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Abstract

In this paper we introduce a new class - [ 4] - of operators acting on a complex
Hilbert space H: If T € L(H) then T € [ u ] if T? = —T*2. We investigate some basic
properties of operators in[ ¢ |. We study the relation between the class [ 4 ] and some
other well known classes of operators acting on H.
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1- Introduction

Let H be a complex Hilbert space and let L(H) be the algebra of all bounded linear
operators acting on H. If T € L(H) then T"is its adjoint and T = A+ iB is its
Cartesian decomposition. Many classes of operator in L(H) are defined according to
the relation between T and T*, for example T is normal if and only if TT* = T*T ; 2-
normal — [ 2 ] —if and only if T?T* = T*T? ; skew-normal — [ 5 | - if and only if
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T? =T*? ; quasinormal —[ 1 ]- if and only if TT*T = T*T?2. In this paper we
consider operators in L(H) for which T? = —T*2. The class of all such operators will
be denoted by [ u |. In section two we study some of the basic properties of operators
in [ u]. In section three we study the relation between the class [ ¢ | and some other
previously studied classes of operators in L(H).

2. Preliminary notes
We start section two by a characterization of operators in [ u ].
Proposition 2.1 If T(= A+ iB) € L(H) then T € [ u ] if and only if A> = B2,

Proof. By direct calculations we have
T?=(A*-B?)+i(AB+B4) ——————— (D)
and
-T*?2=—-(A4>-B?*)+i(AB+BA) — —————— (i)
Suppose first that A> = B2 then clearly T? = —T*2 . Suppose
now that T2 = —T*? then it follows from (i) and (ii) above that (A% — B?) =
—( A? — B?) which implies that A2 = B2,

Proposition 2.2 If T € L(H) such that T2 = 0 then T € [ u .
Proof. Obvious .

Remark 2.1 It follows from proposition 2.2 that for each real number a each of the
following operators acting on the two dimensional Hilbert space R? isin [ u ] :

a a —a —a\ (a -—a —a a
(—a —a) ’( a a) ’(a —a) '(—a a) ’
Proposition 2.3 If S, T € L(H) are unitarily equivalent and if T € [ u | then so is S.

Proof. By assumption, there is a unitary operator U € L(H) such that S = U™1TU
which implies that $* = U*T*(U™1)* = U*T*(U*)"!. Thus we have
S = UTITUU™ITU = UTIT2U i (D)
and
_S*Z — U*T*(U*)—lU*T*(U*)—l — _U*T*Z(U*)—l (ii)
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Since U is unitary, U"! = U* and using the fact that T? = —T*? we conclude that
U™T?U = —U*T*?(U*)™1. Thus S = —S*2, which implies that S € [ u ].

The following example shows that If T € [ i ] then it is not necessary that T + kI
€ [ u ] for all real numbers:

Example 2.1 Consider the operators T = (_1 _D acting on R%thenT € [u].
Consider the operators T + [ = (_i (1)) = § (say) then by direct calculations one
can show

2 _ 3 2 =3 2\ _ o=
that §2 = (_2 _1) ;t(_z 1)— S$*2. Thus S & [ul].

The following example shows that [ u | is not closed under addition or multiplication.

Example 2.2 Consider the two operators T = (1 _1) JF = (_1 _i) acting on

1 -1 1
2 . _ 2 0 _ 2 _ 4 0
R%thenT ,F € [u]. Consider T + F = (0 _2) =S, (say ) then §° = (0 4) *

(_4 0) = —S2. ThusT+F ¢ [u].

0 —4
. _ 2 2 _ 2 _ — *2
Now consider TF_(2 2)_21 then (TF)? =4l # —41 = —(TF)*2. Thus
TF& [ul]
. 2 2 —2  2\_ _
Noticethat TF = (5 ) = (75 _5)= —FT

Proposition 2.4 If T ,F € [ ] suchthat TF = —FT then T+ F € [u].

Proof. Since TF = —FT then TF + FT = 0 which implies that

T*F*+ F*T* = 0. Now

(T+F)>=T*+TF+FT+F? = T?>+F?

—(T+F)?==T*?+T*F*+ F'T*+ F*?) = —(T*? + F*?)

Since —(T*? + F*?) = T? + F2, we have (T+F)?=-
(T + F)*? which implies that T + F € [ u].

Proposition 2.5 The direct sum and the tensor product of two operators in [ ¢ | are in

[u]

Proof.Letx = x; @ x, beanelementof H@ H andletT and € [ u ] . then
(T ®S)Yx=(T ®S)(x ©xp)
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= (TZ ) SZ) (x Dxy)

= TZ X1 69 SZXZ

— _T*Z X, EB _S*ZXZ

— _( T*Z ea S*Z)(xl ea XZ)

=—(T ®S) *x.
Thus (T@ S)? = —(T D S)?. Hence TA S €[ u].
Also
(T ®S)x=(T @S)(x ®x)
=(T?®5?) (11 ®xz)
=T?x, ®S?x,
= _T*2 x ® —S*ZXZ
= —(T*Z ® 5*2)(351 ® xz)
=—(T ®S) *x.
Thus (T® S)?* = —(T ®S)*>.Hence T® S €[ pu].

The following example shows that [ u | is not convex :

: _(2 =2 _( 2 2 :
Example 2.3 Consider the two operators T = (2 _2) JF = (_2 _2) acting on

2 O)=S, (say ) then S?%=

2 1 l l =
R%thenT ,F € [u]. Consider ST +5F (O _y

(g 2) - (—g _2) = —S*2. Thus S ¢ [ 1].

Proposition 2.6 The class [ ¢ | is closed in the strong operator topology.

Proof. Let {u,} be a sequence of operators in [ u | that converges strongly to an

operator S in L(H ) i.e. u, 5 S then
||,unx —Sx ||—> 0asn — ooforeach x € H. Thus

| irx =5 || = || (= )| < || (o = )"

N
o .Thus p, = S*.Since the product of operators is sequentially continuous in the

IxI=len =Sl Ix[|- 0 as n —

strong operators topology — [ 1 ]-, u;2 > §*2 which implies that —p;;2 % —5*2, and
U2 %, §2. Since { u,} is a sequence of operators in [u] then —u;2 = u? which

implies that p? %, —§*2. Since the limit is unique, S? = —S*2. Thus S € [ 1] which
implies that [ ¢ ] is closed in the strong operator topology.
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3. Main results

In this section we study the relation between the class [ ¢ ] and some other classes of
operators in L(H). We start by showing that the class [ ¢ | and some other classes of
operators in L(H) are independent.

Proposition 3.1 If T € L(H) is hermitian such thatT € [ u | then T = 0.

Proof . Since € [u], T? = —T*2. Since T is hermitian , the last equation implies that
T? = 0 which implies (Since T is hermitian ) that T = 0.

Since there are nonzero hermitian operators ( such as the identity operator I ) and
since there are nonzero operators in [ ¢ ] ( for example any operator in remark 2.1 )
then we have:

Proposition 3.2 The class of all hermitian operators and the class [u] are
independent.

Proposition 3.3 The class of all normal operators and the class [ u | are independent.
Proof . A nonzero hermitian operator is a normal operator which is notin [ u ].

The operator (_11 _11) is a nonnormal operator which is in [ u .

Proposition 3.4 If T € [ ] such that T? is unitarily equivalent to T* then T is
normal.

Proof. Since T? is unitarily equivalent to T*, there is a unitary operator U such that
T* = UT?U* which implies that T = UT*2U*. Now it is easy to show that TT* =
—UT*U* = T*T. Thus T is normal .

Proposition 3.5 The class of all skew-adjoint operators (T = —T*) and the class [ u |
are independent.

Proof. The operator (_1 _i) is a non-skew-adjoint operator which is in [ u |].

The operator (_g (1)) is a skew-adjoint operator which is notin [ u ].

Proposition 3.6 If T € L(H) is skew-adjoint such thatT € [ u ] then T = 0.
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Proof. Let T € L(H) be skew-adjoint and let T =A+iB be its Cartesian
decomposition. Since T is skew-adjoint T = —T* which implies that A = 0. Thus
A% = 0. Since T € [ u ] then , by ,Proposition 2.1, B2 = 0 which implies ( Since B is
hermitian) that B = 0. Thus T = 0.

Proposition 3.7 The class of all isometric operators and the class [u] are
independent.

Proof. The identity operator I is an isometric operator and I & [ u ].

1 _1)isin[,u]butT*T=(§ g);tl.

Proposition 3.8 If T € [ u ] is idempotent then T = 0.

The operator T = (_

Proof. Since T € [u],T? = —T*2. Since T is idempotent , T? = T which implies
that —=T*?2 = —T*. Thus T = —T*. Thus T is skew-adjoint. The result now follows
from proposition 3.6

Corollary 3.1 If T € [ ] is similar to an idempotent then T = 0

Proof. Since any operator similar to an idempotent is idempotent, T is idempotent.
The result now follows immediately from proposition 3.8.

Proposition 3.9 The class of all idempotent operators and the class [pu] are
independent.

Proof. We prove the result by the following two examples.

0 1) acting on R? then direct

Example 3.1. Consider the operator S = (O 1

calculations shows that $? = (8 1) = §. Thus § is idempotent. However it can be
2_(0 1 2 _( 0 0
shown that S —(0 1)¢ S —(_1 _1).ThusS€£ [ul]

Example 3.2. The operator S = (:1 1) acting on R? is in [u] but S? =

1
0 0 . .
( 0 0 ) # S. Thus S is not idempotent.
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In [ 2 ] the author introduced the class of 2-normal operators in L(H) : T = A+ iB €
L(H) is called 2-normal if A>B = BA? and B?A = AB?. Several characterizations of
2-normal operators were given in [ 2 ] such as : T € L(H) is 2-normal if and only if
T2T* = T*T?;if and only if T? is normal. The class of all 2-normal operators is
denoted by [2N].

Proposition 3.10 If T € L(H) is a u —operator then T € [2N].

Proof .Let=A+iB . Since T € [u], A> = B2 Multiplying the last equation on the
left and then on the right by B we get

A?B = B3 = BA?. Also Multiplying A> = B? on the left and then on the right by A
we get AB2 = A% = B2A . ThusTis  2-normal.

Corollary 3.2 If T, T + kI € [ u ] for some nonzero complex number k then T is
normal.

Proof. Since T, T + kI € [ ] then — by proposition 3.10 - T, T + kI are 2-normal
operators. The result now follows from ([ 2 ], proposition 3.3 , p. 193)

Remark 3.1 The converse of proposition 3.10 is not in general true. A nonzero
hermitian operator in L(H) is a 2-normal operator which is notin [ u ].

Definition 3.1 If T € L(H) then T is called quasinormal if TT*T = T*T?2.

Proposition 3.11 If T € L(H) such that T is 2-normal andquasinormal then T is
normal.

Proof. ([ 2 ], proposition 2.3, p. 193 ).

Using proposition 3.11 we conclude two facts :

The first is that there are operators in [,u] which are not quasinormal since otherwise
all operators in [,u] would be normal which is not true.

The second is that there are quasinormal operators which are not in [ u] since
otherwise all quasinormal operators would be normal which is not true.

From the previous discussion we have:



1222 Adnan A. S. Jibril

Proposition 3.12 .The class [ u] and the class of all quasinormal
operators are independent.
In [ 3 ] the author introduced the class of « —operators : T € L(H) is called an «

— operator if T3 = T*. The class of all & —operators is denoted by ().

In the following we give an example of a an operator which is in [ & | but not in (x):

Example 3.3 Consider the operators T = (_i _1) acting on R?then T €
. . 3_(0 O «_ (1 -1
[ 1 ].Now it is easily shown that T° = (O O) = T = (1 _1) .Thus T ¢ ().

In the following we give an example of a an operator which is in
(cc) butnotin [ u ] :

Example 3.4 Consider the operators T = (_(1) (1)) acting on R?then T3 =
((1) _(1)) = T*. Thus T € (x) . However one can easily show that T? =
(0 _1)Wh11e T _(0 1).ThusTE[u].

Using the last two examples we conclude that
Proposition 3.13 The two classes [ u | and (o<) are independent.

In [ 4 ] the author introduced the class of subprojection operators in L(H) : T € L(H)
is called a subprojection if T2 = T*.The class of all subprojections is denoted by
S(H). In the following we give an example of an operator in [ ¢ ] which is not in
S(H):

Example 3.5 Consider the operators T = (_i _1) acting on R? then — by remark
2_ (0 0 1 =1\ _
2.1-T €[ u]. However T —(0 0)9&( 1 _1)—T.ThusT$S(H).

In the following we give an example of an operator in S(H) which is notin [ u |:
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1 V3
Example 3.6 Consider the operators T = \/25 21 acting on R?then T? =
T2 2
_1 _ 1B
2 2 | 2 2 | _ _pe2
SRR R U S A
2 2 2 2

We conclude from the last two examples:
Proposition 3.14 The two classes [ u | and S(H) are independent.
Proposition 3.15If T € [ ] N S(H) then T = 0.

Proof. Since T € S(H), T? = T* which implies that —T*? = —T.

Since T € [u], T? = —T*? which implies that T = —T*. Thus if T = A + iB then

the last the last equation implies that T + T* = 0 which implies that A = 0. Since
A? = B?, B2 = 0 which implies ( since B is hermitian ) that B = 0. Thus T = 0.
In [ 6 ] Kutkut introduced a new class of operators which he called the class of
parahyponormal operators : T € L(H) is called parahyponormal jf " T x || <
" TT*x |, for all x in H with || xl
and only if for every A> 0. A2 +T*T (TT*)? — 2A. The class of all parahyponormal
operators is denoted by Phn(H). In the following we give an example of an operator
which is in Phn(H) but notin [ u ] .

=1,or equivalently, ( [ 8 ] ,Theorem 1.1, p74), if

Example 3.7 The operator T = ( 1

direct calculations shows that T2 =

(; (l))q& (—01 :i): ~T*2. Thus T & [ 1 ].

(1)) acting on RZis in Phn(H) ([ 6 ], p.83) but
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In the following we give an example of an operator which is in [ u | but not in
Phn(H).

Example 3.8 The operator T = ( (1) 8) is not in Phn(H) ( [ 6], p.81). However and

by direct calculations one can show that T?> = 0. Thus T € [ u ].
From the last two examples we conclude that

Proposition 3.16 The two classes [ 4 | and Phn(H) are independent.
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