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Abstract 

In this paper we introduce some results for planar - near-rings and planar - near-fields. 

Through new definition of -near -fields we prove a condition when a planar -near-ring is 

planar - near field. 
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1 .     Introduction 

Planarity is introduced in algebra by Marshall Hall in his prominent coordinasation 

of a projective plane by planar ternary rings [4]. At [6] J. L. Zemmer defined planar near-

field as a near-ring in which the equation ax = bx + c is a unique solution for every a  b. 

Michel Anshel and James R. Clay defined in [1] planar near-rings, which as expected, have 

geometric interpretations. Here we will give concepts and we will present same auxiliary  
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propositions, which we will use further in the presentation of the main results of the 

proceeding. Let consider M and  as two non empty sets.   

Let’s consider M and  as two non-empty sets.  Every map of M x  x M in M is called - 

multiplication in M and is denoted as ()  . The result of this multiplication for elements a, b 

 M and    is denoted  

a b. According to Satyanarayana [2], - near-ring is a classified ordered triple (M, +, () ) 

where M and   are non empty sets, + is an addition in M, while ()  is   - multiplication on 

M satisfying the following conditions:   

(i) (M, +) is a group.( not necessarily abelian) 

(ii)  (a, b, c, , )  M3x2, (ab)c = a(bc). 

(iii)  (a, b, c, , )  M3x, (a + b)c = ac + bc. 

 

An e element of -near-ring M is called identity element if for every a  M and every    

we have 

 a e = e a = a. 

Let (N, +) be a near – ring. The relation = m  such that a = m b if only if ax = bx for all xN is 

an equivalence relation and is called the relation of equal multipliers in N [3]. 

Definition 1.1 [3] Triple (N, +,  ) is planar near - ring when : 

       (i) The relation of equal multipliers = m  has at least three equivalence classes | N/ = m | 

  3 

       (ii)  (a, b, c, )  N3  a m b the equation ax = bx + c has unique solution for xN. 
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Let M be a -near-ring. We define in the M the each relation =m such that a =m b then and 

only then when ax = bx, for each x  M and for each    . Obviously, the relation =m is 

an equivalence relation.  

If a =m b we will say that a and b are equal multipliers. The relation =m we going to call it 

relation of the equal multipliers.  

Definition 1.2[5] - near-rings (M, +, ()) is called planar if: 

(i) Relation of the equal multipliers =m has at least three equivalence 

classes, meaning |M/=m |  3. 

(ii) For any three elements a, b, c of M such that a m b and for each   

,    

 xa = xb + c  has a unique solution in M . 

Example 1.3  

Let there be (Mn (P), +) the group of matrices of the order n with elements from a field P, 

with has at least three elements. For any subset  of nonsingular matrices set of order n with 

elements from the field P we define in Mn (P), - multiplication () such that for any two 

matrices A, B of Mn (P) and for each matrix   , we have 

                                                       A B = A || |B|, 

where ||, |B| are respectively the determinants of matrices , B. It is easy to be convinced 

that (Mn (P) +, ()) is -near-ring. In this -near-ring we have A =m B if and only if for any 

X  Mn(P)   X || |A| = X || |B|. 
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Taking a nonsingular matrix X, we have |A| = |B|. Since P has at least three elements we have 

at least three matrices that does not have the same determinants, therefore |Mn(P)/=m|  3. If 

A m B, meaning |A|  |B|, matrix equation X|| |A| = X|| |B| + C 

has the unique solution the matrix  X = 
 

1

| | | | | |
C

A B 
. 

Therefore, -near-ring (Mn (P), +, ()) is planar. 

For a planar -near-ring (M, +, ()) note A = {a  M | a =m 0} 

To make it easy write the set M\A = M. For each a  M and for each   , the equation  

xa = x0 + a = a there is a unique solution which is noted 1a


. It can happen that 1a


 = 1b


 

although a  b. For a a  M and for each     note 

                                         
aB

 = {b  M | 1a


b = b}. 

Theorem 1.4[5] For any planar -near-ring (M, +, ()) the following statements are true: 

(i) M = A  
( , )

a

a M

B

  

 
 
  

 

(ii) 
aB  M = 

aB
 for each a  M and for each   M. 

Definition 1.5[4] A -near-ring M is called -near -field if for every   , the near-ring  

                          M = (M, +,   ) is near-field. 

Let there be (M, +, ()) a planar -near-ring. If for every   , near-ring (M, +, ) is 

unitary, then (M, +, ())   would be called unitary planar -near-ring. If for each   , 

near-ring (M, +, ) is near-field, then (M, +, ()) will be called planar -near-field.[5]   
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Proposition 1.6 [5] If (M, +, ()) is a unitary planar -near-ring, then it is a planar  

                           -near-field. 

 

2. Results on planar – near –rings 

Theorem 2.1 Let be (M, +, ()) a planar -near-ring: 

For each    and for each a  M, 
aB

  is closed with respect to binary 

operation ° of M for which x ° y = xy and is a group in relation with the 

operation induced in it.  

Proof .For a  M we have 1a


a = a = 1a


(1a


a) = (1a


1a


)a. The equation xa = a there is 

a unique solution so we have 1a


1a


 =1a


. Thus, 1a


  

aB
 and consequently 1a


 in the left 

identity of subgroup  

(
aB

, °). 

Assume that a  is the unique solution to the equation xa =1a


, meaning aa =1a


. Then  

(1a


 a)a = 1a


(aa) = 1a


1a


 = 1a


. 

From the iniquity of the solution of the equation xa = 1a


 we have 1a


a= a so a  

aB

from Theorem1.4 

Let there be b an element of the subgroup (
aB

,°). For an element b there is an element  

b  
bB

 such that bb =1b


. 
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Now we will prove that 
aB

 =
bB

. Let c be an element of
aB


bB
, which is not empty 

because  

b  
aB


bB
. Then 1a


c = c = 1b


c. Thus, 1a


 and 1b


 are the solutions of the equation xc = 

c and hence from the iniquity of the solution of this equation we have  1a


 =1b


. From this 

equalities and definitions of sets
aB

,
bB

 we obtain the equality  
aB

 =
bB

. So, for every b  

aB
 we have bb = 1a


 =1b


, which shows that each element b of the subgroup (

aB
,°) has a 

left inverse with respect to his left identity1a


. Thus, subgroup (

aB
, °) is a group.     

Proposition 2.2 For each two elements a, c of M the map  : 
aB

  
cB

 such that (x) = 

1c

 x is an           isomorphism. 

Proof. By Theorem 1.4 (ii) the definition of the map 

1

:

cx x
a c

B B
 

    is correct because 1c


x 

is the element of the group
cB

. For any two elements x, y of
aB

 the equalities are true: 

 (x ° y) = 1c


(x ° y) = 1c


(xy) = (1c


x)y = [(1c


x) 1c


]y = (1c


x)(1c


y) = (x) 

° (y), 

which implies that the map  is a homomorphism of the group (
aB

, °) in group (
cB

, °). 

For every b  
cB

 we have 1c


b = b. because of this equality we have: 

(1a


1c


) = 1a


(1c


b) = 1a


b, obtaining that the elements1a


1c


, 1a


 are solutions of equation 

xb = 1a


(1c


b), which has a unique solution. Thus, we have 1a


1c


 =1a


. In the same way 

we can prove even the equality 1c


1a


 =1c


. 
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If 1c


x = 1c


 y for every two elements x, y of

aB
, then the equalities are true: 

  1a


(1c


x) = (1a


1c


)x = 1a


x = x = 1a


(1c


x) = 1a


(1c


y) = (1a


1c


)y = 1a


y = y, 

which proved that the homomorphism  is monomorphism. For each element y  
cB

 

element1a


y  

aB
Since the equalities are true: 

                        (1a


y) = 1c


(1a


y) = (1c


1a


)y = 1a


y = y, 

monomorphism  is epimorphism and consequently  is isomorphism of group (
aB

,°) in 

group  

(
cB

, °).  

Proposition 2.3 For each a  M and for each element   , 1a


 is a - right 

identity element, ( d  M, d1a


 = d). 

Proof.  For each element d  M we take the equation x1a


 = d1a


. 

This equation has solution an element d and in the same way the element d1a


 is its solution 

because the equalities are true:  (d1a


) 1a


 = d( 1a


1c


) = d 1a


. 

From the iniquity of the solution of the equation, obtain that for every d  M we have  

d 1a


 = d, meaning the element d  M is -right identity.  

Proposition 2.4 If (M, +, ()) is a planar -near-ring such that  

 (a, b)  M2, a =m b  a = b and  (, a, b)    (M)2, 1a


 = 1b


, 
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 (M, +, ()) is planar -near-field. 

Proof. For three elements a, b, c of M, where a  b and for each    equation 

 ax = bx + c has only one solution. If a  0, then a m 0 and consequently A = {0}. Since for 

each    (a, b)  (M)2, 1a


 =1b


, for any two elements a, b different from zero of M, we 

have 
aB

= 
bB

 = M. Thus, M = M\ {0} = M* = 
aB

 and therefore M  therefore is closed 

with respect binary operation °  of M for which x ° y = xy and forms the group in relation 

with the operation inducted in it. Therefore, for each    near-ring (M, +, °) is planar by 

definition 1.5 meaning (M, +, ()) is planar -near-field by Proposition 1.6 

If -near-ring (M, +, ()) has no zero divisor, then it would call that -near-ring is integral 

domain. If these -near-ring (M, +, ()) is planar, then we would call it that planar -near-

ring is integral domain. 

By the Proposition 2.4 we obtain: 

Corollary 2.8 If (M, +, ()) planar -near-ring is integral domain such as 

 (a, b)  M2, a =m b  a = b, then it is a planar -near-field. 
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