On Apéry Sets of Symmetric Numerical Semigroups

with
$$e(S) = p$$

K. Saengsura

Department of Mathematics
Faculty of Science, Mahasarakham University
Mahasarakham 44150, Thailand
kittisak.s@msu.ac.th

Abstract

The concepts of an Apéry set is important role in numerical semigroup theory. In this paper we characterizes Apéry set of numerical semigroup and generalizes Apéry set of symmetric numerical semigroup with e(S) = p, where p is a positive integer.

Mathematics Subject Classification: 20M14, 20F50

Keywords:Numerical Semigroups, Symmetric Numerical Semigroups, Apéry Sets

1 Introduction

A numerical semigroup is a subset S of \mathbb{N} that is closed under addition, $0 \in S$ and generates \mathbb{Z} as a group. It is well known that every numerical semigroup is finitely generated (see [2]), i.e. $S = \langle x_1, x_2, \ldots, x_k \rangle$ for some $x_1, x_2, \ldots, x_k \in S$ and $k \in \mathbb{N} \setminus \{0\}$ such that

$$\langle x_1, x_2, \dots, x_k \rangle = \{ \sum_{i=1}^k n_i x_i \mid n_i \in \mathbb{N} \}.$$

In [1], it was shown that:

$$G.C.D.(x_1, x_2, \dots, x_k) = 1 \Leftrightarrow Card(\mathbb{N} \setminus S) < \infty.$$

For a numerical semigroup S we define the following:

$$g(S) := \max\{x \in \mathbb{Z} \mid x \notin S\};$$

1806 K. Saengsura

$$n(S) := Card(\{0, 1, \dots, g(S)\} \cap S);$$

$$H(S) := \{ x \in \mathbb{N} \min x \notin S \}.$$

And g(S), n(S) and H(S) are called Frobenius number, genus and gap of S, respectively. If a numerical semigroup $S = \langle x_1, x_2, \ldots, x_k \rangle$, then $\langle x_1, x_2, \ldots, x_k \rangle$ is called system of generators of S and will be called minimal system of generators of S if no proper subset of $\{x_1, x_2, \ldots, x_k\}$ generates S. If a numerical semigroup has a unique minimal system of generators $\{x_1, x_2, \ldots, x_k\}$ which is $x_1 < x_2 < \ldots < x_k$. Then the number x_1 and k are called the multiplicity and the embedding dimension of S, respectively. The embedding dimension of S is denoted by e(S). We say that a numerical semigroup S is symmetric if $g(S) - x \in S$ for all $x \in \mathbb{Z} \setminus S$. For $n \in S \setminus \{0\}$, we define the Apéry set of the element n as the set of all the least elements in S congruent with i modulo n and denoted by Ap(S, n) and it can be proved that $Ap(S, n) = \{x \in S \mid x - n \notin S\}$. Moreover, it is clearly that, Card(Ap(S, n)) = n and g(S) = max(Ap(S, n)) - n (see [5]).

2 Apéry Sets of Symmetric Numerical Semigroups with e(S) = p

Let S be a numerical semigroup with e(S) = p, i.e., $S = \langle n_1, n_2, \ldots, n_p \rangle$ for some $n_1, n_2, \ldots, n_p \in \mathbb{N}^+$. For each $i \in \{1, 2, \ldots, p\}$ we define a set $D_{S,n_i} := \{x \in S \mid x = an_i + b \text{ for some } a \in \mathbb{N}^+ \text{ and } b \in \langle n_1, n_2, \ldots, n_{i-1}, n_{i+1}, \ldots, n_p \rangle \}$. Then we obtains

Theorem 2.1. Let S is a numerical semigroup and $n_1, n_2, \ldots, n_p \in \mathbb{N}^+$. If $S = \langle n_1, n_2, \ldots, n_p \rangle$, then $Ap(S, n_i) = S \setminus D_{S,n_i}$ for all $i = 1, 2, \ldots, p$.

Proof. Assume that $x \in Ap(S, n_i)$, we get that $x - n_i \notin S$. Suppose that $x \notin S \setminus D_{S,n_i}$, then $x \in D_{S,n_i}$. By definition of D_{S,n_i} , there exist $a \in \mathbb{N}^+$ and $b \in \langle n_1, n_2, \ldots, n_{i-1}, n_{i+1}, \ldots, n_p \rangle$ such that $x = an_i + b$. Therefore we have that

 $x - n_i = (an_i + b) - n_i = (a - 1)n_i + b \in S$. Which is contradicts to $x - n_i \notin S$. Hence $x \in S \setminus D_{S,n_i}$. This means that $Ap(S, n_i) \subseteq S \setminus D_{S,n_i}$.

Conversely, assume that $x \in S \setminus D_{S,n_i}$, then $x \notin D_{S,n_i}$, i.e., $x \neq an_i + b$ for all $a \in \mathbb{N}^+$ and $b \in \langle n_1, n_2, \ldots, n_{i-1}, n_{i+1}, \ldots, n_p \rangle$. Suppose that $x \notin Ap(S, n_i)$, then $x - n_i \in S$. Therefore there exist $a_1, a_2, \ldots, a_p \in \mathbb{N}$ such that $x - n_i = a_1n_1 + a_2n_2 + \ldots + a_pn_p$. So $x = (a_1 + 1)n_1 + a_2n_2 + \ldots + a_pn_p \in D_{S,n_i}$. Which is contradicts to $x \in S \setminus D_{S,n_i}$. Hence $x \in Ap(S, n_i)$. This implies that $S \setminus D_{S,n_i} \subseteq Ap(S, n_i)$. There follows we get that $Ap(S, n_i) = S \setminus D_{S,n_i}$.

For the particular case e(S) = 2, i.e., $S = \langle n_1, n_2 \rangle$ for some $n_1, n_2 \in \mathbb{N}^+$, we have that $D_{S,n_1} = \{an_1 + bn_2 \mid a \in \mathbb{N}^+, b \in \mathbb{N}\}$ and $D_{S,n_2} = \{an_1 + bn_2 \mid a \in \mathbb{N}, b \in \mathbb{N}^+\}$. Then we obtains

Corollary 2.2. Let S is a numerical semigroup and $n_1, n_2 \in \mathbb{N}^+$. If $S = \langle n_1, n_2 \rangle$, then $Ap(S, n_1) = \{0, n_2, 2n_2, \dots, (n_1 - 1)n_2\}$ and $Ap(S, n_2) = \{0, n_1, 2n_1, \dots, (n_2 - 1)n_1\}$.

Proof. By Theorem 2.1, we get that

$$Ap(S, n_1) = S \setminus D_{S,n_1}$$

$$= \langle n_1, n_2 \rangle \setminus \{an_1 + bn_2 \mid a \in \mathbb{N}^+, b \in \mathbb{N}\}$$

$$= \{xn_1 + yn_2 \mid x, y \in \mathbb{N}\} \setminus \{an_1 + bn_2 \mid a \in \mathbb{N}^+, b \in \mathbb{N}\}$$

$$= \{0, n_2, 2n_2, \dots, (n_1 - 1)n_2\}.$$

Similarly, one can prove that $Ap(S, n_2) = \{0, n_1, 2n_1, \dots, (n_2 - 1)n_1\}.$

Since we have that every symmetric numerical semigroups are numerical semigroups. Therefore the results are also true for symmetric numerical semigroup.

Theorem 2.3. Let S is a symmetric numerical semigroup and $n_1, n_2, \ldots, n_p \in \mathbb{N}^+$.

If
$$S = \langle n_1, n_2, \ldots, n_p \rangle$$
, then $Ap(S, n_i) = S \setminus D_{S,n_i}$ for all $i = 1, 2, \ldots, p$.

Corollary 2.4. (see e.g. [3]) Let S is a symmetric numerical semigroup and $n_1, n_2 \in \mathbb{N}^+$.

If
$$S = \langle n_1, n_2 \rangle$$
, then $Ap(S, n_1) = \{0, n_2, 2n_2, \dots, (n_1 - 1)n_2\}$ and $Ap(S, n_2) = \{0, n_1, 2n_1, \dots, (n_2 - 1)n_1\}.$

Theorem 2.5. Let S be a numerical semigroup and $n_1, n_2, \ldots, n_p \in \mathbb{N}^+$. If $S = \langle n_1, n_2, \ldots, n_p \rangle$ and there exists $k \in \mathbb{N}^+$ such that $H = \langle n_1, \ldots, n_{i-1}, kn_i, n_{i+1}, \ldots, n_p \rangle$ is a numerical semigroup for some $i \in \{1, 2, \ldots, p\}$, then H is a subsemigroup of S and $Ap(S, n_i) \subseteq Ap(H, kn_i)$.

Proof. Clearly, H is a subsemigroup of S. Let $x \in Ap(S, n_i)$. By Theorem 2.1, we get that $x \in S \setminus D_{S,n_i}$, i.e., $x \in S$ and $x \neq an_i + b$ for all $a \in \mathbb{N}^+$ and $b \in \langle n_1, \ldots, n_{i-1}, n_{i+1}, \ldots, n_p \rangle$. Then $x \in \langle n_1, \ldots, n_{i-1}, n_{i+1}, \ldots, n_p \rangle$ and $x \neq c(kn_i) + b$ for all $c \in \mathbb{N}^+$ and $b \in \langle n_1, \ldots, n_{i-1}, n_{i+1}, \ldots, n_p \rangle$. Thus $x \in \langle n_1, \ldots, n_{i-1}, kn_i, n_{i+1}, \ldots, n_p \rangle$ and $x \neq c(kn_i) + b$ for all $c \in \mathbb{N}^+$. Therefore $x \in H$ and $x \notin D_{H,kn_i}$. This implies that $x \in H \setminus D_{H,kn_i}$. Hence $Ap(S, n_i) \subseteq Ap(H, kn_i)$.

For a symmetric numerical semigroup we obtains

1808 K. Saengsura

Corollary 2.6. Let S be a symmetric numerical semigroup and $n_1, n_2, \ldots, n_p \in$ \mathbb{N}^+ . If $S = \langle n_1, n_2, \dots, n_p \rangle$ and for each $i \in \{1, 2, \dots, p\}$ there exists $k \in \mathbb{N}^+$ such that $H = \langle n_1, \ldots, n_{i-1}, n_{i-1}, \ldots, n_p \rangle$ is a symmetric numerical semigroup, then H is a subsemigroup of S and $Ap(S, n_i) \subseteq Ap(H, kn_i)$.

Let S be a numerical semigroup with Frobenius number q(S) and genus n(S). We have that, if S has an embedding dimension two, then n(S) =(g(S)+1)/2 (see [4]). But its not true in general. For symmetric numerical semigroups we have the theorem

Theorem 2.7. If S is a symmetric numerical semigroup with e(S) = p, then n(S) = (g(S) + 1)/2.

Proof. Let A and B be subsets of S such that $A := \{x \in S \mid 0 \le x < g(S)\}$ and $B := \{ y \notin S \mid 0 < y \le g(S) \}$. Clearly, $\{0, 1, \dots, g(S)\} = A \cup B$ and $A \cap B = \emptyset$. Since S is a symmetric numerical semigroup, then a mapping $\varphi:A\to B$ such that $\varphi(x)=y$ iff g(S)-y=x is bijective. Thus

$$g(S) + 1 = Card\{0, 1, \dots, g(S)\}$$

$$= Card(A \cup B)$$

$$= Card(A) + Card(B)$$

$$= 2Card(A)$$

$$= 2n(S).$$

Therefore we get that n(S) = (g(S) + 1)/2.

If S is a symmetric numerical semigroup and from Theorem 2.7, we have that the set B is the set of all gaps of S which is denoted by H(S), i.e., $H(S) = \{x \mid x \in \mathbb{N} \setminus S\}.$ Then Card(H(S)) = Card(B) = Card(A) = n(S).The set of all gaps of S can be written in the form of Apéry set as in [3], but Theorem 3 in P. 483 is not true. For example S = <5,7> is a symmetric numerical semigroup, but $H(S) \neq Ap(S,5) \cup Ap(S,7) \cup \{12\}$. Then we obtains

Theorem 2.8. Let S be a numerical semigroup and e(S) = p. If S = < $n_1, n_2, \ldots, n_p >$ for some $n_1, n_2, \ldots, n_p \in \mathbb{N}^+$, then $H(S) = \{0, 1, \ldots, g(S)\} \setminus \{0, 1, \ldots, g(S)\}$ $(\bigcup_{i=1}^{p} (Ap(S, n_i) \cup D_{S,n_i}).$

Proof. Let $h \in H(S)$. Then $h \in \{0, 1, \dots, g(S)\}$ and $h \notin S$. Therefore $h \in \{0, 1, \dots, g(S)\}$ and $h \notin (\bigcup_{i=1}^{p} (Ap(S, n_i) \cup D_{S,n_i}))$. This implies that $H(S) \subseteq$ $\{0,1,\ldots,g(S)\}\setminus (\bigcup_{i=1}^p (Ap(S,n_i)\cup D_{S,n_i}).$

Conversely, let
$$x \in \{0, 1, \dots, q(S)\} \setminus (\bigcup_{i=1}^{p} (Ap(S, n_i) \cup D_{S,n_i}))$$
. Then $x \in \{0, 1, \dots, q(S)\} \setminus (\bigcup_{i=1}^{p} (Ap(S, n_i) \cup D_{S,n_i}))$.

Conversely, let
$$x \in \{0, 1, \dots, g(S)\} \setminus (\bigcup_{i=1}^{p} (Ap(S, n_i) \cup D_{S, n_i}))$$
. Then $x \in \{0, 1, \dots, g(S)\}$ and $x \notin (\bigcup_{i=1}^{p} (Ap(S, n_i) \cup D_{S, n_i}))$. Since $x \notin (\bigcup_{i=1}^{p} (Ap(S, n_i) \cup D_{S, n_i}))$, then

 $x \neq 0$. Suppose that $x \in S$. Then $x = a_1 n_1 + a_2 n_2 + \ldots + a_p n_p$ for some $a_1, a_2, \ldots, a_p \in \mathbb{N}$. Since $x \neq 0$, then there exists $a_j \in \mathbb{N}^+$ for some $j \in \{1, 2, \ldots, p\}$ such $x = a_j n_j + b$ for some $b \in \langle n_1, \ldots, n_{j-1}, n_{j+1}, \ldots, n_p \rangle$. This implies that $x \in D_{S,n_j}$. This is contradicts to $x \notin \bigcup_{i=1}^p (Ap(S, n_i) \cup D_{S,n_i})$. So $x \notin S$. Therefore $x \in \{0, 1, \ldots, g(S)\} \setminus S$. Since $\{0, 1, \ldots, g(S)\} \subseteq \mathbb{N}$, we get that $x \in \mathbb{N} \setminus S$.

In the particular case, e(S) = 2. Since $Ap(S, n_1) = \{0, n_2, 2n_2, \dots, (n_1 - 1)n_2\}$, $Ap(S, n_2) = \{0, n_1, 2n_1, \dots, (n_2 - 1)n_1\}$, $D_{S,n_1} = \{x \in S \mid x = an_1 + b \text{ for some } a \in \mathbb{N}^+ \text{ and } b \in \langle n_2 \rangle \}$ and $D_{S,n_2} = \{x \in S \mid x = an_2 + b \text{ for some } a \in \mathbb{N}^+ \text{ and } b \in \langle n_1 \rangle \}$ and it not difficult to prove that $Ap(S, n_1) \cup Ap(S, n_2) \cup D_{S,n_1} \cup D_{S,n_2} = Ap(S, n_1) \cup Ap(S, n_2) \cup \{x \in S \mid x = an_1 + bn_2 \text{ for some } a, b \in \mathbb{N}^+ \}$. Then we obtains

Corollary 2.9. Let S be a numerical semigroup and e(S) = 2. If $S = < n_1, n_2 >$ for some $n_1, n_2 \in \mathbb{N}^+$, then $H(S) = \{0, 1, \dots, g(S)\} \setminus (Ap(S, n_1) \cup Ap(S, n_2) \cup \{x \in S \mid x = an_1 + bn_2 \text{ for some } a, b \in \mathbb{N}^+\})$.

ACKNOWLEDGEMENTS. This research was supported by the Faculty of Science of Mahasarakham University Thailand.

References

- [1] A. Brauer, On a problem of partitions, J. Reine Angew. Math., 64(1994), 299-312.
- [2] R. Fröberg, C. Gottlieb and R. Häggkvist, Semigroups, semigroup rings and analytically irreducible rings. Report University of Stockholm, Sweden(1986).
- [3] S. Ilhan, On Apéry Sets of Symmetric Numerical Semigroups, International Mathematical Forum, 1(2006), No. 10, 481-484.
- [4] D'Anna Marco, Type Sequences of Numerical Semigroups, Semigroup Forum, Vol.56(1998),1-31.
- [5] J.C. Rosales, Numerical Semigroups with Apéry Sets of Unique Expression, Journal of Algebra, 226(2000), 479-487.

Received: February, 2012