
International Mathematical Forum, Vol. 7, 2012, no. 7, 319 - 338

Further Results Related to Cauchy’s Proper Bound

for the Zeros of Entire Functions

Sanjib Kumar Datta

Department of Mathematics, University of Kalyani

Kalyani, Dist.-Nadia, Pin-741235

West Bengal, India

sanjib kr datta@yahoo.co.in

sk datta nbu@yahoo.co.in

(Former Address: Department of Mathematics

University of North Bengal

Raja Rammohunpur Dist.-Darjeeling, Pin-734013

West Bengal, India)

Santonu Savapondit

Department of Mathematics

Sikkim Manipal Institute of Technology

Majitar, Pin - 737136, Sikkim, India

sspondit@yahoo.co.in

Abstract

A single valued function of one complex variable which is analytic
in the finite complex plane is called an entire function. In this paper
we would like to establish the bounds for the moduli of zeros of entire
functions. Some examples are provided to clear the notions.

Mathematics Subject Clasification: Primary 30C15, 30C10, Secondary

26C10



320 S. K. Datta and S. Savapondit

Keywords: Zeros of entire functions, Cauchy’s bound, Proper ring shaped

region

1 Introduction, Definitions and Notations.

Let

P (z) = a0 + a1z + a2z
2 + a3z

3 + ........ + an−1z
n−1 + anzn; |an| �= 0

be a polynomial of degree n. Datt and Govil[2]; Govil and Rahaman[4]; Marden[8];

Mohammad[9]; Chattopadhyay, Das, Jain and Konwer[1]; Joyal, Labelle and

Rahaman[5]; Jain{[6],[7]}; Sun and Hsieh[10]; Zilovic, Roytman, Combettes

and Swamy[12]; Das and Datta[3] etc. worked in the theory of the distribution

of the zeros of polynomials and obtained some newly developed results.

In this paper we intend to establish some sharper results concerning the

theory of distribution of zeros of entire functions.

2 Lemma.

In this section we present a lemma which will be needed in the sequel.

Lemma 1 [11] If f(z) is an entire function of order ρ then for every ε > 0

and for all sufficiently large r the inequality N(r) ≤ rρ+ε holds where N(r) is

the number of zeros of f(z) in |z| ≤ r.

3 Theorems.

Theorem 1 Let P (z) be an entire function defined by

P (z) = a0 + a1z + a2z
2 + .... + anzn + ...

whose order ρ is finite. Also for all sufficiently large r in the disc |z| ≤
r,
∣∣aN(r)

∣∣ �= 0, |a0| �= 0. and also an → 0 as n > N(r). Then all the zeros

of P (z) lie in the ring shaped region

1

t′0
≤ |z| ≤ t0
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where t0 is the greatest positive root of

g(t) ≡ ∣∣aN(r)

∣∣ tN(r)+1 − (∣∣aN(r)

∣∣ + M
)
tN(r) + M = 0

and t′0 is the greatest positive root of

f(t) ≡ |a0| tN(r)+1 − (|a0| + M ′) tN(r) + M ′ = 0

where M = max
{|a0| , |a1| , ........

∣∣aN(r)−1

∣∣}
and M ′ = max

{|a1| , |a2| , ........
∣∣aN(r)

∣∣} .

Proof. Now

P (z) ≈ a0 + a1z + a2z
2 + .... + aN(r)z

N(r)

because N(r) exists for |z| ≤ r; r is sufficiently large and an → 0 as n > N(r).

Then all the zeros of P (z) lie in the ring shaped region given in Theorem 1

which we are to prove.

Now

|P (z)| ≈ ∣∣a0 + a1z + a2z
2 + .... + aN(r)z

N(r)
∣∣

≥ ∣∣aN(r)

∣∣ |z|N(r) − ∣∣a0 + a1z + a2z
2 + .... + aN(r)−1z

N(r)−1
∣∣ .

Also

∣∣a0 + a1z + a2z
2 + .... + aN(r)−1z

N(r)−1
∣∣

≤ |a0| + ......... +
∣∣aN(r)−1

∣∣ |z|N(r)−1

≤ M
(
1 + |z| + ......... + |z|N(r)−1

)

= M
|z|N(r) − 1

|z| − 1
if |z| �= 1. (1)

Therefore using (1) we obtain that

|P (z)| ≥ ∣∣aN(r)

∣∣ |z|N(r) − ∣∣a0 + a1z + a2z
2 + .... + aN(r)−1z

N(r)−1
∣∣

≥ ∣∣aN(r)

∣∣ |z|N(r) − M
|z|N(r) − 1

|z| − 1
.
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Hence

|P (z)| ≥ 0 if
∣∣aN(r)

∣∣ |z|N(r) − M
|z|N(r) − 1

|z| − 1
> 0

i.e., if
∣∣aN(r)

∣∣ |z|N(r) > M
|z|N(r) − 1

|z| − 1

i.e., if
∣∣aN(r)

∣∣ |z|N(r)+1 − ∣∣aN(r)

∣∣ |z|N(r) > M
(
|z|N(r) − 1

)
i.e., if

∣∣aN(r)

∣∣ |z|N(r)+1 − ∣∣aN(r)

∣∣ |z|N(r) − M |z|N(r) + M > 0

i.e., if
∣∣aN(r)

∣∣ |z|N(r)+1 − (∣∣aN(r)

∣∣+ M
) |z|N(r) + M > 0.

Therefore on |z| �= 1,

|P (z)| ≥ 0 if
∣∣aN(r)

∣∣ |z|N(r)+1 − (∣∣aN(r)

∣∣ + M
) |z|N(r) + M > 0.

Now let us consider

g(t) ≡ ∣∣aN(r)

∣∣ tN(r)+1 − (∣∣aN(r)

∣∣+ M
)
tN(r) + M = 0. (2)

Clearly the maximum number of changes in sign in (2) is two. So the maximum

number of positive roots of g(t) = 0 is two and by Descartes’ rule of sign if it

is less, less by two. Clearly t = 1 is one positive root of (2). So g(t) = 0 must

have another positive root t1(say).

Let us take t0 = max {1, t1} . Clearly for t > t0, g(t) > 0. If not, for some

t = t2 > t0, g(t2) < 0.

Now g(t2) < 0 and g(∞) > 0 imply that g(t) = 0 has another positive root in

(t2,∞) which gives a contradiction.

Therefore for t > t0, g(t) > 0 and so t0 > 1.

Hence |P (z)| ≥ 0 for |z| > t0.

Therefore all the zeros of P (z) lie in the disc |z| ≤ t0. (3)

Again let us consider

Q(z) = zN(r)P

(
1

z

)

≈ zN(r)
{

a0 +
a1

z
+ .... +

aN(r)

zN(r)

}
= a0z

N(r) + a1z
N(r)−1 + ..... + aN(r)

i.e., |Q(z)| ≥ |a0| |z|N(r) − ∣∣a1z
N(r)−1 + ...... + aN(r)

∣∣ for |z| �= 1.
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Now

∣∣a1z
N(r)−1 + ...... + aN(r)

∣∣ ≤ |a1| |z|N(r)−1 + ......... +
∣∣∣aN(r)

∣∣∣
≤ M ′

(
|z|N(r)−1 + ......... + 1

)

= M ′
(
|z|N(r) − 1

|z| − 1

)
for |z| �= 1. (4)

Using (4) we get that

|Q(z)| ≥ |a0| |z|N(r) − ∣∣a1z
N(r)−1 + ...... + aN(r)

∣∣
≥ |a0| |z|N(r) − M ′

(
|z|N(r) − 1

|z| − 1

)
for |z| �= 1.

Therefore for |z| �= 1,

|Q(z)| ≥ 0 if |a0| |z|N(r) − M ′
(
|z|N(r) − 1

|z| − 1

)
> 0

i.e., if |a0| |z|N(r) > M ′
(
|z|N(r) − 1

|z| − 1

)

i.e., if |a0| |z|N(r)+1 − |a0| |z|N(r) − M ′ |z|N(r) + M ′ > 0

i.e., if |a0| |z|N(r)+1 − (|a0| + M ′) |z|N(r) + M ′ > 0.

So for |z| �= 1,

|Q(z)| ≥ 0 if |a0| |z|N(r)+1 − (|a0| + M ′) |z|N(r) + M ′ > 0.

Let us consider

f(t) ≡ |a0| tN(r)+1 − (|a0| + M ′) tN(r) + M ′ = 0.

Since the maximum number of changes of sign in f(t) is two, the maximum

number of positive roots of f(t) = 0 is two and by Descartes’ rule of sign if it

is less, less by two. Clearly t = 1 is one positive root of f(t) = 0. So f(t) = 0

must have another positive root .

Let us take t′0 = Max {1, t2} . Clearly for t > t′0, f(t) > 0. If not, for some

t3 > t′0, f(t3) < 0. Now f(t3) < 0 and f(∞) > 0 implies that f(t) = 0 have

another positive root in the interval (t3,∞) which is a contradiction.
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Therefore for t > t′0, f(t) > 0.

Also t′0 ≥ 1. So |Q(z)| ≥ 0 for |z| > t′0.

Therefore Q(z) does not vanish in |z| > t′0.

Hence all the zeros of Q(z) lie in |z| ≤ t′0.

Let z = z0 be a zero of P (z). Therefore P (z0) = 0. Clearly z0 �= 0 as a0 �= 0.

Putting z = 1
z0

in Q(z) we get that

Q

(
1

z0

)
=

(
1

z0

)N(r)

P (z0) =

(
1

z0

)N(r)

.0 = 0.

Therefore Q
(

1
z0

)
= 0. So z = 1

z0
is a root of Q(z) = 0. Hence

∣∣∣ 1
z0

∣∣∣ ≤ t′0 implies

that |z0| ≥ 1
t′0

.

As z0 is an arbitrary root of P (z) = 0.

Therefore all the zeros of P (z) lie in |z| ≥ 1

t′0
. (5)

From (3) and (5) we get that all the zeros of P (z) lie in the proper ring shaped

region

1

t′0
≤ |z| ≤ t0

where t0 and t′0 are the greatest positive roots of the equations

g(t) ≡ ∣∣aN(r)

∣∣ tN(r)+1 − (∣∣aN(r)

∣∣ + M
)
tN(r) + M = 0

and

f(t) ≡ |a0| tN(r)+1 − (|a0| + M ′) tN(r) + M ′ = 0

where M and M ′ are given in the statement of Theorem 1.

Remark 2 The limit in Theorem 1 is attained by P (z) = z2 − z − 1. Here

ρ = 0 and N(r) = 2 ≤ r0+ε = rε. For ε > 0 and sufficiently large r, all

an = 0, n ≥ 2. Also a0 = −1, a1 = −1, a2 = 1.

Therefore

M = Max {|a0| , |a1|} = 1 and M ′ = Max {|a1| , |a2|} = 1
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and

g(t) ≡ |a2| t3 − (|a2| + M)t2 + M = 0

i.e., g(t) ≡ t3 − (1 + 1)t2 + 1 = 0

i.e., g(t) ≡ t3 − 2t2 + 1 = 0.

Again

f(t) ≡ |a0| t3 − (|ao| + M ′) t2 + M ′ = 0

i.e., f(t) ≡ 1.t3 − (1 + 1)t2 + 1 = 0

i.e., f(t) ≡ t3 − 2t2 + 1 = 0.

So f(t) = 0 and g(t) = 0 represent the same equation. Maximum number of

positive roots of f(t) = 0 and g(t) = 0 are same. Now

g(t) = 0

implies that t3 − 2t2 + 1 = 0

i.e., (t − 1)
(
t2 − t − 1

)
= 0.

Therefore

t = 1 and t =
1 ±

√
(−1)2 − 4.1.(−1)

2.1
=

1 ±√
3

2
.

Hence the positive roots of g(t) = 0 are 1 and 1+
√

3
2

. So

t0 = max

{
1,

1 +
√

3

2

}
=

1 +
√

3

2
.

Also the maximum positive root of f(t) = 0 is

t′0 = max

{
1,

1 +
√

3

2

}
=

1 +
√

3

2
.

So in view of Theorem 1 all the zeros of P (z)lie in

1

t′0
≤ |z| ≤ t0

i.e.,
1

1+
√

3
2

≤ |z| ≤ 1 +
√

3

2

i.e.,

√
3 − 1

2
≤ |z| ≤ 1 +

√
3

2
.
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Now the zeros of P (z) are given by solving z2 −z−1 = 0. Therefore z = 1±√
3

2
.

Let us denote the zeros of P (z) by z1 = 1+
√

3
2

and z2 = 1−√
3

2
= −

√
3−1
2

. Clearly

z1lies on the upper boundary and z2 lies on the lower boundary. So the best

possible result is given by P (z) = z2 − z − 1.

Theorem 3 Let P (z) be an entire function defined by

P (z) = a0 + a1z + a2z
2 + ....... + anzn + .........

with finite order ρ, aN(r) �= 0, a0 �= 0 and also an → 0 for n > N(r) for the

disc |z| ≤ r when r is sufficiently large. Further for some ρ > 0,

|a0| ρN(r) ≥ |a1| ρN(r)−1 ≥ ..... ≥ ∣∣aN(r)−1

∣∣ ρ ≥ ∣∣aN(r)

∣∣ .
Then all the zeros of P (z) lie in the ring shaped region

1

ρ
(
1 + |a1|

|a0|ρ

) < |z| <
1

ρ

(
1 +

|a0|∣∣aN(r)

∣∣ρN(r)

)
.

Proof. For the given entire function

P (z) = a0 + a1z + a2z
2 + ....... + anzn + .........

with an → 0 as n > N(r), where r is sufficiently large, N(r) exists and

N(r) ≤ rk+ε.

Therefore

P (z) ≈ a0 + a1z + a2z
2 + ....... + aN(r)z

N(r)

as a0 �= 0, aN(r) �= 0 and an → 0 for n > N(r).

Let us consider

R(z) = ρN(r)P

(
z

ρ

)

≈ ρN(r)

(
a0 + a1

z

ρ
+ a2

z2

ρ2
+ ....... + aN(r)

zN(r)

ρN(r)

)
=
(
a0ρ

N(r) + a1ρ
N(r)−1z + ....... + aN(r)z

N(r)
)
.

Therefore

|R(z)| ≥ ∣∣aN(r)

∣∣ |z|N(r) − ∣∣a0ρ
N(r) + a1ρ

N(r)−1z + .... + aN(r)−1ρzN(r)−1
∣∣ . (6)
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Now by the given condition |a0| ρN(r) ≥ |a1| ρN(r)−1 ≥ ......provided |z| �= 0,

we obtain that

∣∣a0ρ
N(r) + a1ρ

N(r)−1z + ....... + aN(r)−1ρzN(r)−1
∣∣

≤ |a0| ρN(r) + ....... +
∣∣aN(r)−1

∣∣ ρ |z|N(r)−1

≤ |a0| ρN(r) |z|N(r)

(
1

|z| + ...... +
1

|z|N(r)

)
.

Therefore on |z| �= 0,

− ∣∣a0ρ
N(r) + a1ρ

N(r)−1z + ....... + aN(r)−1ρzN(r)−1
∣∣

≥ − |a0| ρN(r) |z|N(r)

(
1

|z| + ...... +
1

|z|N(r)

)
. (7)

Therefore using (7) we get from (6) that

|R(z)| ≥ ∣∣aN(r)

∣∣ |z|N(r) − |a0| ρN(r) |z|N(r)

(
1

|z| + ...... +
1

|z|N(r)

)

≥ ∣∣aN(r)

∣∣ |z|N(r) − |a0| ρN(r) |z|N(r)

(
1

|z| + ...... +
1

|z|N(r)
+ .....

)

= |z|N(r)

[∣∣aN(r)

∣∣− |a0| ρN(r)

{ ∞∑
k=1

1

|z|k
}]

.

Clearly
∞∑

k=1

1

|z|k is a geometric series which is convergent for 1
|z| < 1 i.e., for

|z| > 1 and converges to

1

|z|
1

1 − 1
|z|

=
1

|z| − 1
.

Therefore

∞∑
k=1

1

|z|k =
1

|z| − 1
if |z| > 1.

Hence we get from above that for |z| > 1

|R(z)| > |z|N(r)

(∣∣aN(r)

∣∣− ρN(r) |a0| 1

|z| − 1

)
.
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Now for |z| > 1,

|R(z)| > 0 if |z|N(r)

(∣∣aN(r)

∣∣− ρN(r) |a0| 1

|z| − 1

)
≥ 0

i.e., if
∣∣aN(r)

∣∣− ρN(r) |a0| 1

|z| − 1
≥ 0

i.e., if
∣∣aN(r)

∣∣ ≥ ρN(r) |a0|
|z| − 1

i.e., if |z| − 1 ≥ ρN(r) |a0|∣∣aN(r)

∣∣
i.e., if |z| ≥ 1 + ρN(r) |a0|∣∣aN(r)

∣∣ > 1.

Therefore

|R(z)| > 0 if |z| ≥ 1 + ρN(r) |a0|∣∣aN(r)

∣∣ .
So all the zeros of R(z) lie in

|z| < 1 +
|a0|∣∣aN(r)

∣∣ρN(r).

Let z0 be an arbitrary zero of P (z). Therefore P (z0) = 0. Clearly z0 �= 0 as

z0 �= 0. Putting z = ρz0 in R(z) we have

R(ρz0) = ρN(r)P (z0) = ρN(r).0 = 0.

Hence z = ρz0 is a zero of R(z). Therefore

|ρz0| < 1 +
|a0|∣∣aN(r)

∣∣ρN(r)

i.e., |z0| <
1

ρ

(
1 +

|a0|∣∣aN(r)

∣∣ρN(r)

)
.

Since z0 is any zero of P (z) therefore all the zeros of P (z) lie in

|z| <
1

ρ

(
1 +

|a0|∣∣aN(r)

∣∣ρN(r)

)
. (8)

Again let us consider

F (z) = ρN(r)zN(r)P

(
1

ρz

)
.
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Now

F (z) = ρN(r)zN(r)P

(
1

ρz

)

≈ ρN(r)zN(r)

{
a0 +

a1

ρz
+ ....... +

aN(r)

(ρz)N(r)

}

= a0ρ
N(r)zN(r) + a1ρ

N(r)−1zN(r)−1 + ....... + aN(r).

Therefore

|F (z)| ≥ |a0| ρN(r) |z|N(r) − ∣∣a1ρ
N(r)−1zN(r)−1 + ....... + aN(r)

∣∣ .
Again∣∣a1ρ

N(r)−1zN(r)−1 + ....... + aN(r)

∣∣ ≤ |a1| ρN(r)−1 |z|N(r)−1 + ........ +
∣∣aN(r)

∣∣
≤ |a1| ρN(r)−1

(
|z|N(r)−1 + ........ + |z| + 1

)
provided |z| �= 0. So

a1ρ
N(r)−1zN(r)−1 + ........ +

∣∣aN(r)

∣∣ ≤ |a1| ρN(r)−1 |z|N(r)

(
1

|z| + ...... +
1

|z|N(r)

)
.

So for |z| �= 0,

|F (z)| ≥ |a0| ρN(r) |z|N(r) − |a1| ρN(r)−1 |z|N(r)

(
1

|z| + ...... +
1

|z|N(r)

)

= ρN(r)−1 |z|N(r)

[
|a0| ρ − |a1|

(
1

|z| + ...... +
1

|z|N(r)

)]
.

Therefore for |z| �= 0,

|F (z)| > ρN(r)−1 |z|N(r)

[
|a0| ρ − |a1|

∞∑
k=1

1

|z|k
]

. (9)

The geometric series
∞∑

k=1

1

|z|k is convergent for

1

|z| < 1

i.e., for |z| > 1
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and converges to

1

|z|
1

1 − 1
|z|

=
1

|z| − 1
.

Therefore
∞∑

k=1

1

|z|k =
1

|z| − 1
if |z| > 1. (10)

Using (9) and (10) we have for |z| > 1,

|F (z)| > ρN(r)−1 |z|N(r)

[
|a0| ρ − |a1|

|z| − 1

]
.

Hence for |z| > 1,

|F (z)| > 0 if |z|N(r) ρN(r)−1

[
|a0| ρ − |a1|

|z| − 1

]
≥ 0

i.e., if |a0| ρ − |a1|
|z| − 1

≥ 0

i.e., if |a0| ρ ≥ |a1|
|z| − 1

i.e., if |z| ≥ 1 +
|a1|
|a0| ρ > 1.

Therefore

|F (z)| > 0 for |z| > 1 +
|a1|
|a0| ρ.

So F (z) does not vanish in

|z| ≥ 1 +
|a1|
|a0| ρ.

Equivalently all the zeros of F (z) lie in

|z| < 1 +
|a1|
|a0| ρ.

Let z = z0 be any zero of P (z). Therefore P (z0) = 0. Clearly a0 �= 0 and

z0 �= 0.

Now let us put z = 1
ρz0

in F (z). So we have

F

(
1

ρz0

)
= ρN(r)

(
1

ρz0

)N(r)

P (z0)

=

(
1

z0

)N(r)

.0 = 0.
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Therefore z = 1
ρz0

is a root of F (z).

Hence ∣∣∣∣ 1

ρz0

∣∣∣∣ < 1 +
|a1|
|a0| ρ

i.e.,

∣∣∣∣ 1

z0

∣∣∣∣ < ρ

(
1 +

|a1|
|a0| ρ

)

i.e., |z0| >
1

ρ
(
1 + |a1|

|a0|ρ

) .

As z0 is an arbitrary zero of P (z), all the zeros of P (z) lie on

|z| >
1

ρ
(
1 + |a1|

|a0|ρ

) . (11)

From (8) and (11) we get that all the zeros of P (z) lie on the proper ring

shaped region

1

ρ
(
1 + |a1|

|a0|ρ

) < |z| <
1

ρ

(
1 +

|a0|∣∣aN(r)

∣∣ρN(r)

)

where

|a0| ρN(r) ≥ |a1| ρN(r)−1 ≥ ....... ≥ ∣∣aN(r)

∣∣
for some ρ > 0.

Corollary 4 From Theorem 2 we can easily conclude that all the zeros of

P (z) = a0 + a1z + ........ + anzn

of degree n, |an| �= 0 with the property |a0| ≥ |a1| ≥ ...... ≥ |an| lie in the proper

ring shaped region

1(
1 + |a1|

|a0|

) < |z| <

(
1 +

|a0|
|an|

)

just on putting ρ = 1.

Theorem 5 Let P (z) be an entire function with finite order ρ. For sufficiently

large values of r in the disk |z| ≤ r, the Taylor’s series expansion of P (z)

P (z) = a0 + ap1z
p1 + ap2z

p2 + ..... + apmzpm + aN(r)z
N(r), ao �= 0
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be such that 1 ≤ p1 < p2........ < pm ≤ N(r)− 1, pi’s are integers and for some

ρ > 0,

|a0| ρN(r) ≥ |aP1 | ρN(r)−p1 ≥ ........ ≥ |apm| ρN(r)−pm .

Then all the zeros of P (z) lie in the proper ring shaped region

1

ρt0
< |z| <

1

ρ
t0

where t0 and t′0 are the unique positive roots of the equations

g(t) ≡ ∣∣aN(r)

∣∣ tN(r)−pm − ∣∣aN(r)

∣∣ tN(r)−pm−1 − |a0| ρN(r) = 0 and

f(t) ≡ |a0| ρp1tp1 − |a0| ρp1tp1−1 − |ap1| = 0

respectively.

Proof. Let

P (z) = a0 + ap1z
p1 + ....... + apmzpm + aN(r)z

N(r),
∣∣aN(r)

∣∣ �= 0. (12)

Also for some ρ > 0,

|a0| ρN(r) ≥ |ap1| ρN(r)−p1 ≥ ............ ≥ ∣∣aN(r)

∣∣ .
Let us consider

R(z) = ρN(r)P

(
z

ρ

)

= ρN(r)

{
a0 + ap1

zp1

ρp1
+ ..... + apm

zpm

ρpm
+ aN(r)

zN(r)

ρN(r)

}
= a0ρ

N(r) + ap1ρ
N(r)−p1zp1 + ....... + apmρN(r)−pmzpm + aN(r)z

N(r).

Therefore

|R(z)| ≥ ∣∣aN(r)z
N(r)
∣∣

− ∣∣a0ρ
N(r) + ap1ρ

N(r)−p1zp1 + ....... + apmρN(r)−pmzpm
∣∣ . (13)

Now for |z| �= 0,∣∣a0ρ
N(r) + ap1ρ

N(r)−p1zp1 + ....... + apmρN(r)−pmzpm
∣∣

≤ |a0| ρN(r) + |ap1 | ρN(r)−p1 |z|p1 + ....... + |apm| ρN(r)−pm |z|pm

≤ |a0| ρN(r) (1 + |z|p1 + ......... + |z|pm)

= |a0| ρN(r) |z|pm+1

(
1

|z| + ... +
1

|z|pm+1−p2
+

1

|z|pm+1−p1
+

1

|z|pm+1

)
. (14)
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Using (13) and (14), we have for |z| �= 0

|R(z)|

≥ ∣∣aN(r)

∣∣ |z|N(r) − |a0| ρN(r) |z|pm+1

(
1

|z| + .... +
1

|z|pm+1−p1
+

1

|z|pm+1

)

>
∣∣aN(r)

∣∣ |z|N(r) − |a0| ρN(r) |z|pm+1

(
1

|z| + ... +
1

|z|pm+1−p1
+

1

|z|pm+1 + ...

)

=
∣∣aN(r)

∣∣ |z|N(r) − |a0| ρN(r) |z|pm+1
∞∑

k=1

1

|z|k . (15)

The geometric series
∞∑

k=1

1

|z|k is convergent for

1

|z| < 1

i.e.,for |z| > 1

and converges to

1

|z|
1

1 − 1
|z|

=
1

|z| − 1
.

Therefore

∞∑
k=1

1

|z|k =
1

|z| − 1
for |z| > 1.

So on |z| > 1,

|R(z)| > 0 if
∣∣aN(r)

∣∣ |z|N(r) − |a0| ρN(r) |z|pm+1

|z| − 1
≥ 0

i.e., if
∣∣aN(r)

∣∣ |z|N(r) ≥ |a0| ρN(r) |z|pm+1

|z| − 1

i.e., if
∣∣aN(r)

∣∣ |z|N(r)+1 − ∣∣aN(r)

∣∣ |z|N(r) ≥ |a0| ρN(r) |z|pm+1

i.e., if |z|pm+1
(∣∣aN(r)

∣∣ |z|N(r)−pm − ∣∣aN(r)

∣∣ |z|N(r)−pm−1 − |a0| ρN(r)
)
≥ 0.

Let us consider

g(t) ≡ ∣∣aN(r)

∣∣ |t|N(r)−pm − ∣∣aN(r)

∣∣ |t|N(r)−pm−1 − |a0| ρN(r) = 0.

Clearly g(t) = 0 has one positive root because the maximum number of changes

in sign in g(t) is one and g(0) = − |a0| ρN(r) is −ve, g(∞) is +ve.
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Let t0 be the positive root of g(t) = 0 and t0 > 1. Clearly for t > t0, g(t) ≥ 0.

If not for some t1 > t0, g(t1) < 0.

Then g(t1) < 0 and g(∞) > 0. Therefore g(t) = 0 must have another positive

root in (t1,∞) which gives a contradiction .

Hence for t ≥ t0, g(t) ≥ 0 and t0 > 1. So |R(z)| > 0 for |z| ≥ t0.

Thus R(z) does not vanish in |z| ≥ t0.

Hence all the zeros of R(z) lie in |z| < t0.

Let z = z0 be any zero of P (z). So P (z0) = 0. Clearly z0 �= 0 as a0 �= 0.

Putting z = ρz0 in R(z) we have

R(ρz0) = ρN(r)P (z0) = ρN(r).0 = 0.

Therefore R(ρz0) = 0 and so z = ρz0 is a zero of R(z) and consequently

|ρz0| < t0 which implies |z0| < t0
ρ
. As z0 is an arbitrary zero of P (z),

all the zeros of P (z) lie in |z| <
t0
ρ

. (16)

Again let us consider

F (z) = ρN(r)zN(r)P

(
1

ρz

)
.

Now

F (z)

= ρN(r)zN(r)

{
a0 + ap1

1

ρp1zp1
+ ...... + apm

1

ρpmzpm
+ aN(r)

1

ρN(r)zN(r)

}
= a0ρ

N(r)zN(r) + ap1ρ
N(r)−p1zN(r)−p1 + ...... + apmρN(r)−pmzN(r)−pm + aN(r).

Also

∣∣ap1ρ
N(r)−p1zN(r)−p1 + ...... + apmρN(r)−pmzN(r)−pm + aN(r)

∣∣
≤ |ap1 | ρN(r)−p1 |z|N(r)−p1 + ....... + |apm| ρN(r)−pm |z|N(r)−pm +

∣∣aN(r)

∣∣
≤ |ap1 | ρN(r)−p1

(
|z|N(r)−p1 + |z|N(r)−p2 + ....... + |z|N(r)−pm + 1

)
.
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So for |z| �= 0,

|F (z)|
≥ |a0| ρN(r) |z|N(r) − ∣∣ap1ρ

N(r)−p1zN(r)−p1 + ...... + apmρN(r)−pmzN(r)−pm + aN(r)

∣∣
≥ |a0| ρN(r) |z|N(r) − |ap1| ρN(r)−p1

(
|z|N(r)−p1 + |z|N(r)−p2 + ..... + |z|N(r)−pm + 1

)
= |a0| ρN(r) |z|N(r)

− |aP1| ρN(r)−p1 |z|N(r)−p1+1

(
1

|z| +
1

|z|p2−p1+1 + .... +
1

|z|N(r)−p1+1

)

i.e., on |z| �= 0,

|F (z)| > |a0| ρN(r) |z|N(r) − |ap1 | ρN(r)−p1 |z|N(r)−p1+1

( ∞∑
k=1

1

|z|k
)

.

The geometric series
∞∑

k=1

1

|z|k is convergent for

1

|z| < 1

i.e., for |z| > 1

and converges to

1

|z|
1

1 − 1
|z|

=
1

|z| − 1
.

Therefore

∞∑
k=1

1

|z|k =
1

|z| − 1
for |z| > 1.

Therefore for |z| > 1

|F (z)| > |a0| ρN(r) |z|N(r) − |ap1| ρN(r)−p1 |z|N(r)−p1+1

(
1

|z| − 1

)

= ρN(r)−p1

(
ρp1 |a0| |z|N(r) − |ap1|

|z|N(r)−p1+1

|z| − 1

)

= ρN(r)−p1 |z|N(r)−p1+1

(
|a0| ρp1 |z|p1−1 − |ap1|

|z| − 1

)
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For |z| > 1,

|F (z)| > 0 if |a0| ρp1 |z|p1−1 − |ap1 |
|z| − 1

≥ 0

i.e., if |a0| ρp1 |z|p1−1 ≥ |ap1 |
|z| − 1

i.e., if |a0| ρp1 |z|p1 − |a0| ρp1 |z|p1−1 − |ap1| ≥ 0. (17)

Therefore on |z| > 1, |F (z)| > 0 if (17) holds.

Let us consider

f(t) = |a0| ρp1tp1 − |a0| ρp1tp1−1 − |ap1| = 0.

Clearly f(t) = 0 has exactly one positive root and is greater than one. Let t′0
be the positive root of f(t) = 0. Therefore t′0 > 1. Obviously if t ≥ t′0 then

f(t) ≥ 0. So for |F (z)| > 0, |z| ≥ t′0. Therefore F (z) does not vanish in |z| ≥ t′0.

Hence all the zeros of F (z) lie in |z| < t′0.

Let z = z0 be any zero of P (z). Therefore P (z0) = 0. Clearly z0 �= 0 as a0 �= 0.

Now putting z = 1
ρz0

in F (z) we obtain that

F

(
1

ρz0

)
= ρN(r)

(
1

ρz0

)N(r)

P (z0)

=

(
1

z0

)N(r)

P (z0) = 0.

Therefore z = 1
ρz0

is a zero of F (z). Now∣∣∣∣ 1

ρz0

∣∣∣∣ < t′0

i.e.,

∣∣∣∣ 1

z0

∣∣∣∣ < ρt′0

i.e., |z0| >
1

ρt′0
.

As z0 is an arbitrary zero of P (z) therefore we obtain that

all the zeros of P (z) lie in |z| >
1

ρt′0
. (18)

Using (16) and (18) we get that all the zeros of P (z) lie in the ring shaped

region

1

ρt′0
< |z| <

t0
ρ
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where t0, t
′
0 are the unique positive roots of the equations g(t) = 0 and f(t) = 0

respectively whose form is given in the statement of Theorem 3.

Corollary 6 In view of Theorem 3 we may state that all the zeros of the

polynomial P (z) = a0 +ap1z
p1 + .....+apmzpm +anzn of degree n with 1 ≤ p1 <

p2 < ........... < pm ≤ n − 1, pi’s are integers such that

|a0| ≥ |ap1| ≥ .................. ≥ |an|

lie in ring shaped region

1

t′0
< |z| < t0

where t0, t
′
0 are the unique positive roots of the equations

g(t) ≡ |an| tn−pm − |an| tn−pm−1 − |a0| = 0

and

f(t) ≡ |a0| tp1 − |a0| tp1−1 − |ap1 | = 0

respectively just substituting ρ = 1.
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