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Abstract 

 

   In this paper we introduce a new class - �	�	�	- of operators acting on a complex 

Hilbert space �: If � ∈ 	
�� then � ∈ �	�	� if �� 
 ��∗�. We investigate some basic 

properties of operators in�	�	�. We study the relation between the class �	�	� and some 

other well known classes of operators acting on �. 
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  1- Introduction  

 

Let � be a complex Hilbert space and let 	
�� be the algebra of all bounded linear 

operators acting on	�. If � ∈ 	
�� then �∗	is its adjoint and � 
 � � �� is its 

Cartesian decomposition. Many classes of operator in		
�� are defined according to 

the relation between � and �∗, for example � is normal if and only if ��∗ 
 �∗�	; 2-

normal – [ 2 ] – if and only if ���∗ 
 �∗��	; skew-normal – [ 5 ] -  if and only if 
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 �� 
 �∗� ; quasinormal –[ 1 ]- if and only if ��∗� 
 �∗��. In this paper we 

consider operators in 	
�� for which �� 
 ��∗�. The class of all such operators will 

be denoted by  �	�	�. In section two we study some of the basic properties of operators 

in �	�	�. In section three we study the relation between the class �	�	� and some other 

previously studied classes of operators in 	
��. 
 

 

2. Preliminary notes 

 

We start section two by a characterization of operators in �	�	�. 
 

Proposition 2.1 If  �

 � � ��� ∈ 	
�� then � ∈ �	�	�	if and only if �� 
 ��. 

 

Proof. By direct calculations we have 

            �� 
 
	�� ���� � �
�� � ���		� � � � ��� 
�� 
 and  

       ��∗� 
 �
	�� � ��� � �
�� � ���		� � � � ��� 
���	 
Suppose first that �� 
 �� then clearly �� 
 ��∗�	. Suppose 

now that �� 
 ��∗� then it follows from 
�� and 
��� above that 
	�� � ��� 
�
	�� � ���	which implies that �� 
 ��. 

 

Proposition 2.2 If � ∈ 	
�� such that �� 
 0 then � ∈ �	�	�. 
 

Proof.  Obvious . 

 

Remark 2.1 It follows from proposition 2.2 that for each real number a each of the 

following operators acting on the two dimensional Hilbert space �� is in �	�	� ∶  �		a		 			a�a �a�	, ��a �a			a 			a�	, �a �aa �a�	, ��a a�a a�  . 
 

Proposition 2.3 If �, � ∈ 	
�� are unitarily equivalent and if � ∈ �	�	� then so is �. 
 

Proof.  By assumption, there is a unitary operator � ∈ 	
�� such that � 
 	����� 

which implies that �∗ 
	�∗�∗
����∗ 
 	�∗�∗
�∗���	. Thus we have �� 	
 	���������� 
	������………………………… . 
�� . 
and ��∗� 
 �	�∗�∗
�∗����∗�∗
�∗��� 
	��∗�∗�
�∗���…
���		 
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Since � is unitary, ��� 
 		�∗ and using the fact that  �� 
 	��∗�	we conclude that  ������ 
	��∗�∗�
�∗���	. Thus �� 
	��∗�	, which implies that � ∈ �	�	�. 
The following example shows that If	� ∈ �	�	� then it is not necessary that � � !" ∈ �	�	� for all real numbers: 

 Example 2.1 Consider the  operators � 
 �			1 			1�1 �1�		 acting on ��	then	� ∈ �	�	�. 
Consider the  operators � � " 
 �			2 			1�1 			0� 
 � (say) then by direct calculations one 

can show 

 that �� 
 	� 				3 					2		�	2 		�1	� 	& ��3 2�2 1� 
 ��∗�. Thus  � ∉ �	�	�.   
 

The following example shows that �	�	� is not closed under addition or multiplication. 

 

Example 2.2 Consider the two operators � 
 �1 �11 �1�	, ( 
 �			1 			1�1 �1�	 acting on 

��	then	�	, ( ∈ �	�	�. Consider � � ( 
 	�2 				00 �2� 
 �, (say ) then �� 
 �4 00 4� &��4 			0			0 �4� 
 	��∗�. Thus � � ( ∉ �	�	�. 
Now consider �( 
 �2 22 2� 
 2"	,then 
�(�� 
 4" & �4" 
 �
�(�∗�. Thus �( ∉ 	 �	�	�.  
 Notice that �( 
 �2 22 2� 	& 	 ��2 			2			2 �2� 
 	�(�	 
 

Proposition 2.4 If �	, ( ∈ �	�	� such that	�( 
 �(� then  � � (	 ∈ �	�	�. 
 

Proof. Since �( 
 �(� then �( � (� 
 0 which implies that  �∗(∗ � (∗�∗ 
 0	. Now  
� � (�� 
 �� � �( � (� � (� 	
 	�� � (�	 � 
� � (�∗� 
 �
�∗� � �∗(∗ � (∗�∗ � (∗�� 
 �
�∗� � (∗��	 
Since �
�∗� � (∗�� 
 �� � (�, we have                                  
� � (�� 
 � 
� � (�∗�	which implies that � � (	 ∈ �	�	�. 
 

Proposition 2.5 The direct sum and the tensor product of two operators in �	�	� are in �	�	�. 
  

Proof . Let * 
 	*�	⊕x� be an element of �⊕H		 and let � and ∈ �	�	� . then  
	�	 ⊕ �	��* 
 
	�	 ⊕ �	��
		*�	⊕x�� 



 

1218                                                                                                    Adnan A. S. Jibril 

 

 																								
 
T�⊕ S��	
		*�	⊕ x�� 							
 T�	*�	⊕ S�x� 																	
 �T∗�	*�	⊕�S∗�x� 																														
 �0	Tٍ∗�⊕ S∗�1
	*�	⊕	x�� 
 

         
 �
�	 ⊕ ��	∗�*. 
Thus 
	� ⊕ �	�� 
 �
� ⊕ ��∗�. Hence  �⊕ � ∈ 2	�	3. 
ِِِAlso  
	�	 ⊗ �	��* 
 
	�	 ⊗ �	��
		*�	⊗x�� 																								
 
T�⊗ S��	
		*�	⊗ x�� 									
 T�	*�	⊗ S�	x� 																			
 �T∗�	*�	⊗�S∗�x� 																																
 �0	Tٍ∗�⊗ S∗�1
	*�	⊗	x�� 
                                                
 �
�	 ⊗ ��	∗�*. 
Thus 
	� ⊗ �	�� 
	�
�	 ⊗ ��	∗�. Hence � ⊗ �	 ∈ 2	�	3. 
 

The following example shows that �	�	� is not convex : 

 

Example 2.3  Consider the two operators � 
 �2 �22 �2�	, ( 
 �			2 			2�2 �2�	 acting on 

��	then	�	, ( ∈ �	�	�. Consider 
��� � ��( 
 	�2 				00 �2� 
 �, (say ) then �� 


�4 00 4� & ��4 			0			0 �4� 
 ��∗�. Thus � ∉ �	�	�. 
 

Proposition 2.6 The class �	�	�  is closed in the strong operator topology. 

 

Proof. Let {�5} be a sequence of operators in �	�	� that converges strongly to an 

operator S in L(H ) i.e. �5 6→ 	� then 

║�5* �	� x ║→ 0	89	:	 → 	∞	for each * ∈ H. Thus 

║ �5∗ 	x ��∗*	║ 
 ║	
�5 � ��∗*║ < ║
�5 � ��∗║║x║=║�5 � �║║x║→ 0 as n → 

∞ .Thus �5∗ 6→�∗	.	Since the product of operators is sequentially continuous in the 

strong operators topology – [ 1 ]- , �5∗� 6→	�∗� ,which implies that ��5∗� 6→	��∗�,  and �5� 6→	��. Since {	�5} is a sequence of operators in �	�	� then ��5∗� 
 �5�  which 

implies that �5� 6→��∗�. Since the limit is unique, �� 
 ��∗�. Thus � ∈ �	�	� which 

implies that �	�	� is closed in the strong operator topology. 
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3. Main results 

 

In this section we study the relation between the class �	�	� and some other classes of 

operators in 	
��. We start by showing that the class �	�	� and some other classes of 

operators in 	
�� are independent. 

 

Proposition 3.1 If  � ∈ 	
�� is hermitian such that	� ∈ �	�	� then � 
 0. 
Proof . Since ∈ �	�	� , �� 
 ��∗�. Since	� is hermitian , the last equation implies that �� 
 0 which implies (Since	� is hermitian )  that � 
 0. 
Since there are nonzero hermitian operators ( such as the identity operator I ) and 

since there are nonzero operators in �	�	� ( for example any operator in remark 2.1 ) 

then we have: 

 

Proposition 3.2 The class of all hermitian operators and the class �	�	� are 

independent. 

 

Proposition 3.3 The class of all normal operators and the class �	�	� are independent. 

Proof . A nonzero hermitian operator is a normal operator which is not in �	�	�. 
The operator � 1 1�1 �1� is a nonnormal operator which is in �	�	�.  
 

Proposition 3.4 If � ∈ �	�	� such that �� is unitarily equivalent to �∗ then � is 

normal. 

 

Proof. Since �� is unitarily equivalent to �∗, there is a unitary operator � such that �∗ 
 ����∗	which implies that � 
 ��∗��∗	. Now it is easy to show that  ��∗ 
���=�∗ 
 �∗�. Thus � is normal . 

 

Proposition 3.5 The class of all skew-adjoint operators (� 
 ��∗� and the class �	�	� 
are independent. 

 

Proof. The operator �			1 			1�1 �1� is a non-skew-adjoint operator which is in �	�	�.  
The operator �			0 	1�1 	0� is a skew-adjoint operator which is not in �	�	�.  
 

Proposition 3.6 If  � ∈ 	
�� is skew-adjoint such that	� ∈ �	�	� then � 
 0. 
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Proof. Let � ∈ 	
�� be skew-adjoint and let � 
 � � ��  be  its Cartesian 

decomposition. Since � is skew-adjoint � 
 ��∗ which implies that  � 
 0. Thus �� 
 0. Since � ∈ �	�	� then , by ,Proposition 2.1, �� 
 0	which implies ( Since � is 

hermitian) that � 
 0. Thus � 
 0. 
 

Proposition 3.7 The class of all isometric operators and the class �	�	� are 

independent. 

 

Proof. The identity operator " is an isometric operator and " ∉ �	�	�. 
The operator � 
 �			1 			1�1 �1� is in �	�	� but �∗� 
 �2 22 2� & ". 
Proposition 3.8 If � ∈ �	�	� is idempotent then � 
 0. 
 

Proof. Since � ∈ �	�	�,	�� 
 ��∗�. Since  � is idempotent , �� 
 � which implies 

that ��∗� 
 ��∗. Thus  � 
 ��∗. Thus � is skew-adjoint. The result now follows 

from proposition 3.6 

 

Corollary 3.1 If � ∈ �	�	� is similar to an idempotent then � 
 0 

 

Proof. Since any operator similar to an idempotent is idempotent,	� is idempotent.  

The result now follows immediately from proposition 3.8. 

 

Proposition 3.9 The class of all idempotent operators and the class �	�	� are 

independent.  

 

Proof. We prove the result by the following two examples.  

 

Example 3.1. Consider the operator � 
 �0 			10 			1� acting on �� then direct 

calculations shows that �� 
 �0 			10 			1� 
 �	. Thus � is idempotent. However it can be 

shown that		�� 
 �0 			10 			1� & ��∗� 
 �			0 					0�1 	�	1�	. Thus � ∉ 	 �	�	�. 
 

Example 3.2. The operator � 
 ��1 			1�1 			1� acting on �� is in �	�	� but �� 

�	0 			0	0 				0	� 	& S . Thus � is not idempotent.  
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In [ 2 ] the author introduced the class of 2-normal operators in 	
��	: � 
 � � �� ∈ 	
�� is called 2-normal if ��� 
 ��� and  ��� 
 ���. Several characterizations of 

2-normal operators were given in [ 2 ] such as : � ∈ 	
�� is 2-normal if and only if ���∗ 
 �∗��;	if and only if �� is normal. The class of all 2-normal operators is 

denoted by [2N]. 

 

Proposition 3.10 If � ∈ 	
�� is a � �operator then � ∈ [2N]. 

 

Proof . Let 
 � � �� . Since � ∈ �	�	�	, �� 
	��. Multiplying the last equation on the 

left and then on the right by � we get  ��� 
 �? 
 ���. Also Multiplying �� 
	�� on the left and then on the right by � 

we get ��� 
 �? 
 ��� . Thus � is       2-normal. 

 

Corollary 3.2 If �, � � !" ∈ �	�	� for some nonzero complex number	! then � is 

normal. 

 

Proof. Since �, � � !" ∈ �	�	� then – by proposition 3.10 -  �, � � !" are 2-normal 

operators. The result now follows from ( [ 2 ] , proposition 3.3 , p. 193 ) 

 

Remark 3.1 The converse of proposition 3.10 is not in general true. A nonzero 

hermitian operator in 	
�� is a 2-normal    operator which is not in �	�	�. 
 

Definition 3.1 If 	� ∈ 	
�� then � is called quasinormal if ��∗� 
 	�∗��. 

 

Proposition 3.11  If 	� ∈ 	
�� such that � is 2-normal andquasinormal then � is 

normal. 

 

Proof. ( [ 2 ] , proposition 2.3, p. 193 ). 

 

Using proposition 3.11 we conclude two facts : 

 

The first is that there are operators in 2	�	3 which are not quasinormal since otherwise 

all operators in 2	�	3 would be normal which is not true. 

The second is that there are quasinormal operators which are not in 2	�	3 since 

otherwise  all quasinormal operators would be normal which is not true.  

 

From the previous discussion we have: 
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Proposition 3.12 .The class 2	�	3 and the class of all quasinormal  

 

operators are independent.  

 In [ 3 ] the author introduced the class of ∝ �operators : � ∈ 	
�� is called an ∝�	operator if �? 
	�∗. The class of all ∝ �operators is denoted by 
∝�.  
 

In the following we give an example of a an operator which is in �	�	� but not in 
∝�: 
 

Example 3.3 Consider the operators � 
 �			1 			1�1 �1�	 acting on ��	then � ∈
�	�	�	.	Now it is easily shown that �? 
 �0 00 0� & 		 �∗ 
	�1 �11 �1�	. Thus � ∉ 	 
∝�	. 
In the following we give an example of a an operator which is in  
∝� but not in �	�	� ∶ 
 

Example 3.4 Consider the operators � 
 �			0 1�1 0�	 acting on ��	then �? 

�0 �11 			0� 
 	�∗. Thus � ∈ 
∝� . However one can easily show that �� 

��1 					0			0 		�1�	while ��∗� 
 �1 					00 				1�	. Thus � ∉ �	�	�.	 
 

Using the last two examples we conclude that 

 

Proposition 3.13 The two classes �	�	� and 
∝� are independent.                                                            

 

In [ 4 ] the author introduced the class of subprojection operators in 	
��	: � ∈ 	
�� 
is called a subprojection if �� 
 	�∗.	The class of all subprojections is denoted by �
��. In the following we give an example of an operator in �	�	� which is not in �
��: 
 

Example 3.5 Consider the operators � 
 �			1 			1�1 �1�	 acting on �� then – by remark 

2.1 - � ∈ �	�	�. However  �� 
	�0 					00 						0� & 	 �			1 	�	1			1 		�1� 
 �∗.	Thus � ∉ �
��. 
 In the following we give an example of an operator in �
�� which is not in �	�	�: 
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 Example 3.6 Consider the operators � 
 B	�	�� 			√?��	√?� � ��
D	 acting on ��then �� 


B	�	�� 	�	√?	�				√?� � ��
D & �	B 		�� 	�	√?�			√?� 						�� D 
 ��

∗�. 
 

Thus � ∉ �	�	�.	However one can easily show that �� 
 

 

B	�	�� 	�	√?	�				√?� � ��
D 
 	�∗.	Thus � ∈ �
��. 

 

We conclude from the last two examples: 

 

Proposition 3.14 The two classes �	�	� and �
�� are independent. 

 

Proposition 3.15 If � ∈ �	�	� ∩ �
��	then � 
 0. 

 

Proof. Since � ∈ �
��, �� 
 �∗	which implies that ��∗� 
 ��. 
  Since � ∈ �	�	�, �� 
 ��∗� which implies that � 
 ��∗. Thus if � 
 � � ��	then 

the last the last equation implies that	� � �∗ 
 0 which implies that � 
 0. Since �� 
 ��, �� 
 0 which implies ( since � is hermitian ) that � 
 0. Thus � 
 0. 
In [ 6 ] Kutkut introduced a new class  of operators which he called the class of 

parahyponormal operators : � ∈ 	
�� is called parahyponormal if ║�	*║ 2
≤  

║	��∗*║, for all * in � with ║	*║ =1,or equivalently, ( [ 8 ] ,Theorem 1.1, p74), if 

and only if for every λ > 0. F� +�∗� 	
��∗�� � 2F. The class of all parahyponormal 

operators is denoted by Phn(H). In the following we give an example of an operator 

which is in Phn(H) but not in �	�	� .  
 

Example 3.7 The operator � 
 �	1 01 1� acting on ��is in Phn(H) ( [ 6 ], p.83) but 

direct calculations shows that �� 
  �	1 02 1� & 	 �	�1 �20 �1� 
 	��∗�. Thus � ∉ �	�	�.	 
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In the following we give an example of an operator which is in �	�	�	but not in 

Phn(H). 

 

Example 3.8 The operator � 
 �	0 01 0� is not in Phn(H) ( [ 6], p.81). However and 

by direct calculations one can show that �� 
 0. Thus � ∈ �	�	�. 
From the last two examples we conclude that 

 

Proposition 3.16 The two classes �	�	� and Phn(H)  are independent. 
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