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Abstract

A single valued function of one complex variable which is analytic
in the finite complex plane is called an entire function. In this paper
we would like to establish the bounds for the moduli of zeros of entire

functions. Some examples are provided to clear the notions.
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1 Introduction, Definitions and Notations.
Let

P(2) = ag + a1z + as2® +azz® + ... 12" a2 |an| # 0

be a polynomial of degree n. Datt and Govil[2]; Govil and Rahaman|[4]; Marden|8];
Mohammad[9]; Chattopadhyay, Das, Jain and Konwer[1]; Joyal, Labelle and
Rahaman[5]; Jain{[6],[7]}; Sun and Hsieh[10]; Zilovic, Roytman, Combettes
and Swamy[12]; Das and Datta[3] etc. worked in the theory of the distribution
of the zeros of polynomials and obtained some newly developed results.

In this paper we intend to establish some sharper results concerning the

theory of distribution of zeros of entire functions.

2 Lemma.
In this section we present a lemma which will be needed in the sequel.

Lemma 1 [11] If f(z) is an entire function of order p then for every ¢ > 0
and for all sufficiently large r the inequality N(r) < rP™¢ holds where N(r) is

the number of zeros of f(z) in |z| <.

3 Theorems.
Theorem 1 Let P(z) be an entire function defined by
P(2) = ag + a1z + as2® 4+ ... + ap2™ + ...

whose order p is finite. Also for all sufficiently large r in the disc |z| <
anw| # 0, lao| # 0. and also a, — 0 as n > N(r). Then all the zeros
of P(z) lie in the ring shaped region

T,

1
t—,S‘ZIStO
0
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where ty is the greatest positive root of
9(t) = Jan | = (lane| + M) 50 + M =0
and ty is the greatest positive root of

F(t) = |ao YO — (Jag| + M)tV 4 M =0
where M = max {|ao|, a1, ........ lane -1}

and M' = max {|a1],|as|, ....... lan |} -

Proof. Now
P(2) = ag+ayz + axz® + ... + aN(r)zN(”)

because N(r) exists for |z| < r; r is sufficiently large and a,, — 0 as n > N(r).
Then all the zeros of P(z) lie in the ring shaped region given in Theorem 1
which we are to prove.

Now

|P(2)| = |ao + a1z + az2® + ... + an 2V

> ’aN(r)’ ‘z’N(T) — }@O + a1z + CL222 4o _'_&N(T)_IZN(r)fl '
Also

}@0 +az+ag®+ ...+ @N(r),lzN(”)’l}

< lagl + ooe. + }GN@H] |Z|N(r)—1
<M <1 + 2]+ e 4 \Z’N(T)—l)
EIRE
=M———if 1. )
‘Z’ _ 1 1 ‘Z’ 7£ ( )

Therefore using (1) we obtain that

|P(2)] > |ane| 2|V — |ao + a1z + as2® + ... + any_12
E

> an] 217" = MW‘
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Hence

|P(2)| > 0if |ang| |2V — M

ie., if ‘CLN(T)‘ |Z|N(r) > M

S. K. Datta and S. Savapondit

2 =1

e, i a2 = Jang | 10 > M (170 — 1)

ie, it Jan| [2Y 7T = fane] 217 = M 12YO 4+ M> 0

ie., if |ane| |2V _ (|ane |+ M) 12V + M > 0.

Therefore on |z| # 1,

|P(2)] = 0if |ane| || VT (|ane | + M) 12V 4 M > 0.

Now let us consider

g(t) = ’@N(r)} N+ (}CLN(T)’ + M) N0 4 M =0, (2)

Clearly the maximum number of changes in sign in (2) is two. So the maximum

number of positive roots of g(t) = 0 is two and by Descartes’ rule of sign if it

is less, less by two. Clearly ¢ = 1 is one positive root of (2). So g(t) = 0 must

have another positive root t;(say).
Let us take tg = max{1,t;}. Clearly for ¢t > to, g(t) > 0. If not, for some

t=1ty > to,g(tg) < 0.

Now g(ts) < 0 and g(o0) > 0 imply that g(¢) = 0 has another positive root in

(t2,00) which gives a contradiction.
Therefore for ¢ > g, g(t) > 0 and so to > 1.
Hence |P(z)| > 0 for |z| > t.

Therefore all the zeros of P(z) lie in the disc |z] < . (3)

Again let us consider

Q) = NP (1)

z

~ N(r) ﬂ &N(T)}
z {ao—i— . + ...+ N

= CL()ZN

ie., |Q(z)] > |ao| 2|V - ‘alzN(T)_l + e + any| for |z| # 1.
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Now
a2V +CLN(7')} < |a1| 2] (-t Tt + ’CLN(T)
<M’<y VO +1>
N(r) _q
_M/<’Z}‘ . >for |z| # 1

Using (4) we get that

Therefore for |z| # 1,
N(r)
-1
\Q@NEOKMMVWW—AW<EL———>>O
2

N(r) -1
i&ﬁmme>M<%er>

ie., if ao||z|N T = |ao| |2 — M |2V + M’ > 0

ie., if |ao| |2/ = (lao| + M) ||V + M’ > 0.
So for |z| # 1,
Q)] 2 0if Jao| |2 ¥ — (Jag| + M) [/ + M" > 0.
Let us consider

F(8) = Jaol V0O — (Jag| + M) Y0 4 M’ = 0.

323

Since the maximum number of changes of sign in f(¢) is two, the maximum

number of positive roots of f(t) = 0 is two and by Descartes’ rule of sign if it

is less, less by two. Clearly t = 1 is one positive root of f(t) = 0. So f(t) =0

must have another positive root .

Let us take t), = Max{1,t3}. Clearly for ¢ > t{, f(t) > 0. If not, for some
ts > tg, f(t3) < 0. Now f(t3) < 0 and f(oco) > 0 implies that f(t) = 0 have

another positive root in the interval (¢3, 00) which is a contradiction.
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Therefore for ¢ > t, f(t) > 0.
Also ty > 1. So |Q(z)| > 0 for |z| > t;.
Therefore Q(z) does not vanish in |z| > t;.
Hence all the zeros of Q(2) lie in |z] < t;,.
Let z = 2 be a zero of P(z). Therefore P(zy) = 0. Clearly zy # 0 as ag # 0.
Putting z = % in Q(z) we get that

N(r) N(r)
Q (i) = (i) P(z) = (i) 0=0.
20 20 20
1

Therefore @ (%) =0.50z = % is a root of Q(z) = 0. Hence |-
that |zo| > %

As zp is an arbitrary root of P(z) = 0.

< t{, implies

1
Therefore all the zeros of P(z) lie in |z] > —. (5)
to

From (3) and (5) we get that all the zeros of P(z) lie in the proper ring shaped

region

1
t—,§\2|§t0
0

where t; and t;, are the greatest positive roots of the equations
9(t) = |an [ 77 = (Jane | + M) + M =0
and
t) = lao| "I — (Jag) + M)V 4 M =0
f(t) = lao

where M and M’ are given in the statement of Theorem 1. m

Remark 2 The limit in Theorem 1 is attained by P(z) = 2> — z — 1. Here
p=0and N(r) = 2 < v = r°. For ¢ > 0 and sufficiently large r, all
a, =0,n>2. Also ag = —1, a1 = —1,ay = 1.

Therefore

M = Mag {Jaol, |aaf} = 1 and M’ = Mo {|a] e} = 1
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and
gt) = lag|t® — (lag| + M)* + M =0
ie,gt) = -1+ +1=0
pe,glt) = t2—22+1=0.
Again
) = laolt® = (lao| + M) t* + M' =0

ie, f(t) = 15— 1+ )P +1=0
5 -2 +1=0.

-~
o
-
N
~
~—
I

So f(t) = 0 and g(t) = 0 represent the same equation. Mazximum number of

positive roots of f(t) =0 and g(t) =0 are same. Now
g(t) =0
implies that =22 +1=0
ie, (t—1)(—-t—-1)=0.
Therefore

o 1i\/(—1) ~4L(-1) _14v3

2.1 2

. . 1+/3
Hence the positive roots of g(t) = 0 are 1 and 5= So

{ 1+\/§} 1+3
to =max < 1, = .

2 2

Also the mazimum positive root of f(t) =0 is

. { 1+\/§}_1+\/§
o = maxq 1, = .

2 2

So in view of Theorem 1 all the zeros of P(z)lie in

1
I < |z < to
0
, 1 1++3
i.e., 5 S |z| < 5
2
3—1 1 3
e, Vo 10VE
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Now the zeros of P(2) are given by solving z*> —z —1 = 0. Therefore z = 1i2\/§‘

Let us denote the zeros of P(z) by z; = 1+2‘/§ and zy = 1_2—‘/§ = —@. Clearly

z1lies on the upper boundary and zy lies on the lower boundary. So the best

possible result is given by P(z) = 22 — 2 — 1.
Theorem 3 Let P(z) be an entire function defined by
P(2) = ag + a1z +agz® + ....... + ap2" + e

with finite order p, angy # 0, ag # 0 and also a,, — 0 for n > N(r) for the

disc |z| < r when r is sufficiently large. Further for some p > 0,
[ao P > Jar| PN > > w1 ] 0 2 fane ] -
Then all the zeros of P(z) lie in the ring shaped region
1

1 a
— < <ll< <1+ 9 me).
p(1+ i ) p |ane|

laolp

Proof. For the given entire function
P(2) = ap+ a1z + azz® + ....... + apz" + ol

with a, — 0 as n > N(r), where r is sufficiently large, N(r) exists and
N(r) < rkte,

Therefore
P(2) ~ag+a 1z +az® + ... + aN(r)zN(T)

as ap # 0, an¢y # 0 and a, — 0 for n > N(r).
Let us consider

Therefore

|R(2)| > |anem)| 2|V — }aopN(T) +apN I 4+ aN(r),lpzN(T)_l} . (6)
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Now by the given condition |ag| pV ™ > |ai| pV "=t > ......provided |z| # 0,

we obtain that

’aopN(r) + ale(r)—lz 4o + aN(T)_lpZN(r)—ll
< lao| PN + oo+ |angyr| p 2N

Therefore on |z| # 0,

— ’aopN(T) +apN T + an@)— pN () 1}
1 1
N(r) N(r)
— |ag| p z — e +——1. 7
a0l oV |4 (M |z|N<”> (7)

Therefore using (7) we get from (6) that

N(r r N(r 1 1
|R(2)| > ’aN(r)’ |Z| " _ |a0|pN( ) |Z| ) (m—f‘ ...... + TN

N(r r N(r 1 1
> ’CLN(T)’|Z| ()_|a0|pN()|Z| ") (ﬂ'}‘ ...... —i—W—f‘ .....

=1
= |Z|N(r) [’(IN(T)’ - |CLO| PN(T) {Z W}

k=1

Clearlyz oF is a geometric series which is convergent for ﬁ < 1 i.e., for

|z] > 1 and converges to

Therefore

=1
Z—: 1f |z| > 1.
prlFd

Hence we get from above that for 2| > 1

, . 1
B> 1 (Jasio | = 7 ol 1 ).
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Now for |z| > 1,

1
B> 01 147 (Jaoo| =" ool g ) 20

1
i.e., if }QN(T)} — pN(T) ’a()’ |Z| — 2 0
Le., if anp| > V0 |Z\|ai! 1
Le.,if [z|—1> pN( ) |ag|
|ane|
ie., if |z| > 1+ pN0) |ao] o1
|ane|
Therefore
IR(2)] > 0 if |z| > 14 pN0) 2 |aol
lane |

So all the zeros of R(z) lie in
| 0| r
Aol ne)
v

Let zg be an arbitrary zero of P(z). Therefore P(z;) = 0. Clearly zo # 0 as
2o # 0. Putting z = pzo in R(z) we have

2] <14

R(pzo) = pN I P(2) = pN .0 = 0.

Hence z = pzg is a zero of R(z). Therefore

[pzo <1+ o
la

1
Le, |zl <-=[1+ 9ol PN
p jane)]

Since zy is any zero of P(z) therefore all the zeros of P(z) lie in

1
2] <=1+ [aol PN | (8)
P |ane|

Again let us consider
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Now
Fz) = M0N0 p (L
pz
a an(r
~ pN N L g + 2 + Ngvzr)
P (pz)
= agpN N0 g NN +an(
Therefore
|F(2)| > |ao| PN [N — }ale(T)_lzN(T)_l + e +anm)) -
Again
}ale(T)_lzN(T)_l + e + angy| < |ad] PN N + |ane|
< Jar MO (YO 4 2] 1)
provided |z| # 0. So
N(r)—1_N(r)—1 N(r)—1 | N(r) 1 1
ap 2 + o + |anm| < lai] p |2| B + + HW :
z

So for |z| # 0,

1 1
[F(2)] 2 laol o™ |2V — fay| p¥ O 2]V <7+ ------ + Nm)

1 1
— N()=1 |, N()
=p || lagl p — |ax| | — + .- +—= 1
[ || |Z|N(T)

Therefore for |z| # 0,

=1
r)— N(r
|F(2)] > pN =t N0 [\ao\p— WZ@] : (9)
k=1

oo
The geometric series > ﬁ is convergent for
k=1

E

i.e., for |z| > 1
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and converges to
1 1
EFET Py

Therefore
iizi £ 1> 1 (10)
k | -1
Using (9) and (10) we have for |z| > 1,

. a
FEI> 20 A ol p - |

Hence for |z| > 1,

P(2)] > 0 i [o0) pNC hwp—‘“']zo

2| =1
o a
ie., if |ao|p — |z|| i|1 >0
. . ai
ie., if |ag| p > 2] _| 1
lLe., 1 1]
o |ao| p .

Therefore

>0for |z| >1+
7 () 2> 1

So F(z) does not vanish in

2| > 1+

Equivalently all the zeros of F'(z) lie in

o]

[aol p

Let z = zy be any zero of P(z). Therefore P(z)) = 0. Clearly ay # 0 and
20 7& 0.

Now let us put z = p%o in F(z). So we have

2| <14
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Therefore z = - is a root of F'(z).
P20

Hence

Il R i |
= |ao| p
1

ie., |— ,0(1+| |>
20 lag| p

1

|Zo|>

As zg is an arbitrary zero of P(z), all the zeros of P(z) lie on

p<1+1a1|)' (11)

aolp

2| >

From (8) and (11) we get that all the zeros of P(z) lie on the proper ring
shaped region

v 2] < 1 <1+ |ag| pN(r))
s T Tl
where
a0l PN 2 Jar] YO > o > [
for some p > 0. m
Corollary 4 From Theorem 2 we can easily conclude that all the zeros of

P(z)=ay+ a1z + ........ + anz

of degree n,|a,| # 0 with the property |ag| > |a1| > ...... > |ay| lie in the proper
ring shaped region

7<yz\<(1+|“°|)
<1+M> |n|

Just on putting p = 1.

Theorem 5 Let P(z) be an entire function with finite order p. For sufficiently

large values of r in the disk |z| < r, the Taylor’s series expansion of P(z)

P(2) = ap + ap, 2" 4+ ap, 2 + ... + ap, 2" + aneyz a0 # 0
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be such that 1 < p; < ps........ < Ppm < N(r)—1, p;’s are integers and for some
p>0,

lao| pN ™) > Jap, | pN TP > > |ay, | pN P,
Then all the zeros of P(z) lie in the proper ring shaped region

1 1
— <z < ~to
pto p

where ty and t( are the unique positive roots of the equations
g(t) = }aN(T)’tN(T)_pm — |ane| tNO=pn=1 _ 140 pN) =0 and
f(t) = lao| P87 — ag| P ¢~ — |ay, | = 0

respectively.

Proof. Let

Also for some p > 0,
jao| PN > Jay, | PN > > Jam| -

Let us consider

1= )

N(r) 2P zpm ZN(T)
=p {ao—i—amF—i— ..... —|—apmp]Tm+aN(r)W}

)7pm me + aN(’r‘) ZN(T) .
Therefore
R(z)| = Jang"?)
— ’aopN(T) +ap, pN PP + apmpN(T)_pmzpm’ . (13)

Now for |z| # 0,
}aOpN(r) + a/ple(r)fpl Zpl + ''''''' + a/pmpN(r)ipm me }
< aol PN + Jap, | PV 4+ [, | PN O |2
< lao| PN (1 + 2P 4 .. + |2|P™)

1 1 1 1
_ N(T) pm"rl _
= lao| p™"" | 2] (’Z‘ + ..+ PR + N + ’Z’pmﬂ) . (14
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Using (13) and (14), we have for |z| # 0

| B(2)]
1
N m
> Jane | 1217 = [ag] oV |2 (ng
N(r T m 1 ]'
> Jaweo] 17 = ol 770 e (-
= 1
N(r r m 1
= |ang | 12" = Jag| pN ) |2 Z—
= 2l
The geometric series » # is convergent for
k=1'%
1
— <1
2|

ie.for |z| >1

and converges to

1 1 1

+

+

21— & [o] =1

Therefore

=1 1
Z—k = for |z] > 1.
— E |z] — 1

So on |z| > 1,

N('f’) pm+1
IR(2)| > 0if |ane| |2V - !ao!p|z| _\zly
N('f’) pm+1
ie., if ’aN(T)’ ‘Z’N(r) > |ao] P’Z‘ _|Zl|

i.e., if ’aN(r)’ ‘Z’N( L

| 2™ > Jao !p

e, i 2 (Jan| 1Y = Jawg | 12"

Let us consider

g(t) = |ane | 1Y 7" — Jan

} ’t‘N(T —pm—1

1 1
‘perl*pl + ‘Z’perl
1 1
|Z|pm+1 —P1 |Z|pm+1 + -
>0
N(r) ‘Z’perl

333

)

(15)

—pm—1 ‘a |pN(’r‘)) 0

_ \aole( )

=0.

Clearly g(t) = 0 has one positive root because the maximum number of changes

in sign in g(t) is one and g(0) = — |ao| pN™

is —wve, g(oo

) is fve.
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Let ty be the positive root of g(t) = 0 and t, > 1. Clearly for ¢t > g, g(t) > 0.
If not for some t; > ¢y, g(t1) < 0.

Then g(t1) < 0 and g(oo) > 0. Therefore g(t) = 0 must have another positive
root in (t1,00) which gives a contradiction .

Hence for t > to, g(t) > 0 and t5 > 1. So |R(2)| > 0 for |z| > t.

Thus R(z) does not vanish in |z| > .

Hence all the zeros of R(z) lie in |z| < .
Let z = zp be any zero of P(z). So P(z) = 0. Clearly 25 # 0 as ag # 0.

Putting z = pz in R(z) we have
R(pz) = pN" P(z9) = pN .0 = 0.

Therefore R(pzy) = 0 and so z = pzp is a zero of R(z) and consequently

|pzo0| < to which implies |zg| < %0. As zp is an arbitrary zero of P(z),

t
all the zeros of P(2) lic in |2| < =. (16)
p

Again let us consider

Now

F(z)

1 1 1
_ N(r)  N(r) - - -
= p z {&0 + &pl ppl e 4+ ...... + apm b + aN(r }

= agpN N g NOPNO g NO e NO g
Also

}aple(T)_plzN(T)_pl 4o + apmpN(T)—pm SN(r)=pm + anpy ’
< Jap, | PN OOt ] oV MO 4 Jayg]

< Jay, | pNOP: <‘Z’N<r>—p1 FNO [Ny 1>'
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So for |z| # 0,

[E(2)]
> ‘a0| pN(T) |Z|N(r) _ ’aple(r)—mzN(r)—pl o +ay,p
> |ao| pN(’") ]z\N( — lay, | pN(T‘ <’Z‘N(r)—p1 + ’Z‘N(r)—pz +o + ’Z‘N(T)—pm X 1)

= Jag| N |2/
1 1 1
_ N(r) —p1+1 - - -
’CLPJP e ’Z\ ' <|z| + ‘Z’p2—p1+l +o Tt N(r)p1+1>

i.e., on |z| # 0,
' T r 1
|F(2)] > ]aO]pN( ) \Z]N( ) lay,| pN( —p1 \z! —pi41 (Z ‘_>

o0
The geometric series > ﬁ is convergent for
k=1

and converges to

111
21— Tz -1
Therefore
— 1 1
Z—k = for |z| >1
el E A Ed
Therefore for |z| > 1
1
T N(r r)— 1
P > laol 470 o1 = fa 702 15701 ()

N ’Z‘N(T)—pﬁl
= pN(r)*pl pp1 ’@O’ ’Z‘ r ‘aply W

= pN(r)*m ‘Z’N(T)—Pl-i-l (’aO’pm ‘Z’pl—l N ‘Z|‘ap_1|1)
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For |z] > 1,
L e G
Z J—
Lo i Jaol o [ > (1021
2] =1
ie., if |ao| p”* |2|"* — |ao| P |z|p1’1 ay,| > 0. an

Therefore on |z| > 1, |F(z)| > 0 if (17) holds.

Let us consider

F(t) = lao| P77 — Jao| PPt~ — Jay,| = 0.

Clearly f(t) = 0 has exactly one positive root and is greater than one. Let ¢,
be the positive root of f(¢) = 0. Therefore ¢, > 1. Obviously if ¢ > t{, then
f(t) > 0.Sofor |F(z)| > 0, |z| > t. Therefore F(z) does not vanish in |z| > t{.
Hence all the zeros of F(z) lie in |z| < t;.

Let z = 2 be any zero of P(z). Therefore P(zy) = 0. Clearly zy # 0 as ag # 0.
Now putting z = p%o in F(z) we obtain that

1 1 N(r)
) ()
P20 J

Therefore z = p—io is a zero of F(z). Now

—| < t;
JZA)
e, |—|<pty
20
e, [z0o] > =
1.€. 2 —_—.
C T

As zj is an arbitrary zero of P(z) therefore we obtain that
1
all the zeros of P(z) lie in |z| > pr (18)
Plo
Using (16) and (18) we get that all the zeros of P(z) lie in the ring shaped
region
Lo

1
— < |zl < =
Pty P
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where tg, t;, are the unique positive roots of the equations g(t) = 0 and f(t) =0

respectively whose form is given in the statement of Theorem 3. m

Corollary 6 In view of Theorem 3 we may state that all the zeros of the
polynomial P(z) = ag+ ap, 2" + ...+ ap, 2P™ 4+ a,2" of degree n with 1 < p; <
P2 < e < pm <n—1,p;’s are integers such that

lao] > Jap, | > oo > |ay,|
lie in ring shaped region
1
" < ‘Z’ < tg
0
where to, t, are the unique positive roots of the equations
g(t) = lan| "™ — |ag | "7 — |ag| = 0
and
f(#) = lao| " — Jao| " ™" — |a,,| = 0
respectively just substituting p = 1.
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