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Abstract

The concepts of an Apéry set is important role in numerical semi-
group theory. In this paper we characterizes Apéry set of numerical
semigroup and generalizes Apéry set of symmetric numerical semigroup
with e(S) = p, where p is a positive integer.

Mathematics Subject Classification: 20M14, 20F50

Keywords:Numerical Semigroups, Symmetric Numerical Semigroups, Apéry
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1 Introduction

A numerical semigroup is a subset S of N that is closed under addition, 0 ∈ S
and generates Z as a group. It is well known that every numerical semigroup is
finitely generated (see [2]), i.e. S =< x1, x2, . . . , xk > for some x1, x2, . . . , xk ∈
S and k ∈ N \ {0} such that

< x1, x2, . . . , xk >= {
k∑

i=1

nixi | ni ∈ N}.

In [1], it was shown that:

G.C.D.(x1, x2, . . . , xk) = 1 ⇔ Card(N \ S) < ∞.

For a numerical semigroup S we define the following:

g(S) := max{x ∈ Z | x /∈ S};
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n(S) := Card({0, 1, . . . , g(S)} ∩ S);

H(S) := {x ∈ N minx /∈ S}.

And g(S), n(S) and H(S) are called Frobenius number, genus and gap of
S, respectively. If a numerical semigroup S =< x1, x2, . . . , xk >, then <
x1, x2, . . . , xk > is called system of generators of S and will be called min-
imal system of generators of S if no proper subset of {x1, x2, . . . , xk} gen-
erates S. If a numerical semigroup has a unique minimal system of gener-
ators {x1, x2, . . . , xk} which is x1 < x2 < . . . < xk. Then the number x1

and k are called the multiplicity and the embedding dimension of S, respec-
tively. The embedding dimension of S is denoted by e(S). We say that a
numerical semigroup S is symmetric if g(S) − x ∈ S for all x ∈ Z \ S. For
n ∈ S \ {0}, we define the Apéry set of the element n as the set of all the least
elements in S congruent with i modulo n and denoted by Ap(S, n) and it can
be proved that Ap(S, n) = {x ∈ S | x − n /∈ S}. Moreover, it is clearly that,
Card(Ap(S, n)) = n and g(S) = max(Ap(S, n)) − n (see [5]).

2 Apéry Sets of Symmetric Numerical Semi-

groups with e(S) = p

Let S be a numerical semigroup with e(S) = p, i.e., S =< n1, n2, . . . , np > for
some n1, n2, . . . , np ∈ N

+. For each i ∈ {1, 2, . . . , p} we define a set
DS,ni

:= {x ∈ S | x = ani+b for some a ∈ N
+ and b ∈< n1, n2, . . . , ni−1, ni+1, . . . , np >

}. Then we obtains

Theorem 2.1. Let S is a numerical semigroup and n1, n2, . . . , np ∈ N
+.

If S =< n1, n2, . . . , np >, then Ap(S, ni) = S \ DS,ni
for all i = 1, 2, . . . , p.

Proof. Assume that x ∈ Ap(S, ni), we get that x − ni /∈ S. Suppose that
x /∈ S \ DS,ni

, then x ∈ DS,ni
. By definition of DS,ni

, there exist a ∈ N
+ and

b ∈< n1, n2, . . . , ni−1, ni+1, . . . , np > such that x = ani + b. Therefore we have
that
x−ni = (ani + b)−ni = (a−1)ni + b ∈ S. Which is contradicts to x−ni /∈ S.
Hence x ∈ S \ DS,ni

. This means that Ap(S, ni) ⊆ S \ DS,ni
.

Conversely, assume that x ∈ S \ DS,ni
, then x /∈ DS,ni

, i.e., x �= ani + b for all
a ∈ N

+ and b ∈< n1, n2, . . . , ni−1, ni+1, . . . , np >. Suppose that x /∈ Ap(S, ni),
then x − ni ∈ S. Therefore there exist a1, a2, . . . , ap ∈ N such that x − ni =
a1n1 + a2n2 + . . . + apnp. So x = (a1 + 1)n1 + a2n2 + . . . + apnp ∈ DS,ni

.
Which is contradicts to x ∈ S \ DS,ni

. Hence x ∈ Ap(S, ni). This implies that
S \ DS,ni

⊆ Ap(S, ni). There follows we get that Ap(S, ni) = S \ DS,ni
.
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For the particular case e(S) = 2, i.e., S =< n1, n2 > for some n1, n2 ∈ N
+,

we have that DS,n1 = {an1 + bn2 | a ∈ N
+, b ∈ N} and DS,n2 = {an1 + bn2 |

a ∈ N, b ∈ N
+}. Then we obtains

Corollary 2.2. Let S is a numerical semigroup and n1, n2 ∈ N
+.

If S =< n1, n2 >, then Ap(S, n1) = {0, n2, 2n2, . . . , (n1 − 1)n2}
and Ap(S, n2) = {0, n1, 2n1, . . . , (n2 − 1)n1}.

Proof. By Theorem 2.1, we get that
Ap(S, n1) = S \ DS,n1

= < n1, n2 > \{an1 + bn2 | a ∈ N
+, b ∈ N}

= {xn1 + yn2 | x, y ∈ N} \ {an1 + bn2 | a ∈ N
+, b ∈ N}

= {0, n2, 2n2, . . . , (n1 − 1)n2}.
Similarly, one can prove that Ap(S, n2) = {0, n1, 2n1, . . . , (n2 − 1)n1}.

Since we have that every symmetric numerical semigroups are numerical semi-
groups. Therefore the results are also true for symmetric numerical semigroup.

Theorem 2.3. Let S is a symmetric numerical semigroup and n1, n2, . . . , np ∈
N

+.
If S =< n1, n2, . . . , np >, then Ap(S, ni) = S \ DS,ni

for all i = 1, 2, . . . , p.

Corollary 2.4. (see e.g. [3]) Let S is a symmetric numerical semigroup
and n1, n2 ∈ N

+.
If S =< n1, n2 >, then Ap(S, n1) = {0, n2, 2n2, . . . , (n1 − 1)n2}
and Ap(S, n2) = {0, n1, 2n1, . . . , (n2 − 1)n1}.

Theorem 2.5. Let S be a numerical semigroup and n1, n2, . . . , np ∈ N
+.

If S =< n1, n2, . . . , np > and there exists k ∈ N
+ such that

H =< n1, . . . , ni−1, kni, ni+1, . . . , np > is a numerical semigroup for some
i ∈ {1, 2, . . . , p}, then H is a subsemigroup of S and Ap(S, ni) ⊆ Ap(H, kni).

Proof. Clearly, H is a subsemigroup of S. Let x ∈ Ap(S, ni). By Theorem
2.1, we get that x ∈ S \ DS,ni

, i.e., x ∈ S and x �= ani + b for all a ∈ N
+ and

b ∈< n1, . . . , ni−1, ni+1, . . . , np >. Then x ∈< n1, . . . , ni−1, ni+1, . . . , np >
and x �= c(kni) + b for all c ∈ N

+ and b ∈< n1, . . . , ni−1, ni+1, . . . , np >.
Thus x ∈< n1, . . . , ni−1, kni, ni+1, . . . , np > and x �= c(kni) + b for all c ∈ N

+.
Therefore x ∈ H and x /∈ DH,kni

. This implies that x ∈ H \ DH,kni
. Hence

Ap(S, ni) ⊆ Ap(H, kni).

For a symmetric numerical semigroup we obtains
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Corollary 2.6. Let S be a symmetric numerical semigroup and n1, n2, . . . , np ∈
N

+. If S =< n1, n2, . . . , np > and for each i ∈ {1, 2, . . . , p} there exists k ∈ N
+

such that H =< n1, . . . , ni−1, nn+1, . . . , np > is a symmetric numerical semi-
group, then H is a subsemigroup of S and Ap(S, ni) ⊆ Ap(H, kni).

Let S be a numerical semigroup with Frobenius number g(S) and genus
n(S). We have that, if S has an embedding dimension two, then n(S) =
(g(S) + 1)/2 (see [4]). But its not true in general. For symmetric numerical
semigroups we have the theorem

Theorem 2.7. If S is a symmetric numerical semigroup with e(S) = p,
then n(S) = (g(S) + 1)/2.

Proof. Let A and B be subsets of S such that A := {x ∈ S | 0 ≤ x < g(S)}
and B := {y /∈ S | 0 < y ≤ g(S)} . Clearly, {0, 1, . . . , g(S)} = A ∪ B and
A ∩ B = ∅. Since S is a symmetric numerical semigroup, then a mapping
ϕ : A → B such that ϕ(x) = y iff g(S) − y = x is bijective. Thus
g(S) + 1 = Card{0, 1, . . . , g(S)}

= Card(A ∪ B)
= Card(A) + Card(B)
= 2Card(A)
= 2n(S).

Therefore we get that n(S) = (g(S) + 1)/2.

If S is a symmetric numerical semigroup and from Theorem 2.7, we have
that the set B is the set of all gaps of S which is denoted by H(S), i.e.,
H(S) = {x | x ∈ N \ S}. Then Card(H(S)) = Card(B) = Card(A) = n(S).
The set of all gaps of S can be written in the form of Apéry set as in [3], but
Theorem 3 in P. 483 is not true. For example S =< 5, 7 > is a symmetric
numerical semigroup, but H(S) �= Ap(S, 5)∪Ap(S, 7)∪{12}. Then we obtains

Theorem 2.8. Let S be a numerical semigroup and e(S) = p. If S =<
n1, n2, . . . , np > for some n1, n2, . . . , np ∈ N

+, then H(S) = {0, 1, . . . , g(S)} \
(

p⋃
i=1

(Ap(S, ni) ∪ DS,ni
).

Proof. Let h ∈ H(S). Then h ∈ {0, 1, . . . , g(S)} and h /∈ S. Therefore

h ∈ {0, 1, . . . , g(S)} and h /∈ (
p⋃

i=1

(Ap(S, ni)∪DS,ni
). This implies that H(S) ⊆

{0, 1, . . . , g(S)} \ (
p⋃

i=1

(Ap(S, ni) ∪ DS,ni
).

Conversely, let x ∈ {0, 1, . . . , g(S)}\(
p⋃

i=1

(Ap(S, ni)∪DS,ni
). Then x ∈ {0, 1, . . . , g(S)}

and x /∈ (
p⋃

i=1

(Ap(S, ni) ∪ DS,ni
). Since x /∈ (

p⋃
i=1

(Ap(S, ni) ∪ DS,ni
), then



On Apéry sets of symmetric numerical semigroups 1809

x �= 0. Suppose that x ∈ S. Then x = a1n1 + a2n2 + . . . + apnp for
some a1, a2, . . . , ap ∈ N. Since x �= 0, then there exists aj ∈ N

+ for some
j ∈ {1, 2, . . . , p} such x = ajnj +b for some b ∈< n1, . . . , nj−1, nj+1, . . . , np >.

This implies that x ∈ DS,nj
. This is contradicts to x /∈ (

p⋃
i=1

(Ap(S, ni)∪DS,ni
).

So x /∈ S. Therefore x ∈ {0, 1, . . . , g(S)} \ S. Since {0, 1, . . . , g(S)} ⊆ N, we
get that x ∈ N \ S.

In the particular case, e(S) = 2. Since Ap(S, n1) = {0, n2, 2n2, . . . , (n1 −
1)n2)}, Ap(S, n2) = {0, n1, 2n1, . . . , (n2 − 1)n1)}, DS,n1 = {x ∈ S | x =
an1 + b for some a ∈ N

+ and b ∈< n2 >} and DS,n2 = {x ∈ S | x =
an2 + b for some a ∈ N

+ and b ∈< n1 >} and it not difficult to prove that
Ap(S, n1) ∪ Ap(S, n2) ∪ DS,n1 ∪ DS,n2 = Ap(S, n1) ∪ Ap(S, n2) ∪ {x ∈ S | x =
an1 + bn2 for some a, b ∈ N

+}. Then we obtains

Corollary 2.9. Let S be a numerical semigroup and e(S) = 2. If S =<
n1, n2 > for some n1, n2 ∈ N

+, then H(S) = {0, 1, . . . , g(S)} \ (Ap(S, n1) ∪
Ap(S, n2) ∪ {x ∈ S | x = an1 + bn2 for some a, b ∈ N

+}).
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