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Abstract

In [2] we defined the j-invariant of the elliptic curve over the ring
Ay, = F3ale],e™ = 0, in [5] we studied the elliptic curve over the ring As,
and in [6] we defined the elliptic curve over the ring As. In this work we
will study the elliptic curve over the ring A4; and we will prove that:
0 — ker 7—> Eﬁ,b SN Eéo,bo
is split when 3 doesn’t divide #Eio,bo and, deduce some cryptographic

results.

— 0 is a short exact sequence, and
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1 Introduction

Let d be a positive integer. We consider the quotient ring A,, = Fsa[X]/(X™),
where Fsq is the finite field of order 3¢, and n > 1. Then the ring A, is iden-
tified to the ring Fsa[e],e” = 0. So we have:

n—1

An=A{) wie' | (@)gcicnms € Faa} [2], 13].

=0
Similar as in [3] we have the following lemmas:

n—1

Lemma 1.1. Let X = Zmiai. X s invertible in A, if and only if xq # 0.
i=0

Lemma 1.2. A, is a local ring, it’s mazimal ideal is M, = (¢).

n—l)

Lemma 1.3. A, is a vector space over Fsa and have (1,¢,... ¢ as basis.

Remark 1.4. We denote by w the canonical projection defined by:

An L) ]ng

n—1
E et — X
i=0

2 Elliptic curves over the ring A,

Definition 2.1. We consider the elliptic curve over the ring A, which is
given by the equation: Y?Z = X3 +aX?Z +bZ3, where a,b € Ay and —a?b is
invertible in Ay, and denoted by E,, . So we have:

Ely={[X Y : Z) € Po(Ay) | Y?Z = X* + aX*Z + b2Z*}

2.1 Classification of elements of Efib

Proposition 2.2. Every element in E,, is of the form [X : Y : 1] (where
XorY € Ay~My), or [X : 1: Z] where X, Z € M, and we write:
Efy = {[X:V:1]|Y?= X3+ aX2+band X orY ¢ My} U{[X :1:2]| Z =

X34+ aX?Z +073, and X, Z € My}.
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Proof. Let [X :Y : Z] € E;, , where X, Y and Z € A,.

a

e If Z is invertible then [X : YV : Z] = [XZ7':YZ ' : 1]~ [X: Y : 1].
Suppose that X, Y € 9My; since Y2 = X3 +a X%+, then b € M, which
is absurd.

e If Z is non invertible then Z € 9, then we will have two cases for Y:

— Y invertible then [X : Y : Z] = [XY ' :1: ZY |~ [X : 1: Z].

— Y non invertible: we have Y and Z € 9, and since X? = Z(Y?—
aX? —07?%) € My, then X € My, we deduce that [X : YV : 7]
is not a projective point since (X,Y,Z) is not a primitive triple
[7, p.104-105].

So the proposition is proved. O

Lemma 2.3. Let [X :1: Z] € E},, where X, Z € (¢).
If X = w16+ m96® + w363, then [X : 1: Z] = [X : 1: 23&3)

Proof. Since [X :1: Z] € E;,, X = x1e4a26”+a3e® and Z = 216+ 208+ 23¢°
then, X3 = 233 | aX?Z = apa?z183 and bZ3 = byz3e3, thus 2y = 0, 2 = 0
and z3 = 3. ]

2.2 The group law over Ef;?b

After classifying the elements of E?, | we will define the group law over it. We

a,b
consider firstly the mapping 7:
4 i 1
Eay — B ) xm)
(X:Y:Z] — [7n(X):7n(Y):nw(Z2)]

Theorem 2.4. Let P = [X; : Y] : Z1] and Q = [Xs : Yy : Zy] two points in
E;{b ,and P+ Q = [X3:Ys: Z3).
o If T (P)=7(Q) then :
X3 = VY2 X14+Y12Y2 Xo4+2a.X12 X0 Yo +2a X1 Xo?Y1 4271 Zo?abY1+271% ZrabYs.
Ys = Yi2Ys? + 242X 12 X% + a?b X1 Z1 252 + 020X 2,2 Z,.
Zs =aX 1 Xo(Y1Z + Yo Zh) + CL(X1Y2 + XoY1) (X122 + XQZl) + Yo (Y122 +
YoZy).

o If T (P)# 7 (Q) then :
X3 = 2X1YaY1 Zo+X1Y22 2142 X5 Y12 204+ Xo V1Yo Z1 420X 12 Xo Zo+a X1 X527, .
Yz = 2Y12Yo Zo+Y1Yo2 Z1+2a X1 Xo Y1 Zo+a X1 Xo Yo Z1+2a X1 %Yo Zo+aXo* Y1 71 .
Z3 = 2Y1275% + Y22 7% + a X2 Zy% + 2aX,% 7,2,
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Proof. By using the explicit formulas in [1, p. 236—238| we prove the theorem.
O

Lemma 2.5. 7 is a surjective homomorphism of groups.

Proof. The proof of this lemma is similar to the one of lemma 5 in [4, p.13].
O

2.3 Then homomorphism and results

Definition 2.6. We define on the set Fsa® the law * by:
(1, T2, 23) * (21,22, 2'3) = (@1 + &'1, 22 + 2’5, 75 + 5 + 2a0(x2] + 212/12))

Lemma 2.7. (F3.%, %) is a group with (0,0,0) as unity, and the opposite of
(21, 22, x3) i (2m1, 229,23 + ag(zir) + xlx’lg)).

Lemma 2.8. Let [X : 1: Z] and [X':1: Z'] in E},, where X, Z, X" and
Z' are as in lemma 2.8, we have:
(X :1:Z]+[X:1: 2= [X+ X'+ 2a(X?X'+ XX?):1: Z+ 7.

Proof. Since Z = 1,3, 7' = 2/%¢® then 2% = Z? = ZZ' = 0; and since
X, X" € (¢) so, X2X"* = 0. Then, we conclude from theorem 2.4 . ]

Lemma 2.9. The subset Gy = {[X :1: Z] | X andY € M4} is a subgroup

of Eib, and every element in Gy, not unity, is of order 9.

Proof. Let P = [X :1: Z] € G4, we denote 2P = P+ P and (n+ 1)P =
nP+ P for all n > 2. We have from lemma 2.8 : 2P = [2X (1+2aX?) : 1: 2Z],
3P =[aX?:1:0] and 9P = [0 : 1 : 0], then the order of G4 divides 9 and is
not 3 since 3P # [0 : 1: 0] when X # 0. So, the lemma is proved. O

Lemma 2.10. The mapping

(Fsi®,%) = (Ey+)
(21, T2,23) +— [T16 + 2% 4 w383 1 11 23e?]

s an injective homomorphism of groups.

Proof. From lemma 2.3 we deduce that 6 is well defined and the image of zero
is zero, and from lemma 2.8 we prove that # is an homomorphism of groups.

Now let (21,79, 73) € Fya® such that 6(zy, 29, 23) = [0 : 1:0]. Then, [z +
Toe® 4+ 238 1 1: 233 = [0: 1: 0]; therefore x; = x9 = x3 = 0. This prove that
0 is injective. n

Lemma 2.11. ker 7= Im§.
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Proof. Let [x1e + m2e® + 2383 : 1 : 23e®] € Im0 then,

T ([216 + 9 4+ 233 : 1 : 23¢%]) = [0 : 1: 0] and so, ker 72 I'mé.

Conversely let [X : Y : Z] € ker 7, then [zg,90,2] = [0 : 1 : 0], so Y is
invertible, and from proposition 2.2: X, Z € My so, [X : Y : Z] ~[X : 1: Z];
and from lemma 2.3 [X : YV : Z] ~ [z16 + @9e? + 2363 : 1 : 23e%] € Imb.

So ker 7C Im#. Finally: ker 7= I'mé. u

From lemmas 2.5, 2.10 and 2.11, we deduce the following corollary.

1

Corollary 2.12. The sequence: 0 —s ker() s El, By —0 s

exact, where i is the canonical injection.

Theorem 2.13. Let N = #FE! If 3 doesn’t divide N, then the short

0,b0

ezact sequence: 0 —s ker(m) — E} "5 E!

— 0, 1is split.

Proof. 3 doesn’t divide NV, then 9 doesn’t divide N therefore there exists an
integer N/ such that NN’ = 1 mod 9so, Im integer such that 1 — NN’ = 9m.
Now let 7 the homomorphism defined by :

By — By
P +— (1-NN)P
There exists an unique morphism A\, such that the following diagram commutes:

T

4
Ea,b

4
Ea,b

1
ag,bo

Effectively: let P € ker(m) = 0(F3,), then: 3(z1,22,73) € Fsa® such that:
P = [z16 + m9e® + 23 : 1 : 23¢3]. We have from lemma 2.9: (1 — NN')P =
9mP = [0:1:0], then P € ker(7). It follows that ker() C ker(r), this prove
the above assertion .

Now let us prove that T o\ = idp: , and take Py € E;O bo; SinCE T is surjective
@0,%0 ’

then 3P € Ej;, such that 7 (P) = Py. We have \(P)) = (1 - NN')P =P —
NN'P and, NPy =[0:1:0] (since N =#E, , ), then N T(P)=1[0:1:0]

and 7 (NP) = [0 : 1 : 0] implies that NP € ker(r) and so, NN'P € ker(r);
therefore 7 (NN'P) = [0 : 1: 0] and, since A(Py) = (1— NN')P = P— NN'P
then: T oA(Py) =7 (P) —[0:1:0] = Py and so: T o\ = id g

ag,bg

Finally the sequence is split. [
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Corollary 2.14. If 3 doesn’t divide #E* , then, Efib >~ Fa0® @ E}

ag,bo ao,bo

Proof. From the theorem 2.13 the sequence is split then, E;l,b = ker(%)@E !

ao,bo”

and since ker(%) = I'mf =2 Fsq® therefore, the corollary is proved. O

2.4 Cryptographic application

From the corollary 2.14 we deduce the following results:
° #E;{b = 274N

e The Discrete Logarithm on the elliptic curve E;{b is equivalent to the one

1
on an,bo'

e If the Discrete Logarithm on Ej , is trivial then we can break it on the

elliptic curve B, with trivial attacks.
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