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Abstract

In [2] we defined the j-invariant of the elliptic curve over the ring
An = F3d [ε], εn = 0, in [5] we studied the elliptic curve over the ring A2,

and in [6] we defined the elliptic curve over the ring A3. In this work we
will study the elliptic curve over the ring A4; and we will prove that:

0 −→ ker
∼
π

i−→ E4
a,b

∼
π−→ E1

a0, b0
−→ 0 is a short exact sequence, and

is split when 3 doesn’t divide #E1
a0,b0

and, deduce some cryptographic
results.
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1 Introduction

Let d be a positive integer. We consider the quotient ring An = F3d [X]/(Xn),
where F3d is the finite field of order 3d, and n > 1. Then the ring An is iden-
tified to the ring F3d [ε], εn = 0. So we have:

An = {
n−1∑
i=0

xiε
i | (xi)06i6n−1

∈ F3d} [2], [3].

Similar as in [3] we have the following lemmas:

Lemma 1.1. Let X =
n−1∑
i=0

xiε
i. X is invertible in An if and only if x0 6= 0.

Lemma 1.2. An is a local ring, it’s maximal ideal is Mn = (ε).

Lemma 1.3. An is a vector space over F3d and have (1, ε, . . . , εn−1) as basis.

Remark 1.4. We denote by π the canonical projection defined by:

An
π−→ F3d

n−1∑
i=0

xiε
i 7−→ x0

2 Elliptic curves over the ring A4

Definition 2.1. We consider the elliptic curve over the ring A4 which is
given by the equation: Y 2Z = X3 + aX2Z + bZ3, where a, b ∈ A4 and −a3b is
invertible in A4, and denoted by E4

a,b . So we have:

E4
a,b = {[X : Y : Z] ∈ P2(A4) | Y 2Z = X3 + aX2Z + bZ3}

2.1 Classification of elements of E4
a,b

Proposition 2.2. Every element in E4
a,b is of the form [X : Y : 1] (where

X orY ∈ A4 rM4), or [X : 1 : Z] where X,Z ∈M4 and we write:
E4
a,b = {[X : Y : 1] | Y 2 = X3 + aX2 + b, and X orY /∈ M4} ∪ {[X : 1 : Z] | Z =

X3 + aX2Z + bZ3, andX,Z ∈M4}.
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Proof. Let [X : Y : Z] ∈ E4
a,b , where X, Y and Z ∈ A4.

• If Z is invertible then [X : Y : Z] = [XZ−1 : Y Z−1 : 1] ∼ [X : Y : 1].
Suppose that X, Y ∈M4; since Y 2 = X3 + aX2 + b, then b ∈M4, which
is absurd.

• If Z is non invertible then Z ∈M4, then we will have two cases for Y :

– Y invertible then [X : Y : Z] = [XY −1 : 1 : ZY −1] ∼ [X : 1 : Z].

– Y non invertible: we have Y and Z ∈M4 and since X3 = Z(Y 2−
aX2 − bZ2) ∈ M4, then X ∈ M4, we deduce that [X : Y : Z]
is not a projective point since (X, Y, Z) is not a primitive triple
[7, p.104-105].

So the proposition is proved.

Lemma 2.3. Let [X : 1 : Z] ∈ E4
a,b, where X,Z ∈ (ε).

If X = x1ε+ x2ε
2 + x3ε

3, then [X : 1 : Z] = [X : 1 : x31ε
3]

Proof. Since [X : 1 : Z] ∈ E4
a,b, X = x1ε+x2ε

2+x3ε
3 and Z = z1ε+z2ε

2+z3ε
3

then, X3 = x31ε
3 , aX2Z = a0x

2
1z1ε

3 and bZ3 = b0z
3
1ε

3, thus z1 = 0, z2 = 0
and z3 = x31.

2.2 The group law over E4
a,b

After classifying the elements of E4
a,b , we will define the group law over it. We

consider firstly the mapping
∼
π:

E4
a,b

∼
π−→ E1

π(a),π(b)

[X : Y : Z] 7−→ [π(X) : π(Y ) : π(Z)]

Theorem 2.4. Let P = [X1 : Y1 : Z1] and Q = [X2 : Y2 : Z2] two points in
E4
a,b , and P +Q = [X3 : Y3 : Z3].

• If
∼
π (P ) =

∼
π (Q) then :

X3 = Y1Y
2
2 X1+Y1

2Y2X2+2aX1
2X2Y2+2aX1X2

2Y1+2Z1Z2
2abY1+2Z1

2Z2abY2.

Y3 = Y1
2Y2

2 + 2a2X1
2X2

2 + a2bX1Z1Z2
2 + a2bX2Z1

2Z2.

Z3 = aX1X2(Y1Z2 + Y2Z1) + a(X1Y2 +X2Y1)(X1Z2 +X2Z1) + Y1Y2(Y1Z2 +

Y2Z1).

• If
∼
π (P ) 6= ∼

π (Q) then :
X3 = 2X1Y2Y1Z2+X1Y2

2Z1+2X2Y1
2Z2+X2Y1Y2Z1+2aX1

2X2Z2+aX1X2
2Z1.

Y3 = 2Y1
2Y2Z2+Y1Y2

2Z1+2aX1X2Y1Z2+aX1X2Y2Z1+2aX1
2Y2Z2+aX2

2Y1Z1.
Z3 = 2Y1

2Z2
2 + Y2

2Z1
2 + aX1

2Z2
2 + 2aX2

2Z1
2.
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Proof. By using the explicit formulas in [1, p. 236—238] we prove the theorem.

Lemma 2.5.
∼
π is a surjective homomorphism of groups.

Proof. The proof of this lemma is similar to the one of lemma 5 in [4, p.13].

2.3 The
∼
π homomorphism and results

Definition 2.6. We define on the set F3d
3 the law ∗ by:

(x1, x2, x3) ∗ (x′1, x
′
2, x
′
3) =

(
x1 + x′1, x2 + x′2, x3 + x′3 + 2a0(x

2
1x
′
1 + x1x

′
1
2)
)

Lemma 2.7. (F3d
3, ∗) is a group with (0, 0, 0) as unity, and the opposite of

(x1, x2, x3) is
(
2x1, 2x2, 2x3 + a0(x

2
1x
′
1 + x1x

′
1
2)
)
.

Lemma 2.8. Let [X : 1 : Z] and [X ′ : 1 : Z ′] in E4
a,b, where X,Z,X ′ and

Z ′ are as in lemma 2.3, we have:
[X : 1 : Z] + [X ′ : 1 : Z ′] = [X +X ′ + 2a(X2X ′ +XX ′2) : 1 : Z + Z ′].

Proof. Since Z = x1
3ε3, Z ′ = x′1

3ε3 then Z2 = Z ′2 = ZZ ′ = 0; and since
X,X ′ ∈ (ε) so, X2X ′2 = 0. Then, we conclude from theorem 2.4 .

Lemma 2.9. The subset G4 = {[X : 1 : Z] | X and Y ∈M4} is a subgroup
of E4

a,b, and every element in G4, not unity, is of order 9.

Proof. Let P = [X : 1 : Z] ∈ G4, we denote 2P = P + P and (n + 1)P =
nP +P for all n > 2. We have from lemma 2.8 : 2P = [2X(1+2aX2) : 1 : 2Z],
3P = [aX3 : 1 : 0] and 9P = [0 : 1 : 0], then the order of G4 divides 9 and is
not 3 since 3P 6= [0 : 1 : 0] when X 6= 0. So, the lemma is proved.

Lemma 2.10. The mapping

(F3d
3, ∗) θ−→ (E4

a,b,+)
(x1, x2, x3) 7−→ [x1ε+ x2ε

2 + x3ε
3 : 1 : x31ε

3]

is an injective homomorphism of groups.

Proof. From lemma 2.3 we deduce that θ is well defined and the image of zero
is zero, and from lemma 2.8 we prove that θ is an homomorphism of groups.
Now let (x1, x2, x3) ∈ F3d

3 such that θ(x1, x2, x3) = [0 : 1 : 0]. Then, [x1ε +
x2ε

2 + x3ε
3 : 1 : x31ε

3] = [0 : 1 : 0]; therefore x1 = x2 = x3 = 0. This prove that
θ is injective.

Lemma 2.11. ker
∼
π= Imθ.
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Proof. Let [x1ε+ x2ε
2 + x3ε

3 : 1 : x31ε
3] ∈ Imθ then,

∼
π ([x1ε+ x2ε

2 + x3ε
3 : 1 : x31ε

3]) = [0 : 1 : 0] and so, ker
∼
π⊇ Imθ.

Conversely let [X : Y : Z] ∈ ker
∼
π, then [x0, y0, z0] = [0 : 1 : 0], so Y is

invertible, and from proposition 2.2: X,Z ∈M4 so, [X : Y : Z] ∼ [X : 1 : Z];
and from lemma 2.3 [X : Y : Z] ∼ [x1ε+ x2ε

2 + x3ε
3 : 1 : x31ε

3] ∈ Imθ.
So ker

∼
π⊆ Imθ. Finally: ker

∼
π= Imθ.

From lemmas 2.5, 2.10 and 2.11, we deduce the following corollary.

Corollary 2.12. The sequence: 0 −→ ker(
∼
π)

i−→ E4
a,b

∼
π−→ E1

a0, b0
−→ 0 is

exact, where i is the canonical injection.

Theorem 2.13. Let N = #E1
a0,b0

. If 3 doesn’t divide N , then the short

exact sequence: 0 −→ ker(
∼
π)

i−→ E4
a,b

∼
π−→ E1

a0, b0
−→ 0, is split.

Proof. 3 doesn’t divide N , then 9 doesn’t divide N therefore there exists an
integer N ′ such that NN ′ = 1 mod 9so, ∃m integer such that 1−NN ′ = 9m.
Now let τ the homomorphism defined by :

E4
a,b

τ−→ E4
a,b

P 7−→ (1−NN ′)P

There exists an unique morphism λ, such that the following diagram commutes:

E4
a,b E4

a,b

E1
a0,b0

∼
π

λ

τ

Effectively: let P ∈ ker(
∼
π) = θ(F3

3d
), then: ∃(x1, x2, x3) ∈ F3d

3 such that:
P = [x1ε + x2ε

2 + x3ε
3 : 1 : x31ε

3]. We have from lemma 2.9: (1 − NN ′)P =

9mP = [0 : 1 : 0], then P ∈ ker(τ). It follows that ker(
∼
π) ⊆ ker(τ), this prove

the above assertion .
Now let us prove that

∼
π ◦λ = idE1

a0,b0
and take P0 ∈ E1

a0,b0
; since

∼
π is surjective

then ∃P ∈ E4
a,b such that

∼
π (P ) = P0. We have λ(P0) = (1 − NN ′)P = P −

NN ′P and, NP0 = [0 : 1 : 0] (since N = #E1
a0,b0

), then N
∼
π (P ) = [0 : 1 : 0]

and
∼
π (NP ) = [0 : 1 : 0] implies that NP ∈ ker(

∼
π) and so, NN ′P ∈ ker(

∼
π);

therefore
∼
π (NN ′P ) = [0 : 1 : 0] and, since λ(P0) = (1−NN ′)P = P −NN ′P

then:
∼
π ◦λ(P0) =

∼
π (P )− [0 : 1 : 0] = P0 and so:

∼
π ◦λ = idE1

a0,b0
.

Finally the sequence is split.
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Corollary 2.14. If 3 doesn’t divide #E1
a0,b0

then, E4
a,b
∼= F3d

3 ⊕ E1
a0,b0

.

Proof. From the theorem 2.13 the sequence is split then, E4
a,b
∼= ker(

∼
π)⊕E1

a0,b0
,

and since ker(
∼
π) ∼= Imθ ∼= F3d

3 therefore, the corollary is proved.

2.4 Cryptographic application

From the corollary 2.14 we deduce the following results:

• #E4
a,b = 27d.N

• The Discrete Logarithm on the elliptic curve E4
a,b is equivalent to the one

on E1
a0,b0

.

• If the Discrete Logarithm on E4
a,b is trivial then we can break it on the

elliptic curve E1
a0,b0

with trivial attacks.
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