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Abstract

This paper is concerned with double stage shrinkage estimator (DSSE) for
lowering the mean squared error of classical estimator (MLE) for the shape
parameter (o) of generalized Exponential (GE) distribution in a region (R) around
available prior knowledge (o) about the actual value (o) as initial estimate in
case when a scale parameter (A) is known as well as to reduce the cost of
experimentations.

In situation where the experimentations are time consuming or very costly, a
double stage procedure can be used to reduce the expected sample size needed to
obtain the estimator.

This estimator is shown to have smaller mean squared error for certain choice
of the shrinkage weight factor w(-) and for acceptance mentioned region R.

Expressions for Bias, Mean square error (MSE), Expected sample size
[E(n/a,,R)], Expected sample size proportion [E(n/o,R)/n], probability for
avoiding the second sample [p((} € R)] and percentage of overall sample saved

[ﬁ p((? e R) *100] for the proposed estimator are derived.
n

Numerical results and conclusions are established when the consider estimator
(DSSE) are estimator of level of significance A.

Comparisons with the classical estimator and with the last studies shown the
usefulness of the proposed estimator
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1. Introduction

Gupta and Kundu (1999) proposed the generalized exponential (GE)
distribution as an alternative to the well known Weibull or gamma distributions. It
is observed that the proposed two-parameter GE distribution has several desirable
properties and in many situations it may fit better than the Weibull or gamma
distribution. Extensive work has been done since then to establish several
properties of the generalized exponential distribution. The readers are referred to
the recent review article by Gupta and Kundu (2007) for a current account of

it.[1].Generalized exponential (GE) distribution has been proposed and
studied quite extensively recently by Gupta and Kundu [2, 3, 4, 5, 6]. The
readers may be referred to some of the related literature on +—GE«—
distribution.[7].The two-parameters +GE~—distribution has the following
distribution function:

F(x;o,A)=[1-e™1]* forx>0,0>0,1>0. TN ¢ )
Thus, the probability density function (p.d.f.) of (GE) dlstrlbutlon is
() 1 _ a~(x)ya-1
f(x;a,k):{gxxe (1—e ™) for x> 0,0,A >0

o.W.

Where, o and A are the shape and scale parameters respectively.

In this paper we introduce the problem of estimating of the shape parameter
(o) of GE distribution with known scale parameter (A) when some prior
information (o) regarding the actual value (o) available due past experiences
such a prior estimate may arise for any one of an umber of reasons [8], e.g., we
are estimating o and;

I.  We believe ay is close to true value of a, or
ii. We fear that o,y may be near the true value of a, i.e.; something bad happens
if a = ap and we do not know about it.

In such a situation it is natural to start with an estimator o (e.g. MLE) of o
and modify it by moving it closer to oy, S0 that the resulting estimator, though
perhaps biased, has smaller mean square error than that of & in some interval
around op. This method of constructing an estimator of o that incorporates the
prior value o leads to what is known as a shrinkage estimator.

It is an important aspect of estimation that one should be able to get an
estimator quickly using minimum experimentation. This also economizes cost of
experimentation. To achieve this, double stage shrinkage estimator were
introduced.

A double stage shrinkage estimator procedure is defined as follows:
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Let x3;; i =1, 2, ..., n; be a random sample of n; from GE distribution and &, be a

"good" estimator of o based on these n; observation. Construct a preliminary test

region R in the parameter space based on o, and an appropriate criterion.
-10

If &, e R shrink &, towards oo by shrinkage weight factor y(&)=e™ and
use the shrinkage estimator y(a,)a, + 1—w(a,))a, , for estimatea.

If o, ¢R, obtain xi; i = 1, 2,..., n,, an additional sample of size n, and use a
pooled estimator &p of o based on combined sample of size n = n; + ny,

.~ no,+n,0
i.ea —_11 272
n

p
Thus, the double stage shrinkage estimator (DSSE) of o will be:

- Wl(&l)&l +(1-y, (&1))(10 Jif &1 eR
o =1 . e e 3)

a, Jif o, 2R

The motivation of this study was provided by the work of [9], [10] and [11].

The aim of this paper is to employ the double stage shrinkage estimator
(DSSE) a defined by (3) for estimate the shape parameter (o) of two parameters
generalized Exponential (GE) distribution when the scale parameter () is known.

The expression of Bias, Mean squared error (MSE), Relative Efficiency
[R.Eff(-)], Expected sample size, Expected sample size proportion, probability for
avoiding the second sample and percentage of overall sample saved are derived
and obtained for the estimator a.

Numerical results and conclusions due mentioned expressions including some
constants are performed and displayed in annexed tables.

Comparisons between the proposed estimator with the classical estimator (&)

and with some of the last studies are demonstrated.

2. Unbiased - Maximum Likelihood Estimator of a

In this section, we consider the maximum likelihood estimator (MLE) of GE
distribution with shape and scale parameter o and A respectively i.e. GE (a,A).
ASSUME Xi1, X12, -, X1, be a random sample of size n; from GE(a,A) then the

log-likelihood function L (o,A) can be written as:
L(o,A)=n,Ina+n,Ink+ (o —1)2 In(1—e ®) - ki Xpi woeenaeennneeenin e, 4)
i=1 i=1
In this paper we take A = 1 (A is known).

oL n & —Xy;

—=24+>Inl-e M)=0 e (B
o Zl‘, ( ) ()
Then, the MLE ofa, say a, is

MLE

So,
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L TR (6)

ME S In@-e7)
i=1

Note that, if x3i €"® GE (a, 1), then —azlln(l—e*xﬂ) ~ G (ny, 1), see [4].

i=1

. - n - n‘o’
i.e.; E(a,)=—2"—a and var(a, ) = 12a .
me N -1 me (N, —1)°(n, —2)
Using (6), an unbiased estimator &, of o can be easily obtained as:
&l = nln_l 6(1 = —nlnl—_l ...................................................... (7)
P S In@-e)
i=1
az
E(a,) = o and var(a,) = MSE(a,) = T (8)
-

3. Double Stage Shrinkage Estimator (DSSE) &

In this section, we consider the (DSSE) & which is defined in (3) using @,
-10
defined by (7), when y(a,) = k is a constant weight factor (k =e " ) for estimate

the shape parameter o of GE distribution when A = 1.

ka, + (1-K)o, Jif a, eR
a=< . n.oL +n.o R P ()
ap:% ’lf algR ()

Where R is a pretest region for testing the hypothesis Hy: o = oo VS Ha: a0 # oo

: N : - . - 2(n, -1
with level of significance (A) using test statistic function T(a, /o) = M
oy
ie: R :[2(”1_1)“0 ,2(”1_1)“0} e (10)
b a
Where a(= X ,/,,, ) @ndb(= X3 550 ) ovveeivieiiiii e (11)

are the lower and upper 100(A/2) percentile point of chi-square distribution with
degree of freedom (2n;) respectively.

The expression for Bias of DSSE (& ) is defined as below
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Bias(é./ o, R) = E(6 — o)

- f [ [K(@, = o) + (otg — )] F (&) (61, )dE,dx, +

a,=0 a,eR

T I [&p _a]f(&l)f(&z)d&ld&z
G;=0 & ¢R

Where R is the complement region of R in real space and

ni+1 _(ni-Ha
|:(n| :1)(1:| e a;
f(&,) = % fOF G, > 0,00 > 0 rerveemrvseemssnannnnn, (12)
r'(n;)-(n —Ho
0 0.W.
We conclude,

Bias(a/a,R)=a{(K+1)(g—1)J0(a*, b*)+ﬁ[(nl—1)Jl(a*, b*)—JO(a*,b*)]} ... (13)

b* n-1 -y
WhereJ, (a%,0%) = [y L Zdyi £ = 0,12, oo (14)
a* F(nl)
-1
Alsoy = u ....................................................................... (15)
O(’l

The Bias ratio [B (-)] of DSSE (@) is defined as:

B(4) = w ................................................................... (16)

The expression of Mean squared error [MSE (-)] of a derived as below:-
MSE(a/o,R) = E(6.— )’

= I [ [k, — o)+ (ot - )] F(6,)F(6:,)d6,dci, +

a,=0 &,eR

T .[ [&p - O‘T f(a,)f(a,)da,da,
4,=0 G,¢R

And by simple computations, one can get:
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k2 |:(n1 —1)2J2 (a*, b*) - ZC(nl —1)J1(a*, b*) + €2J0(a*, b*):|
<2k(5 D) (ng ~D)3y (@, b%) — I (@, b%) | +

N N (17)

1+u

2
[“j [ . J[Ho(a*,b*)]
1+u nu- 2

Now, the Efficiency of & relative to & denote by R.Eff (&/a, R) is defined

by:
REff(@/aR)e— MSE(®W (18)
MSE(&/ o, R) -[E(N/ o, R /1]

Where E(n/a,R) is the Expected sample size, which is defined as:
E(n/a,R):n[l—LJo(a*,b*)}---------------------------------------------------------(19)
1+u

2
MSE(G/ o, R) = @ ( ! ] {[nll—z}[(nl—l)%z(a*,b*)+2(n1—1)J1(a*,b*)—Jo(a*,b*> +

See for example [10] and [11].
As well as the Expected sample size proportion E (n/a, R)/n equal to

g @ ™) ettt e, 20
LGy (20)

Also, we have to define the percentage of the overall sample saved (p.o.s.s.) of
a as:

p.o.s.s.=nn—2J0(a*,b*)*100 PPN 02 |

And, finally, P(a.e R) represent the probability of a voiding the second
sample (stage).

4. Conclusions and Numerical Results

The computations of Relative Efficiency [R.Eff(-)] and Bias Ratio [B(-)],
Expected sample size [E(n/o,R)], Expected sample size proportion [E(n/o,R)/n],
Percentage of the overall sample saved (p.0.s.s.) and probability of a voiding the
second sample [P(& e R)] were used for the estimator & . These computations

were performed for ny = 4, 8, 16, 20 u (= ny/ny) = 2, 6, 10, 12, £ (= ao/a) =

-10
0.25(0.25)2, A=0.01,0.05,and k =y(a) =e™
Some of these computations are given in the tables (1)-(4).
The observation mentioned in the tables lead to the following results:
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VI.

Vii.

viii.

. The Relative Efficiency [R.Eff(-)] of & are adversely proportional with small

value of A especially when £ =1, i.e. A =0.01 yield highest efficiency

. The Relative Efficiency [R.Eff(-)] of & has maximum value when a=0,(£=1),

for each n;, A, and decreasing otherwise ({z1). This feature shown the
important usefulness of prior knowledge which given higher effects of
proposed estimator as well as the important role of shrinkage technique and its
philosophy.

Bias ratio [B (-)] of & are reasonably small when a=ay, for each ni, A, and
increases otherwise. This property shown that the proposed estimator & is
very closely to unbiasedness property especially when a=a.

. The Effictive interval of & [the value of & which makes R.Eff(-) of &

greater than one] is [0.5, 1.5].

Bias ratio [B (-)] of & are increases with small value of u.

R.Eff(& ) is decreasing function with increasing of the first sample size n;, for
each A andC.

The expected values of sample size of & are close to n;, especially when { > 1
and start far-away otherwise.

n . :
Percentage of the overall sample saved {—ZJO(a*, b*)*loo} IS increasing
n

value with increasing value of u (u =n;/ n;) andC.

R.Eff(&) is an increasing function with respect to u. This property shown the
effective of proposed estimator using small n; relative to n, (or large ny) which
given higher efficiency and reduce the observation cost.

The considered estimator & is better than the classical estimator especially
when o~ol, this will given the effective of & relative to & and also given an
important weight of prior knowledge, and the augmentation of efficiency may
be reach to tens times.

xi.The considered estimator & is more efficient than the estimators introduced

by [8], in the sense of higher efficiency.
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Table (1)

Shown Bias ratio [B (-)] and R.E.ff of & w.r.t A, n; and { whenu =2

g
R.Eff.

A ny Bins 0.25 0.75 1 15 1.75 2
. | REFO) 0.525 2.386 6.722 | 1257 | 0.601 | 0.345
B() -0.215 -0.295 -0035 | 0517 | 0793 | 1.064
g | REf() 0.9 121 4882 | 0978 | 0456 | 0.259
001 B() | -6.319*10%4 |  -0.249 -0037 | 0616 | 0947 | 1271
' 16 | REFO 0.956 0.761 1806 | 101 | 0478 | 0277
B() | -3.902*101 |  -0.073 -0034 | 0716 | 1127 | 1519
0 | REFO 0.965 0.811 1288 | 1076 | 0509 | 0.297
B() 0 -0.029 -0028 | 0735 | 1177 | 159
. | REFO) 0.723 1.501 3851 | 1147 | 0569 | 0.329
B() -0.027 -0.255 -0.065 | 0468 | 0744 | 101
g | REf() 0.904 0.94 2616 | 0977 | 0451 | 0.252
B() | -3.918*10%6 |  -0.134 -005 | 0552 | 0894 | 1215
0.05 16 | REFO 0.956 0.878 1157 | 1168 | 0503 | 0273
B() 0 -0.015 -0025 | 0612 | 1056 | 1.455
R.EFf() 0.965 0.93 0975 | 1324 | 0549 | 0295
20 B() 0 -3.98*10%3 | 0.016 | 0611 | 1097 | 1.523
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Table (2)
Shown Bias ratio [B ()] and R.E.ff of & w.r.t A, n; and L whenu =6
4
A ny Ré'iz‘;f' 0.25 0.75 1 15 175 2
4 | REFO 0312 2514 22.294 118 0.54 0.304
B() -0.193 -0.264 -0.015 0527 | 0799 | 1.068
g | REFO 0.943 0.832 7.295 0.889 0.42 0.239
001 B() | -5.631*10"4 -0.221 -0.016 0623 | 0951 | 1.272
' 16 | REffO) 0.98 0.501 1.462 0872 | 0444 | 0261
B() | -3.501*10"-1 -0.064 -0.015 0.723 113 1519
0 | REFO) 0.985 0.606 0.93 0902 | 0471 | 0281
B() 0 -0.025 -0.012 0.743 118 1.59
4 | REff0) 0.692 1.417 8.917 0984 | 0464 | 0.259
B() -0.024 -0.213 -0.028 0.49 0.76 1.02
g | REFO 0.956 0.652 3.074 0.77 0369 | 0.206
0.05 B() | -3.453*10"-6 -0.112 -0.021 0569 | 0904 | 1.219
' 16 | REffO) 0.98 0.748 0.889 0858 | 0405 | 0.228
B() 0 -0.013 -0.011 0626 | 1.064 | 1.457
0 | REFO) 0.985 0.88 0.731 0.96 0437 | 0248
B() 0 -3.365%10"-3 | -6.765*10-3 | 0625 | 1104 | 1525
Table (3)
Shown Bias ratio [B (-)] and R.E.ff of & w.r.t A, n; and { when u =10
g
A n Régsf' 0.25 0.75 1 15 1.75 2
REF() 0.216 2.129 36.212 1108 | 051 0.285
4 B() -0.186 -0.256 -9.59*10"-3 | 0529 | 0.801 | 1.069
REF() 0.95 0.605 7.064 0815 | 0398 | 0.227
8 -5.44%10"-4 -0.213 -0.01 0624 | 0952 | 1.273
0.01 B(")
16 | REFO) 0.987 0.37 1.143 0754 | 0417 0.25
B() | -3.392*10"-1| -0.061 -9.307*10°-3 | 0.724 | 1131 152
0 | REf) 0.99 0.482 0.705 0759 | 0.439 0.27
B() 0 -0.024 -7.706*10~-3 | 0745 | 1.18 159
4 | REf) 0.616 1.106 12.111 083 | 039 | 0219
B() -0.023 -0.201 -0.018 049 | 0765 | 1.023
g | REfQ) 0.971 0.485 2.856 062 | 0313 | 0.176
0.05 B() | -3.327*106 | -0.107 -0.014 0573 | 0.907 122
' 16 | REFO) 0.987 0.645 0.705 0655 | 0337 | 0197
B() 0 -0.012 -6.792*10~-3 | 0.63 | 1.066 | 1.458
0 | REfC) 0.99 0.826 058 0722 | 036 0.214
B() 0 -3.19%10"-3 | -4.305*10~-3 | 0.629 | 1106 | 1.525
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Table (4)
Shown Bias ratio [B ()] and R.E.ff of & w.r.t A, n; and { when u = 12
¢
R.Eff.
A ny Bias 0.25 0.75 1 15 175 2
4 | REFO) 0.187 1.956 41.524 1078 | 0498 | 0.278
B() -0.185 -0.254 -8.117*10~-3 | 0.53 | 0.801 1.07
g | REffO) 0.95 0531 6.731 0783 | 0388 | 0222
001 B() -5.393*10"-4 -0.211 -8.48*10°-3 | 0.625 | 0.952 | 1.273
' 16 | REfQ) 0.989 0.327 1.025 0706 | 0405 | 0.245
B() -3.362%10"1 -0.06 -7.875%10~3 | 0.725 | 1.131 152
b0 | REFC) 0.992 0.437 0.627 0703 | 0.425 | 0.264
B() 0 -0.024 -6.52*10"-3 | 0.745 | 1.181 159
4 | REf) 058 0.988 13.181 0769 | 0.37 0.204
B() -0.022 -0.198 -0.015 0498 | 0766 | 1.024
g | REf) 0.975 0.429 2712 0565 | 0292 | 0.165
0.05 B() -3.292*10"-6 -0.105 -0.011 0574 | 0.907 122
' 16 | REFO 0.989 0.603 0.638 0584 | 0311 | 0.184
B() 0 -0.012 -5.747*10"-3 | 0.631 | 1.067 | 1.458
0 | REf) 0.992 0.801 0.525 0641 | 0331 02
B() 0 -3.151*10"-3 | -3.643*10"-3 | 0.63 | 1.107 | 1.526
Table (5)
Shown Probability of a Voiding Second Sample w.r.t A, u, n; and &
g
ul n [ A 0.25 0.75 1 15 [ 175 2
) , |00l 0.216 0.893 0952 | 0986 | 0.991 | 0.9
0.05 0.026 0.668 0823 | 0.937 | 0.952 | 0.95
6 g | 001 | 53x107" 0.62 0851 | 0.976 | 0.988 | 0.99
0.05 | 322x10°° 03 0612 | 0903 | 0.944 | 0.95
10 | 16 |00 | 278x10"% | 0147 0544 | 0948 | 0.983 | 0.99
0.05 0 0.029 0264 | 083 | 0.929 | 0.95
1| s |001 0 0.055 0409 | 0931 | 0.981 | 0.9
0.05 0 722x1073 | 0159 | 0.791 | 0.921 | 0.95
Table (6)
Shown Expected Sample Size of a w.r.t A, u,and { whenn; =4
g
ul A | 025 | 075 1 15 [ 175 | 2
, | 00110271 | 4.850 | 4.381[ 4.108 | 4.075 | 4.080
005 | 11.793 | 6.655 | 5414 | 4503 | 4.384 | 4.40
s | 001 | 22812 | 6.578 | 5143 [ 4.325 | 4.226 | 4.240
005 | 27.38 | 11.965 | 8.242 | 5508 | 5.153 | 5.20
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Table (7)

Shown Expected Sample Size Proportion w.r.t A, u, n; and §

G
u n; A 0.25 | 0.75 1 15 1.75 2
2 4 0.01 | 0.856 | 0.405 | 0.365 | 0.342 | 0.340 | 0.340
0.05 | 0.983 | 0.555 | 0.451 | 0.375 | 0.365 | 0.367
6 8 0.01 1 0.468 | 0.27 | 0.164 | 0.153 | 0.151
0.05 1 0.743 | 0.475 | 0.226 | 0.190 | 0.186
10| 16 0.01 1 0.866 | 0.496 | 0.138 | 0.106 0.1
0.05 1 0.974 | 0.760 | 0.246 | 0.155 | 0.136
12 | 20 0.01 1 0.949 | 0.623 | 0.14 | 0.095 | 0.086
0.05 1 0.993 | 0.853 | 0.27 | 0.150 | 0.123

Table (8)

Shown Percentage of Overall Sample Saved w.r.t A, u, n; and §

G
u | ng A 0.25 0.75 1 15 1.75 2
2 4 0.01 14.410 59.505 | 63.492 | 65.726 | 66.039 | 66.000
0.05 1.723 44.542 | 54.883 | 62.4604 | 63.463 | 63.333
6 8 0.01 0.045 53.157 | 72.976 | 83.657 | 84.715 | 84.857
0.05 | 276x10~* | 25.698 | 52.493 | 77.396 | 80.954 | 81.428
10 | 16 0.01 | 253x10~° | 13.408 | 50.397 | 86.1818 | 89.404 | 89.999
0.05 | 135x10 7% | 2.644 | 24.032 | 75.447 | 84.456 | 86.363
12 | 20 0.01 | 292x10™ " | 5.3007 | 37.734 | 85.938 | 90.537 | 91.385
0.05 | 218x10~% | 0.667 | 14.655 | 73.0148 | 85.028 | 87.692
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