The Graphs G that both G and L(G)Contain 1-Perfect Codes

E. Lashani

Department of Mathematics, Islamic Azad University, Doroud Branch, Doroud, Iran lashani@iau-doroud.ac.ir

A. Iranmanesh

Department of Pure Mathematics, Faculty of Mathematical Sciences Tarbiat Modares University, Tehran, Iran iranmanesh@modares.ac.ir

R. Kahkeshani¹

Department of Pure Mathematics, Faculty of Mathematical Sciences
University of Kashan, Kashan, Iran
Mathematics and Informatics Research Group, ACECR, Tarbiat Modares University,
P. O. Box 14115-343, Tehran, Iran
r_kahkeshani@yahoo.com

O. Khormali

Mathematics and Informatics Research Group, ACECR Tarbiat Modares University, P.O. Box 14115-343, Tehran, Iran khormali@acecr.ac.ir

Abstract

It is shown that both the graph G and its line graph L(G) contain 1-perfect codes if and only if G has special structures which are mentioned in this paper.

Mathematics Subject Classifications: 05C12, 05C69, 68R10

Keywords: Graph; Line graph; Perfect code

¹Corresponding author.

1 Introduction

In [2], N. Biggs introduced perfect codes in graphs as a generalization of the classical notions of perfect codes in the vector spaces [1, 14] and derived a necessary condition for the existence of perfect codes in distance-transitive graph. Unlike the case of distance-regular graphs where perfect codes are rare [3, 6, 15, 17], I. Dvořáková-Rulićová has constructed a (d + 1)-regular graph containing a t-perfect code for any graph with the maximum degree d, where t is a given positive integer [4, Theorem 1]. J. Kratochvíl continued the study of perfect codes in graphs [9, 10] and together with his coleagues, he has shown that typical graphs don't contain 1-perfect codes [12] and the problem of perfect code recognition in graphs is NP-complete even when we are restricted to the regular graphs [11]. Recently, some authors have examined perfect codes in the Sierpińsky graphs and the direct product of the cycles [7, 8, 13, 16].

In this paper, we drive a necessary and sufficient condition for determining the graphs G that both G and the line graph L(G) contain 1-perfect codes. It is shown that the such graph G must be one of the typical graphs which we define here.

2 Preliminaries

Let G = (V(G), E(G)) be an undirected graph with the vertex set V(G) and edge set E(G). The valency or degree of a vertex v is the number of edges containing v and the graph G is called regular if all the vertices of G have the same valency. The complete graph K_n is a graph on n vertices such that any two distinct vertices are adjacent. The line graph of G is the graph L(G) = (E(G), V(G)) where edges of G are vertices of L(G) and two edges e and f of G are adjacent if they have a common vertex in G. A subgraph of G is a graph whose vertex set is a subset of V(G) and whose adjacency relation is a subset of that of G restricted to this subset. A subgraph G is said to be induced if, for any pair of vertices G and G of G are G if and only if G if G are adjacency pair of vertices G and G is the graph G is said to be induced if, for any pair of vertices G and G is and G if G is any pair of vertices G and G if G is the graph G is any pair of vertices G and G is any G if G is the graph G is any pair of vertices G and G is the property of G in G and G is the graph G is any pair of vertices G and G is any G if G is the graph G is any pair of vertices G and G is the property of G and G is the property of G and G is the property of G is the property of G is the property of G and G is the property of G is the property of G in G is the property of G in G is the property of G in G in G is the property of G in G in G is the property of G in G

Let t be a positive integer. A subset $C \subseteq V(G)$ with |C| > 1 is called a (non-trivial) t-perfect code if for each vertex $v \in V(G)$, there exists exactly one $c \in C$ such that $d(v,c) \leq t$. Elements of C are called code-vertices. Trivially, G contains a t-perfect code if and only if each of its connected components contains such sets and hence, we can only consider the connected graphs. It is easy to see for any graph G, a subset $C \subseteq V(G)$ with |C| > 1 and an integer t > 0, the following statements are equivalent:

- (i) $C \subseteq V(G)$ is a t-perfect code in G.
- (ii) $V(G) = \bigcup_{c \in C} S_t(c)$, where $S_t(c) = \{v \in V(G) | d(v, c) \le t\}$.
- (iii) For any $v \in V(G)$, there exists $c \in C$ such that $d(v,c) \leq t$ and moreover, $d(c_1, c_2) \geq 2t + 1$ for any two distinct code-vertices c_1 and c_2 .

We know that 1-perfect codes are in fact the efficient domination sets in graphs [5] and every graph G is an induced subgraph of a graph G' containing a 1-perfect code. It is sufficient to take $G' = (V(G) \dot{\cup} V_1, E(G) \cup E_1)$, where $V_1 = \{v' | v \in V(G)\}$ and $E_1 = \{\{v, v'\} | v \in V(G)\}$, then V_1 is a 1-perfect code in G'.

3 Main result

At first, we need to bring some new definitions:

Definition 1 A graph G is said to be of type (I), if there exist distinct vertices $c, u \in V(G)$ such that $E(G) = \{cv | v \in V(G) \setminus \{c\}\} \cup F$, where $F \subseteq \{uv | v \in V(G) \setminus \{c, u\}\}$, i.e., G can be obtained from a star graph by joining at most one 1-valency vertex to some other 1-valency vertices. In such graph, the vertices c and u are denoted by c_G and u_G , respectively.

Definition 2 A graph G is said to be of type (II), if there exists a vertex $c \in V(G)$ and a set W of some pairwise disjoint 2-subsets of $V(G) \setminus \{c\}$ such that $E(G) = \{cv | v \in V(G) \setminus \{c\}\} \cup E$, where $E = \{uv | \{u, v\} \in W\}$, i.e., G can be obtained from a star graph by joining some pairwise disjoint 1-valency vertices to each other. We denote the vertex c and the set W by c_G and W(G), respectively.

Definition 3 A connected graph G is called a combination of the graphs H_1, \ldots, H_m of type (I) and the graphs K_1, \ldots, K_n of type (II), if

$$V(G) = \bigcup_{1 \le i \le m} V(H_i) \dot{\cup} \bigcup_{1 \le i \le n} V(K_i)$$

and $E(G) = \bigcup_{1 \le i \le m} E(H_i) \cup \bigcup_{1 \le i \le n} E(K_i) \cup E_1 \cup E_2 \cup E_3$, where

$$E_1 \subseteq \bigcup_{1 \le i \ne j \le m} \{ u_{H_i} v | v \in V(H_j) \setminus \{ c_{H_j}, u_{H_j} \} \},$$

 E_2 connects all of the vertices of $\bigcup_{1 \leq i \leq n} V(K_i) \setminus \bigcup W(K_i)$ pairwise disjoint to each other and

$$E_3 \subseteq \bigcup_{1 \le i \le m, 1 \le j \le n} \{uv | u \in V(H_i) \setminus \{c_{H_i}, u_{H_i}\}, v \in V(H_j) \setminus \{c_{H_j}\}\}.$$

Now, we can prove our main result:

Theorem 1 Let G be a connected graph containing a 1-perfect code. Then the graph L(G) contains a 1-perfect code if and only if G is a combination of the graphs of types (I) and (II).

proof If the graph G contains a 1-perfect code $C = \{c_1, \ldots, c_n\}$, then we can write

$$V(G) = C \dot{\bigcup}_{1 \le i \le n} \{v_{i,1}, \dots, v_{i,n_i}\},$$

where $S_t(c_i) = \{c_i, v_{i,1}, \dots, v_{i,n_i}\}$, and

$$E(G) = \bigcup_{1 \le i \le n} \{c_i v_{i,1}, \dots, c_i v_{i,n_i}\} \cup \bigcup_{1 \le i \le n} E_i \cup F, \tag{1}$$

where $E_i \subseteq \{v_{i,k}v_{i,l}|1 \le k \ne l \le n_i\}$ and

$$F \subseteq \{v_{i,k}v_{j,l}|1 \le i \ne j \le n, 1 \le k \le n_i, 1 \le l \le n_j\}$$

(See Figure 1). Hence, by reindexing the vertices of line graph $L(G)=(\overline{V},\overline{E}),$ we have

$$\overline{V} = \bigcup_{1 \le i \le n} \{v'_{i,1}, \dots, v'_{i,n_i}\} \dot{\cup} \bigcup_{1 \le i \le n} \{v''_{i,1}, \dots, v''_{i,m_i}\} \dot{\cup} \{v'''_{1}, \dots, v'''_{l}\},$$

where $n_i \geq 1$ and $m_i, l \geq 0$, and

$$\overline{E} = \bigcup_{1 \le i \le n} E(K^{i,n_i}) \cup \bigcup_{1 \le i \le n} \overline{E}_i \cup \overline{F},$$

where K^{i,n_i} is the complete graph on the vertices $\{v'_{i,1},\ldots,v'_{i,n_i}\}$, \overline{E}_i is the edge set of L_i which is the induced subgraph of L(G) on $V_i := \{v'_{i,1},\ldots,v'_{i,n_i}\} \cup \{v''_{i,1},\ldots,v''_{i,m_i}\}$ such that

- for any $1 \leq j \leq m_i, v''_{i,j}$ is exactly connected to two vertices of $\{v'_{i,1}, \ldots, v'_{i,n_i}\}$,
- for any $1 \leq j \neq k \leq m_i$, $v''_{i,j}$ and $v''_{i,k}$ are adjacent if they are connected to a common vertex of $\{v'_{i,1}, \ldots, v'_{i,n_i}\}$,

and \overline{F} is the edge set of an induced subgraph on \overline{V} such that

- for any $1 \leq j \leq l$, v_j''' is exactly connected to two vertices $v_{k_1,r}'$ and $v_{k_2,s}'$ belonging to $V' := \bigcup_{1 \leq i \leq n} \{v_{i,1}', \ldots, v_{i,n_i}'\}$ with $k_1 \neq k_2$,
- for any $1 \leq j_1 \neq j_2 \leq l$, $1 \leq k \leq n$ and $1 \leq r \leq n_k$, the vertices v'''_{j_1} and v'''_{j_2} , and also v'''_{j_1} and $v''_{k,r}$ are connected if they are adjacent to a common vertex of V' (See Figure 2).

Now, suppose that the graph L(G) contains a 1-perfect code D. Then it is easy to see that:

• if $v'_{i,j} \in D$, then $V_i = \{v'_{i,1}, \dots, v'_{i,n_i}\} \cup \{v''_{i,k} | v'_{i,j}v''_{i,k} \in \overline{E}\}$ and $V_i \subseteq S_1(v'_{i,j})$.

• if $v''_{i,j} \in D$, then $D \cap V_i \subseteq \{v''_{i,1}, \dots, v''_{i,m_i}\}$ and every two vertices of $D \cap V_i$ are not connected to a common vertex of $\{v'_{i,1}, \ldots, v'_{i,n_i}\}$.

Therefore, without loss of generality, there exists $0 \le h \le n$ such that

• $\overline{E}_i = \{v'_{i,1}v''_{i,1}, \dots, v'_{i,1}v''_{i,m_i}\} \cup \{v''_{i,j}v''_{i,k}|1 \leq j \neq k \leq m_i\}$ for any $1 \leq i \leq h$, • $\overline{E}_i = \{v'_{i,2j-1}v''_{i,j}, v'_{i,2j}v''_{i,j}|1 \leq j \leq m_i\}$ for any $h+1 \leq i \leq n$, and there exist the integers $0 \leq l_1 \leq l_2 \leq l$ such that for every $1 \leq j \leq l$, v_j''' is exactly adjacent to two vertices $v_{k_1,r}'$ and $v_{k_2,s}'$ of the set V' with:

- if $1 \le j \le l_1$, then $1 \le k_1 \ne k_2 \le h$, r = 1 and $s \ne 1$.
- if $l_1 + 1 \le j \le l_2$, then $h + 1 \le k_1 \ne k_2 \le n$, $2m_{k_1} + 1 \le r \le n_{k_1}$ and $2m_{k_2} + 1 \le s \le n_{k_2}.$
- if $l_2 + 1 \le j \le l$, then $1 \le k_1 \le h$, $h + 1 \le k_2 \le n$, $2 \le r \le n_{k_1}$ and

It is noticeable that every vertex $v'_{i,r}$ is connected to only one vertex of the set $\{v_{l_1+1}''',\ldots,v_{l_2}'''\}$, where $h+1\leq i\leq n$ and $2m_i+1\leq r\leq n_i$. Moreover, the perfect code D in L(G) is

$$\{v'_{1,1}, \dots, v'_{h,1}\} \cup \bigcup_{h+1 \le i \le n} \{v''_{i,1}, \dots, v''_{i,m_i}\} \cup \{v'''_{l_1+1}, \dots, v'''_{l_2}\}$$

and the vertices v_1''', \ldots, v_l''' are connected to the subgraphs L_1, \ldots, L_n in a way the line graph L(G) is connected (See Figure 3).

So, without loss of generality, the edge subsets of G in Equation 1 are E_i $\{v_{i,1}v_{i,2},\ldots,v_{i,1}v_{i,m_i+1}\}$ if $1 \leq i \leq h$ and $\{v_{i,1}v_{i,2},v_{i,3}v_{i,4},\ldots,v_{i,2m_i-1}v_{i,2m_i}\}$ if $h+1 \le i \le n$, and $F = F_1 \cup F_2 \cup F_3$, where $F_1 \subseteq \bigcup_{1 \le i \ne j \le h} \{v_{i,1} v_{j,s} | 2 \le s \le n_j\}$,

$$F_2 \subseteq \bigcup_{h+1 \le i \ne j \le n} \{v_{i,r} v_{j,s} | 2m_i + 1 \le r \le n_i, 2m_j + 1 \le s \le n_j\}$$

and

$$F_3 \subseteq \bigcup_{1 \le i \le h, h+1 \le j \le n} \{v_{i,r}v_{j,s} | 2 \le r \le n_i, 1 \le s \le n_j\}$$

(See Figure 4). So, G is a combination of the graphs of types (I) and (II).

Conversely, if the graph G is a combination of the graphs H_1, \ldots, H_m of type (I) and the graphs K_1, \ldots, K_n of type (II), then the union of $\{c_{H_1}u_{H_1}, \ldots, c_{H_m}u_{H_m}\}$, $\bigcup_{1 \le i \le n} \{uv | \{u, v\} \in W(k_i)\} \text{ and }$

$$\bigcup_{1 \le i \ne j \le n} \{ uv \in E(L(G)) | u \in V(K_i) \setminus \bigcup W(K_i), v \in V(K_j) \setminus \bigcup W(K_j) \}$$

forms a 1-perfect code for the line graph L(G) and so, the proof is completed.

Conclusion 4

In this paper, we determined all of the graphs G that both them and their line graphs contain 1-perfect codes. In general, we have the following open problem which is answered in the case s=t=1:

Open problem. Let $s, t \ge 1$. Determine all of the graphs G that both G and its line graph L(G) contain s- and t-perfect codes, respectively.

Appendix

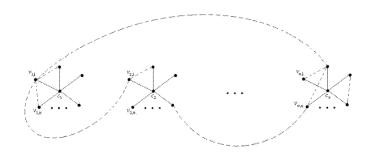


Figure 1: The graph G containing a 1-perfect code.

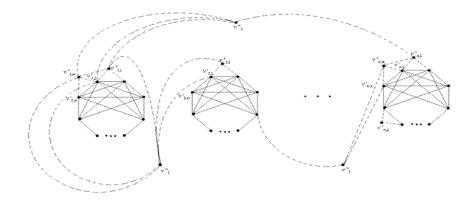


Figure 2: The line graph L(G), where G contains a 1-perfect code.

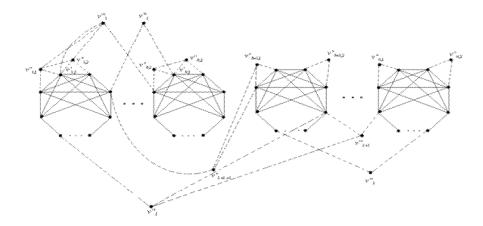


Figure 3: The graph L(G), where G and L(G) contain 1-perfect codes.

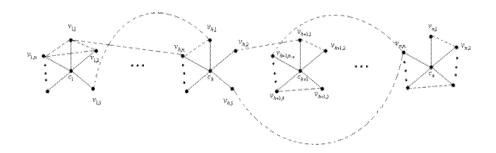


Figure 4: The graph G, where G and L(G) contain 1-perfect codes.

References

- [1] J. Astola, *The theory of Lee-codes*, (reserach report), Lappeenranta, Lappeenranta Univ. of Technology, 1982.
- [2] N. Biggs, Perfect codes in graphs, J. Combin. Theory, Series B 15 (1973), 289-296.
- [3] N. Biggs, Perfect codes and distance-transitive graphs, *Proceedings of the British Combinatorial Conference*, Aberystwyth (London Mathematical Society Lecture Notes Series), July 1973.
- [4] I. Dvorakova-Rulicova, Perfect codes in regular graphs, Comment. Math. Univ. Carolinae 29 (1988), 79-83.
- [5] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of Domination in Graph, Marcel dekker, Inc., New York, 1998.

[6] P. Hammond, D. H. Smith, Perfect codes in the graphs O_k , J. Combin. Theory Ser. B, 19 (1975), 239-255.

- [7] J. Jerebic, S. Klavžar, S. Špacpan, Characterizing r-perfect codes in direct products of two and three cycles, *Information Processing Letters* 94 (2005), 1-6.
- [8] S. Klavžar, U. Milutinović, C. Petr, 1-perfect codes in Sierpiński graphs, Bull. Austral. Math. Soc. 66 (2002), no. 3, 369-384.
- [9] J. Kratochvil, 1-perfect codes over self-complementary graphs, *Comment. Math. Univ. Carolinae* 26 (1985), 589-595.
- [10] J. Kratochvil, Perfect codes in general graphs, Proceedings 7th Hungarian colloqium on Combinatorics, Eger 1987, Collquia Math. Soc. J. Bolyai 52, 357-364.
- [11] J. Kratochvil, M. Krivanek, On the computational complexity of codes in graphs, to appear in *Proceedings MFCS'88*, *Karlovy Vary* 1988, Lecture Note in Comp. sci. 324, Springer Verlag, Berlin 1988, 396-404.
- [12] J. Kratochvil, J. Maly, J. Matousek, On the existence of perfect codes in a random graph, to appear in *Proceedings Random Graphs'87*, Poznan 1987.
- [13] S. Klavžar, S. Špacapan, J. Žerovnik, An almost complete description of perfect codes in direct products of cycles, *Advances in Applied Mathematics* 37 (2006), 2-18.
- [14] F. J. MacWilliams, N. J. A. Sloane, *The theory of error-correcting codes*, North-Holland, 8th impression, 1993.
- [15] D. H. Smith, Perfect codes in the graphs O_k and $L(O_k)$, Glasgow Math. J. 21 (1980), 169-172.
- [16] S. Spacapan, Perfect codes in direct products of cycles, *Electronic Notes* in *Discrete Mathematics* 22 (2005), 201-205.
- [17] A. Tietavainen, On the nonexistence of perfect codes over finite fields, SIAM J. Appl. Math. 24 (1973), 88-96.

Received: March, 2012