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Abstract

In this paper, the applications of boundary value problem to the sys-
tem of two species with impulsive control in finite time are investigated.
This paper presents a kind of time-limited pest control of a predator-
prey model with impulsive harvest. By the comparison principle, the
conditions under which the model has a solution are found by a series

of the upper solutions.
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1. Introduction

In order to consider the consequences of spraying pesticide and introducing
additional predators into a natural pest-predator system, many authors have

suggested impulsive differential equations to investigate the dynamics of pest
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control model [1-3], and some results were obtained. Which the basic model

this paper is considering is the predator-prey system as following:

{ i(t) = ax(t) — ba*(t) — dcfji'a)y(t)’ (1.1)

y(t) = y(@)(fx(t) — 9),

Where z(t) and y(t) are population density of prey species and predator

species. a > 0 is an intrinsic rate constant of prey species. b > 0 is the restrict

cx?(t)
d+ex(t)

f > 0 is the rate of the transformation form prey to predator species, g > 0 is

of population density. is a function which is increased monotonously.
the death rate of predator species. Assume that the number of insect pests by
impulsive harvest in fixed time, and consider the time-limited control problem.
The model which has the initial boundary value problem and impulsive control

can be written as following:

() = az(t) — ba(t) — dfj%y(t), } ¢ 2 Er,
y(t) = y(&)(fz() — 9),
Ax(t) = (t+) = a(t) = —pa(t), } - (12)
Ay(t) =y(t") —y(t) =0,
z(0) =z(07) = A, z(T) < B < A,
y(0) =y(0) =y >0,k =1,2,--- ,m,

where z(t) and y(t) indicate the population density of pest and natural enemy,
p is the death proportion of insect pest owing to carrying out artificial measures
such as spraying pesticides, 0 < p < 1. T is a finite time. 7 is the period of
the impulsive harvest. The other parameters and biological significance are
the same as (1.1). Our aim is to control the pest population under B after n
times of the impulsive harvest. We assume that the control methods will have
no direst effect on the population of natural enemies in this text. For example,
we can use some pesticides or control methods which have excellent selectivity.
Then we also assume that when z(0) = A < g insect pests have occurred, and

we must take some effective measures.
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2. main result

Letklzf(l—p)B—g,T:@,ngkaZLfe% -9
Theorem 2.1. If ¢

—aT

(&
1— —art
——(l=e™)

rml

1
1—Eryoek” > 0, > g,A(ryoek”ﬂLb)(l—e‘”)+a(e‘”+p—1) > 1,

and one of the following conditions holds:

76_0/7— n T 17 n

a) when T = nr, ﬁ(ryoe MT 1 p) (1;),1]”()1]5%”_1?_” jL A(l =T >

1. b) when T' > nr, e F0(] — gmall=nm)) 4 < M=) (e 4
_ _e—nat —aT . . .

b) a ;;nfl) A + aar 2 +. Then the solution of (1.2) which satis-
fied initial -boundary value conditions is in the existence.
Proof: @(t) > 0, #(t) < ax(t)(1 — 2z(t)), then 1—2x(t) > 0, namely z(t) < ¢,
we hold that - +ecx(t) v Jf%
must be exist a series of the upper solutions z(t), Z2(t), - -, Z,(t) so as to
x1(t) < T1(t), for t € (0,7], 22(t) < To(t), for t € (71, 27], where Ty(t) satis-

fies:

>

= r, z(t) is increased monotonously, so there

T1(t) = aZi(t) — bTT(t) — rm{Ti(t) = aZy(t) — rTi(t), @2.1)
T (O) = Ty = A, .
Wegetfl(t)—w G( T] anme:ASfl(t)SﬁS _iv
When t € (77, 27|, 25(t) < Zo(t), where Zo(t) satisfies:
i‘g(t) = afg(t) - T’QZEQ(t), (2 2)
‘f2(7—+) = (1 _p)Mlxu
We obtain #(t) = 7o e = M2, then mg = 1 — p)MF < Ty(t) <
(2D =)+ g
%(em—iw—l_;}w = Mg If (1~ P)mgar—prz < A, then (rF) = (1—-pla(r) <
(1 —p)Mf < A. Because (1 — p)MF < A, M§ = Q(GW,T)Q“;H( —— M,
a 1—p ]Mf

namely, ML; > ML{” we can also get %(1—6_GT)+W e T > Mza M? < A

Ar —at e
Farther, (17;)a(1 —e ) + g
consequently, (1 —p)x(27) < (1 —p)z(1) < A.

When t € ((n — 1)77,n7], ,(t) < Z,(t), where Z,,(t) satisfies:

{ Tn(t) = ay(t) — Tnfi(t)a
Zo((n — 1)7) = (1 — p)MZ_,

—aT

> 1, then the inequality above is tenable,
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a(t (n—1)7)

we obtain z,(t) = o T o O e

,t € ((n—1)7", n7], then m¥ =

(v
\ [T e?" e Ar __ —ar
(1 _p)MTL—l S ZEn(t) S %(CGT—I)-FW — Mn. If (l—pl)a(]' € )+
e Arsg e T Ar, _ e
> 1, 1—e )+ >1,-, —(1—€e ")+ > 1,
1—p (1—p)a( ) 1—p (1—29)@( ) 1—p
by the discussion above, we know
L  1—e— [ + + + (n—2)at + (n—1)at ]+ e—nart
= ) G T2+ G Tl A
(2.4)
When T = nr,
1 1—67‘“—[ + e—aT + + (n—2)at + (n—1)at ]+ e—nart
Mp T @p UnT (@p) nl a2 + Gt 11l ae -
(2.5)
When T > n7, x7(t) < Tr(t), where zp(t) satisfies:
Tr(t) = aZp(t) — roz2(t),
7(t) 7(t) T 7(t) (2.6)
Tr(ntt) = (1—-p)My,

n —a(T—nTt e~ a(T—n7)(]_g—a7 e—a(n=1)7 e—at
ﬁ%:7(1_€ (T ))_|- a(l—(p) )[Tn+"'+(_ T +

aT

il = e+ > Ll -+ 55 > 1,
(- )+ 5 > 1 (1 —e™) + 55 > 1,
(1 =pz(T) < (1 =p)r(nr) <--- < (1 =p)T(7) < A,

we will find some conditions so as to

aT

Arq (1_67047-)_}_6—(17' >1 Aro (1_6704T)_}_L>1’...’

(1-p)a 1-p ’ (1-p)a I-p
Arp —art e a7 Ar —ar e—aT
(l—p)a(]'_e )+ 1-p >]‘ > (1— 1’5 (]‘_6 )+1Tp>]-
Asmi >m§ > - >ml > (m¥), and ry = b+rm{, 1y = b+rm,---,

Tn = b+ rm¥,rp = b+ rm?., inequations ry > 7y > -+ > 1,(> rr) are tenable,

and when (é’;})a(l —e7) + e:; > 1 holds, all of the inequations above are

tenable. On the other hand, by the reasons of # > 0, for ¢t € [0,7T],x(t) >
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(1—p)B. Farther more, y(t) = (f(t) = 9)y(t) > (f(1 —p)B —g)y(t) and y(t)
are continuous. We obtain y(t) > y(t), where y(t) satisfies:

t B — g)y(t) = kwy(t),

{ ) = (1= P)B = 9u(® = k() 28)

B <A< sok =(f(1-p)B—g)<0. Duetoy(t) =y(t), m{ > yoek1™

my > yoe%lT:' my > yee™ T (mf > yoetT), namely 1y > ryoe" T 4+ b, ry >

Yo 1T 4 b, oo vy > ryee™T 4 b, rp > ryoet T 4+ b, then, (é”) (1 —e27)+

% > 1, if (ﬁ;)a(l —e ) el_j; > 1 or A(ryeeM™ +b)(1 — e ) + ale™ +

) >1,i=12-,n

When T = n1, -+ =

» Mz

1—e—aT e—a e—(n—2)ar (n—1)at e—nart 1

a5y et gyt 4+ e+ e+ i 2 5
(2.9)

When the condition a) of theorem (2.1) is tenable, the following equation is
obtained

2(T) < M* < B,T =nr. (2.10)
When T" > nr,

—a(T—nT) 1

1 %(1 o efa(TfnT)) e

i T 2 b (211)

When the condition b) of theorem (2.1) is tenable, the following equation is
obtained

x(T) < Mj < B, T > nr. (2.12)

By the comparison principle, the conditions under which the model has a
solution are found by a series of the upper solutions form theorem (2.1). Now
we want to obtain the conditions under which the model has no solution by a

series of the lower solutions.
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