}{P_r^h}$ we have

$$0 < 1 - \left(\frac{\log\log\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right)}{\log\log x^{\frac{1}{h}}}\right)^{k-1} < \epsilon. \tag{57}$$

(56) and (57) give

$$0 < \sum_{E \le \frac{x_0}{P_k^h}} \frac{1}{E^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E^{\frac{1}{h}}}{\log x^{\frac{1}{h}}}} \left(1 - \left(\frac{\log \log \left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}} \right)}{\log \log x^{\frac{1}{h}}} \right)^{k-1} \right) \le (A_{t,h+1} + 2\epsilon)\epsilon. \quad (58)$$

On the other hand (see (56) and (53))

$$0 < \sum_{\substack{\frac{x_0}{P_k^h} < E \le \frac{x}{P_k^h}}} \frac{1}{E^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E^{\frac{1}{h}}}{\log x^{\frac{1}{h}}}} \left(1 - \left(\frac{\log \log \left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}} \right)}{\log \log x^{\frac{1}{h}}} \right)^{k-1} \right)$$

$$\leq \sum_{\substack{\frac{x_0}{P_k^h} < E \le \frac{x}{P_k^h}}} \frac{1}{E^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E^{\frac{1}{h}}}{\log x^{\frac{1}{h}}}} \le 4\epsilon.$$
(59)

(58) and (59) give

$$\lim_{x \to \infty} \sum_{E \le \frac{x}{P_k^h}} \frac{1}{E^{\frac{1}{h}}} \frac{1}{1 - \frac{\log E^{\frac{1}{h}}}{\log x^{\frac{1}{h}}}} \left(1 - \left(\frac{\log \log \left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}} \right)}{\log \log x^{\frac{1}{h}}} \right)^{k-1} \right) = 0. \tag{60}$$

(53) and (60) give

$$\lim_{x \to \infty} \sum_{E \le \frac{x}{P_h^h}} \frac{1}{E^{\frac{1}{h}}} \frac{\left(\frac{\log \log \left(\frac{\frac{1}{x^{\frac{1}{h}}}}{\frac{1}{k}}\right)}{\log \log x^{\frac{1}{h}}}\right)^{k-1}}{1 - \frac{\log E^{\frac{1}{h}}}{\log x^{\frac{1}{h}}}} = A_{t,h+1}.$$

$$(61)$$

There exists x_0 such that (lemma 1.3)

$$\left| f\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right) \right| < \epsilon \quad if \quad \frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}} \ge x_0, \quad that \ is \ if \quad E \le \frac{x}{x_0^h},$$

$$\left| f\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right) \right| \le M \quad if \quad P_k \le \frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}} < x_0, \quad that \ is \ if \quad \frac{x}{x_0^h} < E \le \frac{x}{P_k^h}.$$

Therefore

$$|G_{k}(x)| = \left| \sum_{E \leq \frac{x}{P_{k}^{h}}} f\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right) \frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}} \frac{\left(\log\log\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right)\right)^{k-1}}{(k-1)! \log\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right)} \right|$$

$$\leq \sum_{E \leq \frac{x}{P_{k}^{h}}} \left| f\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right) \right| \frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}} \frac{\left(\log\log\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right)\right)^{k-1}}{(k-1)! \log\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right)}$$

$$\leq \epsilon \sum_{E \leq \frac{x}{X_{0}^{h}}} \frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}} \frac{\left(\log\log\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right)\right)^{k-1}}{(k-1)! \log\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right)} + Mx_{0} \sum_{\frac{x}{X_{0}^{h}} < E \leq \frac{x}{P_{k}^{h}}} \frac{\left(\log\log\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right)\right)^{k-1}}{(k-1)! \log x} \sum_{E \leq \frac{x}{X_{0}^{h}}} \frac{1}{E^{\frac{1}{h}}} \frac{\left(\log\log\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right)\right)^{k-1}}{1 - \frac{\log E^{\frac{1}{h}}}{\log x^{\frac{1}{h}}}}$$

$$+ Mx_{0} \sum_{\frac{x}{X_{0}^{h}} < E \leq \frac{x}{P_{k}^{h}}} \frac{\left(\log\log\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right)\right)^{k-1}}{(k-1)! \log\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right)}. \tag{62}$$

Now (see lemma 1.4 and (4))

$$Mx_0 \sum_{\frac{x}{x_0^h} < E \le \frac{x}{P_k^h}} \frac{\left(\log\log\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right)\right)^{k-1}}{(k-1)!\log\left(\frac{x^{\frac{1}{h}}}{E^{\frac{1}{h}}}\right)} \le \frac{Mx_0H}{(k-1)!} \sum_{E \le x} 1$$

$$\leq \frac{Mx_0H}{(k-1)!}E_{t,h+1}(x) \leq \frac{Mx_0H}{(k-1)!}(1+\epsilon)b_{h+1}x^{\frac{1}{h+1}}$$
(63)

and (see (61))

$$\frac{\epsilon h x^{\frac{1}{h}} \left(\log \log x^{\frac{1}{h}} \right)^{k-1}}{(k-1)! \log x} \sum_{E \leq \frac{x}{x_0^h}} \frac{1}{E^{\frac{1}{h}}} \frac{\left(\frac{\log \log \left(\frac{x^{\frac{1}{h}}}{\frac{1}{k}} \right)}{\log \log x^{\frac{1}{h}}} \right)^{k-1}}{1 - \frac{\log E^{\frac{1}{h}}}{\log x^{\frac{1}{h}}}}$$

$$\leq \frac{\epsilon h x^{\frac{1}{h}} \left(\log \log x^{\frac{1}{h}} \right)^{k-1}}{(k-1)! \log x} \sum_{E \leq \frac{x}{P_h^h}} \frac{1}{E^{\frac{1}{h}}} \frac{\left(\frac{\log \log \left(\frac{x^{\frac{1}{h}}}{\frac{1}{k}} \right)}{\log x^{\frac{1}{h}}} \right)^{k-1}}{1 - \frac{\log E^{\frac{1}{h}}}{\log x^{\frac{1}{h}}}}$$

$$\leq \frac{\epsilon h x^{\frac{1}{h}} \left(\log \log x^{\frac{1}{h}} \right)^{k-1}}{(k-1)! \log x} (A_{t,h+1} + \epsilon). \tag{64}$$

Consequently (62), (63) and (64) give

$$G_k(x) = o\left(\frac{x^{\frac{1}{h}}(\log\log x)^{k-1}}{\log x}\right). \tag{65}$$

Equations (33), (61) and (65) give

$$A_{k,h,t}(x) = A_{t,h+1} \frac{hx^{1/h}(\log\log x)^{k-1}}{(k-1)!\log x} + o\left(\frac{x^{1/h}(\log\log x)^{k-1}}{\log x}\right) - F_k(x).$$
 (66)

Now, $F_k(x) \ge 0$, therefore (66) gives

$$A_{k,h,t}(x) \le A_{t,h+1} \frac{hx^{1/h} (\log \log x)^{k-1}}{(k-1)! \log x} + o\left(\frac{x^{1/h} (\log \log x)^{k-1}}{\log x}\right)$$

$$\le (A_{t,h+1} + \epsilon) \frac{hx^{1/h} (\log \log x)^{k-1}}{(k-1)! \log x}.$$

That is, equation (32). The lemma is proved.

Lemma 2.1 and Lemma 2.2 can be united in the following lemma.

Lemma 2.3 Let $\epsilon > 0$. There exists x_{ϵ} such that if $x \geq x_{\epsilon}$ then we have the following inequality

$$A_{k,h,t}(x) \le (A_{t,h+1} + \epsilon) \frac{hx^{1/h} (\log\log x)^{k-1}}{(k-1)! \log x} \qquad (k \ge 1).$$
 (67)

Lemma 2.4 Let $\epsilon > 0$. There exists x_{ϵ} such that if $x \geq x_{\epsilon}$ then we have the following inequality

$$P_{k,h}(x) \le (A_{h+1} + \epsilon) \frac{hx^{1/h}(\log\log x)^{k-1}}{(k-1)!\log x} \qquad (k \ge 1).$$
 (68)

Proof. The proof is the same as Lemma 2.1 and Lemma 2.2. In the proofs of Lemma 2.1 and Lemma 2.2 we replace $A_{k,h,t}(x)$ by $P_{k,h}(x)$, E by C, E_i by C_i , E_n by C_n , $A_{t,h+1}$ by A_{h+1} , E_{n+1} by C_{n+1} and $E_{t,h+1}(x)$ by $C_{h+1}(x)$. The lemma is proved.

3 Main Results

Theorem 3.1 We have the following asymptotic formula

$$A_{k,h,t}(x) \sim A_{t,h+1} \frac{hx^{1/h}(\log\log x)^{k-1}}{(k-1)!\log x} \qquad (k \ge 1).$$
 (69)

Proof. In the sums (see (6) and (33))

$$\sum_{E \le \frac{x}{2h}} \sum_{p^h \le \frac{x}{E}} 1,$$

$$\sum_{E \leq \frac{x}{P_k^h}} \sum_{p_1^h \dots p_k^h \leq \frac{x}{E}} 1,$$

are generated undesirable numbers. The number of these undesirable numbers not exceeding x is $F_k(x)$ $(k \ge 1)$. Let us consider the number (we take h = 1)

$$p_1p_2\cdots p_kE$$

This number is undesirable when some primes p_i appear in the prime factorization of the 2 - ful number with t different prime factors E. For example the number

$$p_1 p_2 p_3 p_4 p_5^2 p_6^2 p_5^5 p_7^5 p_8^7 p_9^4 p_9^9 p_{10}^{14}, (70)$$

where k = 4 and t = 8 is undesirable. This number is

$$p_1 p_2 p_5^2 p_6^2 p_3^6 p_7^5 p_8^7 p_4^{10} p_9^9 p_{10}^{14}. (71)$$

This number can be generated in various ways. For example equation (70) is one way, we obtain this way if withdraw one prime p_3 and one prime p_4 of (71). We obtain other way if we withdraw one prime p_8 and one prime p_{10} of (71). This new way is

$$p_1 p_2 p_8 p_{10} p_5^2 p_6^2 p_3^6 p_7^5 p_8^6 p_4^{10} p_9^9 p_{10}^{13}. (72)$$

Clearly we can withdraw of (71) two primes with exponent greater than 2. In contrary case we do not obtain a 2 - ful number. The number of possible ways is then bounded by $\binom{8}{2}$. Therefore if $k \le t$ we have

$$F_k(x) \le {t \choose 1} A_{k-1,h,t}(x) + {t \choose 2} A_{k-2,h,t}(x) + \dots + {t \choose k-1} A_{1,h,t}(x) + {t \choose k} E_{t,h+1}(x).$$
(73)

In particular

$$F_1(x) \le {t \choose 1} E_{t,h+1}(x). \tag{74}$$

If k > t we have

$$F_k(x) \le {t \choose 1} A_{k-1,h,t}(x) + {t \choose 2} A_{k-2,h,t}(x) + \dots + {t \choose t} A_{k-t,h,t}(x).$$
 (75)

Equations (73), (74), (75), (67) and (4) give

$$\lim_{x \to \infty} \frac{F_k(x)}{\frac{x(\log \log x)^{k-1}}{\log x}} = 0.$$

That is

$$F_k(x) = o\left(\frac{x^{1/h}(\log\log x)^{k-1}}{\log x}\right) \qquad (k \ge 1).$$
 (76)

Finally equations (31), (66) and (76) give equation (69). The theorem is proved.

Theorem 3.2 We have the following asymptotic formula

$$P_{k,h}(x) \sim A_{h+1} \frac{hx^{1/h}(\log\log x)^{k-1}}{(k-1)!\log x}.$$
 (77)

Proof. We have

$$\sum_{t=1}^{\infty} A_{t,h+1} = A_{h+1}.$$

Let $\epsilon > 0$. There exists n such that

$$\sum_{t=1}^{n} A_{t,h+1} > A_{h+1} - \frac{\epsilon}{2}.$$

Now, we have (see (69))

$$P_{k,h}(x) \ge \sum_{t=1}^{n} A_{k,h,t}(x)$$

$$= \sum_{t=1}^{n} \left(A_{t,h+1} \frac{hx^{1/h} (\log \log x)^{k-1}}{(k-1)! \log x} + o\left(\frac{x^{1/h} (\log \log x)^{k-1}}{\log x}\right) \right)$$

$$= \left(\sum_{t=1}^{n} A_{t,h+1}\right) \frac{hx^{1/h} (\log \log x)^{k-1}}{(k-1)! \log x} + o\left(\frac{x^{1/h} (\log \log x)^{k-1}}{\log x}\right)$$

$$\geq \left(A_{h+1} - \frac{\epsilon}{2} \right) \frac{hx^{1/h} (\log \log x)^{k-1}}{(k-1)! \log x} + o\left(\frac{x^{1/h} (\log \log x)^{k-1}}{\log x}\right)$$

$$\geq (A_{h+1} - \epsilon) \frac{x^{1/h} (\log \log x)^{k-1}}{(k-1)! \log x}. \tag{78}$$

Equations (68) and (78) give (77), since ϵ is arbitrarily small. The theorem is proved.

Let us consider the h-ful numbers with exactly t distinct primes in their prime factorization. If h = 1 we obtain the numbers with exactly t distinct primes in their prime factorization. The number of these numbers not exceeding x is (see the introduction) $E_{t,h}(x)$.

Theorem 3.3 The following asymptotic formula holds

$$E_{t,h}(x) \sim \frac{hx^{1/h}(\log\log x)^{t-1}}{(t-1)!\log x}.$$
 (79)

Proof. Let us consider the numbers whose prime factorization is of the form

$$p_1^h p_2^h \dots p_t^h$$
,

where $t \geq 1$ and $h \geq 1$ are fixed and p_1, p_2, \dots, p_t are different primes.

Let $B_{t,h}(x)$ be the number of these numbers not exceeding x. We have the following asymptotic formula

$$B_{t,h}(x) \sim \frac{hx^{1/h}(\log\log x)^{t-1}}{(t-1)!\log x}.$$
 (80)

The proof of this formula is an immediate consequence of Lemma 1.2 and Lemma 1.3.

We have (see (80), (67) and (4))

$$E_{t,h}(x) = B_{t,h}(x) + A_{t-1,h,1}(x) + A_{t-2,h,2}(x) + \dots + A_{1,h,t-1}(x) + E_{t,h+1}(x)$$

$$\sim B_{t,h}(x) \sim \frac{hx^{1/h}(\log\log x)^{t-1}}{(t-1)!\log x}.$$

The theorem is proved.

If h = 1 then we obtain as corollary of Theorem 3.3 the following well-known Landau's result.

Corollary 3.4 The following asymptotic formula holds

$$E_{t,1}(x) \sim \frac{x(\log \log x)^{t-1}}{(t-1)! \log x}.$$

ACKNOWLEDGEMENTS. The author is very grateful to Universidad Nacional de Luján.

References

- [1] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford, 1960.
- [2] A. Ivic, The Riemann Zeta-Function, Dover, 2003.
- [3] R. Jakimczuk, On the distribution of certain composite numbers, *International Journal of Contemporary Mathematical Sciences*, **3** (2008), 1245 1254.
- [4] R. Jakimczuk, Asymptotic formulas. Composite numbers, *International Journal of Contemporary Mathematical Sciences*, **7** (2012), 171 178.
- [5] R. Jakimczuk, Asymptotic formulas. Composite numbers II, *International Mathematical Forum*, 8 (2013), 1651 1662.

Received: April 15, 2014