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Abstract

In this paper we introduce some results for planar I'- near-rings and planar I'- near-fields.
Through new definition of I'"-near -fields we prove a condition when a planar I"-near-ring is

planar T"- near field.
Mathematics Subject Classification: 16Y30

Keywords: Planar near — ring, planar I" -near ring, planar I"- near- field.

1. Introduction

Planarity is introduced in algebra by Marshall Hall in his prominent coordinasation
of a projective plane by planar ternary rings [4]. At [6] J. L. Zemmer defined planar near-
field as a near-ring in which the equation ax = bx + c is a unique solution for every a # b.
Michel Anshel and James R. Clay defined in [1] planar near-rings, which as expected, have

geometric interpretations. Here we will give concepts and we will present same auxiliary
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propositions, which we will use further in the presentation of the main results of the

proceeding. Let consider M and I" as two non empty sets.

Let’s consider M and I" as two non-empty sets. Every map of M x I' x M in M is called T"-
multiplication in M and is denoted as () .. The result of this multiplication for elements a, b

€ Mand y € T is denoted

ay b. According to Satyanarayana [2], I'- near-ring is a classified ordered triple (M, +, (*)r )

where M and I are non empty sets, + is an addition in M, while (:)r is I" - multiplication on

M satisfying the following conditions:
(i) (M, +) is a group.( not necessarily abelian)

(i) V(a b, c o f € MXI2, (adb)fc = aa(bf).
(iii) V(a, b, ¢, @, ) e M*xI (a + b)ac = aac + bac.

An e element of I"-near-ring M is called identity element if for everya e Mand every y e I’
we have

aye=eya=a.

Let (N, +) be a near —ring. The relation = such thata =_ b if only if ax = bx for all xeN is

an equivalence relation and is called the relation of equal multipliers in N [3].
Definition 1.1 [3] Triple (N, +, LI) is planar near - ring when :

(i) The relation of equal multipliers = has at least three equivalence classes | N/ = |

>3

(i) ¥(a, b, c,) e N® a #_ b the equation ax = bx + ¢ has unique solution for x eN.
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Let M be a I'-near-ring. We define in the M the each relation = such that a = b then and
only then when ayx = byx, for each x € M and for each y e I". Obviously, the relation =, is

an equivalence relation.

If a =n» b we will say that a and b are equal multipliers. The relation =, we going to call it

relation of the equal multipliers.
Definition 1.2[5] 7= near-rings (M, +, (-)p) is called planar if:

(i) Relation of the equal multipliers =y has at least three equivalence

classes, meaning |[M/=n | = 3.

(ii) For any three elements a, b, ¢ of M such that a =, b and for each y e

I,
Xya = Xjb + ¢ has a unique solutionin M .
Example 1.3

Let there be (M, (P), +) the group of matrices of the order n with elements from a field P,
with has at least three elements. For any subset I" of nonsingular matrices set of order n with
elements from the field P we define in My (P), I'- multiplication (:)r such that for any two

matrices A, B of M, (P) and for each matrix y € I, we have
AvyB=Al[B]

where |y|, |B| are respectively the determinants of matrices y, B. It is easy to be convinced
that (M, (P) +, (-)r) is I'-near-ring. In this I"-near-ring we have A =, B if and only if for any
X e Ma(P) X1yl |Al = X1yl [BJ.
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Taking a nonsingular matrix X, we have |A| = |B|. Since P has at least three elements we have
at least three matrices that does not have the same determinants, therefore |Mn(P)/=n| > 3. If

A #n B, meaning |A| # |B|, matrix equation X|y| |A| = X|y| |B| + C

1

has the unique solution the matrix X= ——C
lYI(|Al-|B])

Therefore, I'-near-ring (M, (P), +, (-)r) is planar.
For a planar I'-near-ring (M, +, (-)r) note A={a € M| a=n 0}
To make it easy write the set M\A = M°. For each a € M° and for each y T, the equation

xya = xy0 + a = a there is a unique solution which is noted 17 . It can happen that 1 = 1!

although a # b. For aa € M° and for eachy € I' note
B, ={b e M°| 1 yb=b}

Theorem 1.4[5] For any planar 7=near-ring (M, +, (-),) the following statements are true:

(i)M=Au{ U Bg}

(a,y)eM°xI’
(i) B) yM°= B! for each a € M °and for each y e M °
Definition 1.5[4] A I'near-ring M is called Inear -field if for every a e I, the near-ring
M = (M, +, (c)) is near-field.

Let there be (M, +, (-)r) a planar I'-near-ring. If for every y € T, near-ring (M, +, y) is
unitary, then (M, +, (:)r) would be called unitary planar 7=near-ring. If for each y € T,

near-ring (M, +, v) is near-field, then (M, +, (-)r) will be called planar 7=near-field.[5]
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Proposition 1.6 [5] If (M, +, (/) is a unitary planar 7=near-ring, then it is a planar

[-near-field.

2. Results on planar I'- near —rings
Theorem 2.1 Let be (M, +, () a planar /=near-ring:

For each y € I"and for each a e M B is closed with respect to binary
operation o, of M for which x o, y = xpy and is a group in relation with the

operation induced in it.

Proof .For a € M° we have 1! ya=a = 1! (1! ya) = (1 y1! )ya. The equation xya = a there is

a unique solution so we have 1! yl! =17. Thus, 1! e B and consequently 1! in the left

identity of subgroup

(Bl , 09)-

Assume that a ' is the unique solution to the equation xya =1! , meaning a'ya =1/ . Then
(Lyaya=1Ly@ya)=1y1 =1;.

From the iniquity of the solution of the equation xya = 1! we have 1’ ya'= a’ so &’ € B

from Theoreml.4

Let there be b an element of the subgroup (B, ,o,). For an element b there is an element

b’ e B, suchthatb'yb=1].
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Now we will prove that B =B,. Let c be an element of B N B/, which is not empty

because

be B;nBJ.Then 1l yc=c= 1 yc. Thus, 1! and 1] are the solutions of the equation xyc =
¢ and hence from the iniquity of the solution of this equation we have 1 =17. From this
equalities and definitions of sets B} , B] we obtain the equality B} =B, . So, for every b
B, we have b'yb = 1! =1/, which shows that each element b of the subgroup (B, ,o,) has a

left inverse with respect to his left identity 1! . Thus, subgroup (B, , ) is a group.

Proposition 2.2 For each two elements a, c of M°the map ¢ : B, — B! such that ¢(x) =

;o . .
1! xisan isomorphism.

Proof. By Theorem 1.4 (ii) the definition of the map ¢ Bg _)Bg is correct because 1! yx
XL yx

is the element of the group B/ . For any two elements x, y of B, the equalities are true:

(X oy y) = L y(x o y) = Liv(xyy) = (L yx)vy = [y 1 Tvy = (L y)v(LLvy) = o(x)
OY (P(y)v

which implies that the map ¢ is a homomorphism of the group (B, , »,) in group (B/, o).
Forevery b € B! we have 1!yb = b. because of this equality we have:

(17 y1l) = 1} y(1.vb) = 1! vb, obtaining that the elements1! y1/, 1! are solutions of equation

xyb = 1! y(1.yb), which has a unique solution. Thus, we have 1! y1! =1!. In the same way

we can prove even the equality 17 y1! =1!.
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If 1’yx = 1! yy for every two elements X, y of B, , then the equalities are true:
Loy(Lyx) = (L yLyvx = Lyx=x= L y(Lyx) = Ly(Lvy) = (Lylw=Ly=y,

which proved that the homomorphism ¢ is monomorphism. For each element y € B/

elementl] yy € B, Since the equalities are true:

O(Lyy) = L y(Lyy) = (Ly2l )y = Liyy =y,

monomorphism ¢ is epimorphism and consequently ¢ is isomorphism of group (B, ,e,) in

group

(B!, o).

Proposition 2.3 For each a € M °and for each element y I 1! is a j- right
identity element, (¥’d € M, dy1} =d).

Proof. For each elementd € M we take the equation xy1! =dy1! .

This equation has solution an element d and in the same way the element dy1! is its solution

because the equalities are true: (dy1} )y 1 =dy( 1 y1l)=dy 1.

From the iniquity of the solution of the equation, obtain that for every d € M we have
dy 1! =d, meaning the element d € M is y-right identity.

Proposition 2.4 If (M, +, (-),) is a planar 7=near-ring such that

¥(a, b) eM,a=pb<a=band V(yab) e Fx(M9)4 1 =1/,
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(M, +, ()p) is planar I*-near-field.
Proof. For three elements a, b, ¢ of M, where a = b and for each y e T" equation

ayx = byx + ¢ has only one solution. If a = 0, then a #» 0 and consequently A = {0}. Since for

eachy e ' (a, b) € (M°)? 1! =1/, for any two elements a, b different from zero of M, we

have B! = B/ = M¢°. Thus, M° = M\ {0} = M* = B! and therefore M° therefore is closed
with respect binary operation o, of M for which X o, y = xyy and forms the group in relation
with the operation inducted in it. Therefore, for each y € I" near-ring (M, +, ¢,) is planar by

definition 1.5 meaning (M, +, (-)r) is planar I'"-near-field by Proposition 1.6

If T-near-ring (M, +, (-)r) has no zero divisor, then it would call that 7/-near-ring is integral
domain. If these I'-near-ring (M, +, (-)r) is planar, then we would call it that planar 7=near-

ring is integral domain.
By the Proposition 2.4 we obtain:
Corollary 2.8 If (M, +, ()) planar /=near-ring is integral domain such as

¥ (a, b) e M? a=nb <a=b, then it is a planar 7=near-field.
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