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Abstract

In this paper, the applications of boundary value problem to the sys-

tem of two species with impulsive control in finite time are investigated.

This paper presents a kind of time-limited pest control of a predator-

prey model with impulsive harvest. By the comparison principle, the

conditions under which the model has a solution are found by a series

of the upper solutions.
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1. Introduction

In order to consider the consequences of spraying pesticide and introducing

additional predators into a natural pest-predator system, many authors have

suggested impulsive differential equations to investigate the dynamics of pest

The Youth Science Foundation of Educational Department of Hubei Province in China,

the Science Foundation(Q20101903).

Corresponding author. e-mail: jwliyongliang@163.com



210 Yongliang Li, Yiyi Zhang and Zhongyi Xiang

control model [1-3], and some results were obtained. Which the basic model

this paper is considering is the predator-prey system as following:

{
ẋ(t) = ax(t) − bx2(t) − cx2(t)

d+ex(t)
y(t),

ẏ(t) = y(t)(fx(t) − g),
(1.1)

Where x(t) and y(t) are population density of prey species and predator

species. a > 0 is an intrinsic rate constant of prey species. b > 0 is the restrict

of population density. cx2(t)
d+ex(t)

is a function which is increased monotonously.

f > 0 is the rate of the transformation form prey to predator species, g > 0 is

the death rate of predator species. Assume that the number of insect pests by

impulsive harvest in fixed time, and consider the time-limited control problem.

The model which has the initial boundary value problem and impulsive control

can be written as following:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = ax(t) − bx2(t) − cx2(t)
d+ex(t)

y(t),

ẏ(t) = y(t)(fx(t)− g),

}
t �= kτ,

Δx(t) = x(t+) − x(t) = −px(t),

Δy(t) = y(t+) − y(t) = 0,

}
t = kτ,

x(0) = x(0+) = A, x(T ) ≤ B < A,

y(0) = y(0+) = y0 > 0, k = 1, 2, · · · , n,

(1.2)

where x(t) and y(t) indicate the population density of pest and natural enemy,

p is the death proportion of insect pest owing to carrying out artificial measures

such as spraying pesticides, 0 < p < 1. T is a finite time. τ is the period of

the impulsive harvest. The other parameters and biological significance are

the same as (1.1). Our aim is to control the pest population under B after n

times of the impulsive harvest. We assume that the control methods will have

no direst effect on the population of natural enemies in this text. For example,

we can use some pesticides or control methods which have excellent selectivity.

Then we also assume that when x(0) = A < f
g

insect pests have occurred, and

we must take some effective measures.
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2. main result

Let k1 = f(1 − p)B − g, r = c
d+ae

b
, q = c

d
, k2 = feaτ

qy0ek1τ +b
a

(eaτ−1)+ 1
A

− g.

Theorem 2.1. If

1−1

b
ry0e

k1τ > 0,
rmy

1

a
(1−e−aτ)+

e−aτ

A
>

f

g
, A(ry0e

k1τ+b)(1−e−aτ )+a(e−aτ+p−1) > 1,

and one of the following conditions holds:

a) when T = nτ , 1−e−aτ

a
(ry0e

nk1τ + b) (1−p)n−e−naτ

(1−p)n−(1−p)n−1e−aτ + e−naτ

A(1−p)n−1 >

1
B

. b) when T ≥ nτ , ry0ek1T +b
a

(1 − e−a(T−nτ)) + e−a(T−nτ)(1−e−aτ )
a

(ry0e
nk1τ +

b) (1−p)n−e−naτ

(1−p)n+1−(1−p)ne−aτ + e−aT

A(1−p)n ≥ 1
B
. Then the solution of (1.2) which satis-

fied initial -boundary value conditions is in the existence.

Proof: ẋ(t) > 0, ẋ(t) ≤ ax(t)(1 − b
a
x(t)), then 1− b

a
x(t) > 0, namely x(t) < a

b
,

we hold that c
d+ex(t)

> c
d+ae

b
= r, x(t) is increased monotonously, so there

must be exist a series of the upper solutions x̄1(t), x̄2(t), · · · , x̄n(t) so as to

x1(t) ≤ x̄1(t), for t ∈ (0, τ ], x2(t) ≤ x̄2(t), for t ∈ (τ+, 2τ ], where x̄1(t) satis-

fies: {
˙̄x1(t) = ax̄1(t) − bx̄2

1(t) − rmy
1x̄

2
1(t) = ax̄1(t) − r1x̄

2
1(t),

x̄1(0) = x0 = A,
(2.1)

we get x̄1(t) = eat

r1
a

(eat−1)+ 1
A

, t ∈ (0, τ ] and m̄x
1 = A ≤ x̄1(t) ≤ eaτ

r1
a

(eaτ−1)+ 1
A

≤ M̄x
1

When t ∈ (τ+, 2τ ], x2(t) ≤ x̄2(t), where x̄2(t) satisfies:{
˙̄x2(t) = ax̄2(t) − r2x̄

2
2(t),

x̄2(τ
+) = (1 − p)M̄x

1 ,
(2.2)

We obtain x̄2(t) = ea(t−τ)

r2
a

(ea(t−τ)−1)+ 1
(1−p)M̄x

1

= M̄x
2 , then m̄x

2 = 1 − p)M̄x
1 ≤ x̄2(t) ≤

eaτ

r2
a

(eaτ−1)+ 1
1−p)M̄x

1

= M̄x
2 . If (1− p) eaτ

r1
a

(eaτ−1)+ 1
A

≤ A, then x̄(τ+) = (1− p)x(τ) <

(1 − p)M̄x
1 < A. Because (1 − p)M̄x

1 < A, M̄x
2 = eaτ

r2
a

(ea(t−τ)−1)+ 1
(1−p)M̄x

1

< M̄x
1 ,

namely, 1
M̄x

2
> 1

M̄x
1
, we can also get r2

a
(1−e−aτ)+ 1

(1−p)M̄x
1
e−aτ > 1

M̄x
1
, M̄x

1 < A
1−p

.

Farther, Ar2

(1−p)a
(1 − e−aτ) + e−aτ

1−p
> 1, then the inequality above is tenable,

consequently, (1 − p)x(2τ) < (1 − p)x(τ) < A.

When t ∈ ((n − 1)τ+, nτ ], xn(t) ≤ x̄n(t), where x̄n(t) satisfies:{
˙̄xn(t) = ax̄n(t) − rnx̄2

n(t),

x̄n((n − 1)τ+) = (1 − p)M̄x
n−1,

(2.3)
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we obtain x̄n(t) = ea(t−(n−1)τ)

rn
a

(ea(t−(n−1)τ)−1)+ 1
(1−p)M̄x

n−1

, t ∈ ((n − 1)τ+, nτ ], then m̄x
n =

(1 − p)M̄x
n−1 ≤ x̄n(t) ≤ eaτ

rn
a

(eaτ−1)+ 1
1−p)M̄x

n−1

= M̄x
n . If Ar1

(1−p)a
(1 − e−aτ )+

e−aτ

1 − p
> 1,

Ar2

(1 − p)a
(1−e−aτ )+

e−aτ

1 − p
> 1, · · · ,

Arn

(1 − p)a
(1−e−aτ )+

e−aτ

1 − p
> 1,

by the discussion above, we know

1
M̄x

n
= 1−e−aτ

(1−p)
[rn + e−aτ

(1−p)
rn−1 + · · ·+ e−(n−2)aτ

(1−p)n−2 r2 + e−(n−1)aτ

(1−p)n−1 r1] + e−naτ

A(1−p)n−1 .

(2.4)

When T = nτ ,

1
M̄x

n
= 1−e−aτ

(1−p)
[rn + e−aτ

(1−p)
rn−1 + · · ·+ e−(n−2)aτ

(1−p)n−2 r2 + e−(n−1)aτ

(1−p)n−1 r1] + e−naτ

A(1−p)n−1 .

(2.5)

When T > nτ , xT (t) ≤ x̄T (t), where xT (t) satisfies:{
˙̄xT (t) = ax̄T (t) − rT x̄2

T (t),

x̄T (nτ+) = (1 − p)M̄x
n ,

(2.6)

hence,

1
M̄x

T
= rn

a
(1 − e−a(T−nτ)) + e−a(T−nτ)(1−e−aτ )

a(1−p)
[rn + · · · + e−a(n−1)τ

(1−p)n−1 r1] + e−aτ

A(1−p)n .

(2.7)

Similarly, if

Ar1

(1−p)a
(1 − e−aτ ) + e−aτ

1−p
> 1, Ar2

(1−p)a
(1 − e−aτ ) + e−aτ

1−p
> 1, · · · ,

Arn

(1−p)a
(1 − e−aτ ) + e−aτ

1−p
> 1, ArT

(1−p)a
(1 − e−aτ ) + e−aτ

1−p
> 1,

(1 − p)x̄(T ) < (1 − p)x̄(nτ) < · · · < (1 − p)x̄(τ) < A,

we will find some conditions so as to

Ar1

(1−p)a
(1 − e−aτ ) + e−aτ

1−p
> 1, Ar2

(1−p)a
(1 − e−aτ ) + e−aτ

1−p
> 1, · · · ,

Arn

(1−p)a
(1 − e−aτ ) + e−aτ

1−p
> 1, ArT

(1−p)a
(1 − e−aτ ) + e−aτ

1−p
> 1.

As my
1 > my

2 > · · · > my
n > (my

T ), and r1 = b + rmy
1, r2 = b + rmy

2, · · · ,
rn = b + rmy

n,rT = b + rmy
T , inequations r1 > r2 > · · · > rn(> rT ) are tenable,

and when Ar1

(1−p)a
(1 − e−aτ ) + e−aτ

1−p
> 1 holds, all of the inequations above are

tenable. On the other hand, by the reasons of ẋ > 0, for t ∈ [0, T ],x(t) ≥
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(1− p)B. Farther more, ẏ(t) = (fx(t)− g)y(t) ≥ (f(1− p)B − g)y(t) and y(t)

are continuous. We obtain y(t) ≥ y(t), where y(t) satisfies:

{
ẏ(t) = (f(1 − p)B − g)y(t) = k1y(t),

y(0) = y0,
(2.8)

B < A < g
f
, so k1 = (f(1 − p)B − g) < 0. Due to y(t) ≥ y(t), my

1 ≥ y0e
k1τ ,

my
2 ≥ y0e

2k1τ ,· · · ,my
n ≥ y0e

nk1τ ,(my
T ≥ y0e

k1T ), namely r1 ≥ ry0e
k1τ + b, r2 ≥

ry0e
2k1τ + b, · · · , rn ≥ ry0e

nk1τ + b, rT ≥ ry0e
k1T + b, then, Ari

(1−p)a
(1 − e−aτ ) +

e−aτ

1−p
> 1, if Ar1

(1−p)a
(1 − e−aτ ) + e−aτ

1−p
> 1 or A(ry0e

k1τ + b)(1 − e−aτ) + a(e−aτ +

p − 1) > 1, i = 1, 2, · · · , n.

When T = nτ , 1
M̄x

n
=

1−e−aτ

(1−p)
[rn + e−aτ

(1−p)
rn−1 + · · · + e−(n−2)aτ

(1−p)n−2 r2 + e−(n−1)aτ

(1−p)n−1 r1] + e−naτ

A(1−p)n−1 ≥ 1
B

(2.9)

When the condition a) of theorem (2.1) is tenable, the following equation is

obtained

x(T ) ≤ M̄x
n ≤ B, T = nτ. (2.10)

When T ≥ nτ ,

1
M̄x

T
= rn

a
(1 − e−a(T−nτ)) + e−a(T−nτ)

(1−p)M̄x
n

≥ 1
B
. (2.11)

When the condition b) of theorem (2.1) is tenable, the following equation is

obtained

x(T ) ≤ M̄x
T ≤ B, T > nτ. (2.12)

By the comparison principle, the conditions under which the model has a

solution are found by a series of the upper solutions form theorem (2.1). Now

we want to obtain the conditions under which the model has no solution by a

series of the lower solutions.
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