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Abstract

The concepts of numerical semigroups plays an important role in the
theory of semigroups. In this paper we introduce the basic concepts of
binumerical semigroups which build up from numerical semigroups.
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1 Introduction

A numerical semigroup is a subset S of N that is closed under addition, 0 ∈ S
and generates Z as a group. It is well known that every numerical semigroup is
finitely generated (see [2]), i.e. S =< x1, x2, . . . , xk > for some x1, x2, . . . , xk ∈
S and k ∈ N \ {0} such that

< x1, x2, . . . , xk >= {
k∑

i=1

nixi | ni ∈ N}.

In [1], it was shown that:

G.C.D.(x1, x2, . . . , xk) = 1 ⇔ Card(N \ S) < ∞.

For a numerical semigroup S we define the following:

g(S) := max{x ∈ Z | x /∈ S};

n(S) := Card({0, 1, . . . , g(S)} ∩ S);

H(S) := {x ∈ N | x /∈ S}.
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And g(S), n(S) and H(S) are called Frobenius number, genus and gap of
S, respectively. If a numerical semigroup S =< x1, x2, . . . , xk >, then <
x1, x2, . . . , xk > is called system of generators of S and will be called min-
imal system of generators of S if no proper subset of {x1, x2, . . . , xk} gen-
erates S. If a numerical semigroup has a unique minimal system of gener-
ators {x1, x2, . . . , xk} which is x1 < x2 < . . . < xk. Then the number x1

and k are called the multiplicity and the embedding dimension of S, respec-
tively. The embedding dimension of S is denoted by e(S). We say that a
numerical semigroup S is symmetric if g(S) − x ∈ S for all x ∈ Z \ S. For
n ∈ S \ {0}, we define the Apéry set of the element n as the set of all the least
elements in S congruent with i modulo n and denoted by Ap(S, n) and it can
be proved that Ap(S, n) = {x ∈ S | x − n /∈ S}. Moreover, it is clearly that,
Card(Ap(S, n)) = n and g(S) = max(Ap(S, n)) − n (see [3]).

2 Binumerical Semigroups

At first, we define the binary operation + on N × N by (a, b) + (c, d) = (a +
c, b + d), for all (a, b), (c, d) ∈ N × N.

Definition 2.1. Let S be a subset of N × N, S is a binumerical semigroup
if S is a subsemigroup of (N×N, +) with (0, 0) ∈ S and S generates Z×Z as
a group.

It is clearly that S1 × S2 is binumerical semigroup for every numerical
semigroups S1 and S2. Nevertheless binumerical semigroup need not to be
product of two numerical semigroups, for instance S = {(0, 0), (a, b), (a+1, b+
1), . . . }. In the case of numerical semigroup we have that every numerical
semigroup has finite complement in N. In the case of binumerical semigroups
we obtains

Theorem 2.2. If S is a binumerical semigroup, then {{x} × N | (x, n) /∈
S for all n ∈ N} and {N × {y} | (m, y) /∈ S for all m ∈ N} are finite.

Proof. Let S be a binumerical semigroup. Suppose that {{x} × N | (x, n) /∈
S for all n ∈ N} is an infinite set, then {x ∈ N | (x, n) /∈ S for all n ∈ S} is
an infinite, so N \ {a ∈ N | ∃y ∈ N, (a, y) ∈ S} is an infinite set. This implies
that {a ∈ N | ∃y ∈ N, (a, y) ∈ S} is not a numerical semigroup, it can not be
generates Z as a group. This contradicts with S generates Z × Z. Therefore,
{{x} × N | (x, n) /∈ S for all n ∈ N} is finite.
Similarly, {N × {y} | (m, y) /∈ S for all m ∈ N} is finite.

If S is a binumerical semigroup, we will form the subsets of N, D(S) =
{a ∈ N | ∃n ∈ N, (a, n) ∈ S} and R(S) = {b ∈ N | ∃m ∈ N, (m, b) ∈
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S}. It easy to see that D(S) and R(S) are smallest pair of numerical semi-
groups with S ⊆ D(S) × R(S). We know that every numerical semigroup
is finitely generated, but not true for the case of binumerical semigroup,
for instance, any binumerical semigroups which are not N × N and contain
{(2, 4), (3, 5), (2, 6), (4, 7), (2, 8), (5, 9), . . .} are not finitely generated. Never-
theless, there are many binumerical semigroups which are finitely generated.
For example N×N and S1 ×S2, where S1 and S2 are binumerical semigroups.
For generating system of a subset of N × N we define

Definition 2.3. Let A be a subset of N×N. A subsemigroup of N×N gen-

erated by A is denoted by < A > and defined by < A >:= {(
n∑

i=1

αiai,
n∑

i=1

αibi) |
∀αi ∈ N, (ai, bi) ∈ A}. If S is a binumerical semigroup and S =< A >, then A
is called a generator of S and if A is finite, then S is called finitely generated.

We obtains

Theorem 2.4. A binumerical semigroup S is finitely generated if and only

if the following sets {(ai,
m∑

j=1

βjbj) ∈ S | ∃βj ∈ N} ∪ {(
n∑

i=1

αiai, bj) ∈ S | ∃αi ∈
N} are finite, where D(S) =< a1, . . . , an > and R(S) =< b1, . . . , bm >.

Proof. Let S be a binumerical semigroup and D(S) =< a1, . . . , an > and
R(S) =< b1, . . . , bm >. Since S is finitely generated and any element a ∈ N

such that (a, b) ∈ S for some b ∈ N is a finite sum of a1, a2, . . . , an. Therefore

the set {(ai,
m∑

j=1

βjbj) ∈ S | ∃βj ∈ N} is finite. Similarly, {(
n∑

i=1

αiai, bj) ∈ S |
∃αi ∈ N} is finite. Conversely, we have show that

S =< {(ai,
m∑

j=1

βjbj) ∈ S | ∃βj ∈ N} ∪ {(
n∑

i=1

αiai, bj) ∈ S | ∃αi ∈ N} >. Clearly

that < {(ai,
m∑

j=1

βjbj) ∈ S | ∃βj ∈ N} ∪ {(
n∑

i=1

αiai, bj) ∈ S | ∃αi ∈ N} > ⊆ S.

Let (a, b) ∈ S, we get that a ∈ D(S) and b ∈ R(S). Then a ∈< a1, . . . , an >

and b ∈< b1, . . . , bm >. This implies that (a, b) ∈< {(ai,
m∑

j=1

βjbj) ∈ S | ∃βj ∈

N} ∪ {(
n∑

i=1

αiai, bj) ∈ S | ∃αi ∈ N} >. Therefore, S =< {(ai,
m∑

j=1

βjbj) ∈ S |

∃βj ∈ N} ∪ {(
n∑

i=1

αiai, bj) ∈ S | ∃αi ∈ N} >.

For a subsystem of binumerical semigroup, we define

Definition 2.5. Let S be a binumerical semigroup. A subset H ⊆ N × N

is called a subbinumerical semigroup of S if H ⊆ S and H is a binumerical
semigroup.
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It is clearly that, every binumerical semigroup S is a subbinumerical semi-
group of S, and the intersections of subbinumerical semigroup is again binu-
merical semigroup. Therefore, the class Sub(S) of all subbinumerical semi-
groups of S forms a complete lattice, where the operations

∧
and

∨
are

defined by H1

∧
H2 := H1

⋂
H2 and H1

∨
H2 :=< H1

⋃
H2 >, respectively.

Moreover, we have the relation between numerical semigroup and binumerical
semigroup.

Theorem 2.6. If S1 is a numerical semigroup, then S1 is isomorphic to
binumerical semigroup S for some binumerical S.

Proof. Let S1 be a numerical semigroup and {a1, . . . , an} be the generat-
ing set of S1. Let S be a binumerical semigroup which is generated by
{(a1, b1), . . . , (an, bn)} and we define a mapping f : S1 → S by ai �→ (ai, bi), it
easy to see that f is bijective. Let a, b ∈ S1, then a = α1a1 + . . . + αnan and
b = β1a1 + . . . + βnan for some α1, . . . , αn, β1, . . . , βn ∈ N. Therefore,
f(a + b) = f((α1a1 + . . . + αnan) + (β1a1 + . . . + βnan))

= f((α1 + β1)a1 + . . . + (αn + βn)an)
= ((α1 + β1)a1 + . . . + (αn + βn)an, (α1 + β1)b1 + . . . + (αn + βn)bn)
= (α1a1 + . . . + αnan, α1b1 + . . . + αnbn)+

(β1a1 + . . . + βnan, β1b1 + . . . + βnbn)
= f(a) + f(b)

Hence, S1
∼= S.

The converse of the above Theorem is not true, for instance a binumerical
semigroup S contains the set {(2, 4), (3, 5), (2, 6), (4, 7), (2, 8), (5, 9), . . .} is not
isomorphic to any numerical semigroup. The homomorphism between two of
binumerical semigroups is define as usual semigroup homomorphism.

Definition 2.7. Let S and H be the binumerical semigroups. A mapping
f : S → H is call a homomorphism if and only if f(a + b) = f(a) + f(b) for
all a, b ∈ S.

It easy to see that, every zero function and identity function are homomor-
phisms. We need the following condition for the characterization of homomor-
phisms of binumerical semigroups.

Lemma 2.8. A mapping f is a homomorphism of numerical semigroups if
and only if f is either zero or embedding.

Proof. Clearly, zero and embedding mappings are homomorphisms. Assume
that f : S → H is a homomorphism of numerical semigroups and that f is not
zero. Suppose that f is not an embedding, then there is m ∈ S and n ∈ H
such that f(m) = n and m 
= n. Suppose that there is k ∈ S such that
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f(k) = k. Since f is a homomorphism, we get that f(km) = kf(m) = kn and
f(km) = mf(k) = mk. Then m = n, this contradicts with m 
= n. Therefore,
f(k) 
= k for all k ∈ S. Since f is homomorphism, then af(b) = bf(a) for all
a, b ∈ S. This equation implies that f(a) = 0 = f(b) for all a, b ∈ S. Then we
get a contradiction, because of f is not zero. Hence f is embedding.

Lemma 2.9. If f : S → H is a homomorphism of binumerical semigroups,
then the mappings f1 : D(S) → D(H) and f2 : R(S) → R(H) which are defined
by f1(a) = c and f2(b) = d, where c ∈ D(H), d ∈ R(H) and f(a, b) = (c, d)
are homomorphisms.

Proof. For each a ∈ D(S), we have a subset [a] := {x ∈ N | (a, x) ∈ S} of R(S)
is not empty. Let a1, a2 ∈ D(S) such that a1 = a2. Then [a1] = [a2], we let
d′ ∈ [a1] = [a2] such that (a1, d

′), (a2, d
′) ∈ S. Therefore, f(a1, d

′) = f(a2, d
′).

By definition, we get that f(a1) = f(a2). Let x, y ∈ D(S), then there are
x′, y′ ∈ R(S) such that (x, x′), (y, y′) ∈ S. Since f is homomorphism, then
f(x + y, x′ + y′) = f((x, x′) + (y, y′)) = f(x, x′) + f(y, y′). This implies that
f1(x + y) = f1(x) + f1(y). Then f1 is a homomorphism. Similarly, f2 is also a
homomorphism.

Then we get the Theorem

Theorem 2.10. A mapping f is a homomorphism of binumerical semi-
groups if and only if f is either zero or embedding.

Proof. Clearly, zero and embedding mappings are homomorphisms. Let f :
S → H be a homomorphism of binumerical semigroups and f is not zero.
Let (a, b) ∈ S. Since f is a homomorphism, then there are homomorphisms
f1 : D(S) → D(H) and f2 : R(S) → R(H) such that f(a, b) = (f1(a), f2(b)).
By Lemma 2.1, we get that f1 and f2 are embeddings, therefore f(a, b) = (a, b).
Hence f is an embedding.

As in the case of algebra, one can define that a congruence on an algebra
A is a kernel of some homomorphism.

Definition 2.11. An equivalence relation θ on a binumerical semigroup S
is called congruence on S if θ is equal to the kernel of homomorphism from S
to H, for some a binumerical semigroup H.

Corollary 2.12. If S is a binumerical semigroup, then the congruences on
S is either S × S or ΔS.
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Proof. By Theorem 2.4, a homomorphism from S to H such that H is a
binumerical semigroup is either zero or embedding. Then the kernel of such
homomorphisms are S × S and ΔS.
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