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Abstract

The concepts of numerical semigroups plays an important role in the
theory of semigroups. In this paper we introduce the basic concepts of
binumerical semigroups which build up from numerical semigroups.

Mathematics Subject Classification: 20M14, 20F50

Keywords: Numerical Semigroups, Binumerical Semigroups

1 Introduction

A numerical semigroup is a subset S of N that is closed under addition, 0 € S
and generates Z as a group. It is well known that every numerical semigroup is
finitely generated (see [2]), i.e. S =< x1,x9,...,x; > for some x1,x9,... , 2 €
S and k € N\ {0} such that

k
< Ty, To,...,Tp >= {anxz | n; € N}.
i=1

In [1], it was shown that:
G.C.D.(x1,29,... ,x;) =1 < Card(N\ S) < c0.
For a numerical semigroup S we define the following:

g(S) :=max{xr € Z|x ¢ S};
n(S) := Card({0,1,... ,9(S)}NS);

H(S):={reN|z ¢S}
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And ¢(S5),n(S) and H(S) are called Frobenius number, genus and gap of
S, respectively. If a numerical semigroup S =< x1,%3,...,x; >, then <
1, %a,...,2T, > is called system of generators of S and will be called min-
imal system of generators of S if no proper subset of {xq,%s,... 2} gen-
erates S. If a numerical semigroup has a unique minimal system of gener-
ators {z1,xs,...,x,} which is ;1 < x93 < ... < x. Then the number z;
and k are called the multiplicity and the embedding dimension of S, respec-
tively. The embedding dimension of S is denoted by e(S). We say that a
numerical semigroup S is symmetric if g(S) —xz € S for all x € Z \ S. For
n € S\ {0}, we define the Apéry set of the element n as the set of all the least
elements in S congruent with i modulo n and denoted by Ap(S,n) and it can
be proved that Ap(S,n) = {x € S|z —n ¢ S}. Moreover, it is clearly that,
Card(Ap(S,n)) = n and g(S) = maz(Ap(S,n)) —n (see [3]).

2 Binumerical Semigroups

At first, we define the binary operation + on N x N by (a,b) + (¢,d) = (a +
¢, b+ d), for all (a,b), (¢,d) € N x N,

Definition 2.1. Let S be a subset of N x N, S is a binumerical semigroup
if S is a subsemigroup of (N x N, +) with (0,0) € S and S generates 7 X 7 as
a group.

It is clearly that S; x S is binumerical semigroup for every numerical
semigroups S7 and S;. Nevertheless binumerical semigroup need not to be
product of two numerical semigroups, for instance S = {(0,0), (a,b), (a+1,b+
1),...}. In the case of numerical semigroup we have that every numerical
semigroup has finite complement in N. In the case of binumerical semigroups
we obtains

Theorem 2.2. If S is a binumerical semigroup, then {{z} x N | (z,n) ¢
S for all n € N} and {N x {y} | (m,y) ¢ S for all m € N} are finite.

Proof. Let S be a binumerical semigroup. Suppose that {{z} x N | (z,n) ¢
S for all n € N} is an infinite set, then {x € N | (x,n) ¢ S for all n € S} is
an infinite, so N\ {a € N | 3y € N, (a,y) € S} is an infinite set. This implies
that {a € N | Jy € N, (a,y) € S} is not a numerical semigroup, it can not be
generates Z as a group. This contradicts with S generates Z x Z. Therefore,
{{z} x N | (z,n) ¢ S for all n € N} is finite.

Similarly, {N x {y} | (m,y) ¢ S for all m € N} is finite. O

If S is a binumerical semigroup, we will form the subsets of N, D(.S)
{a € N | 3In € N,(a,n) € S} and R(S) = {b € N | Im € N,(m,b) €
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S}. It easy to see that D(S) and R(S) are smallest pair of numerical semi-
groups with S C D(S) x R(S). We know that every numerical semigroup
is finitely generated, but not true for the case of binumerical semigroup,
for instance, any binumerical semigroups which are not N x N and contain
{(2,4),(3,5),(2,6),(4,7),(2,8),(5,9),...} are not finitely generated. Never-
theless, there are many binumerical semigroups which are finitely generated.
For example N x N and 5] x Sy, where S; and S are binumerical semigroups.
For generating system of a subset of N x N we define

Definition 2.3. Let A be a subset of NxN. A subsemigroup of N >< N gen-
erated by A is denoted by < A > and defined by < A >:= {(Za a;, Zoz b;) |

Va; € N, (a;,b;) € A}, If S is a binumerical semigroup and S < A > then A
1s called a generator of S and if A is finite, then S is called finitely generated.

We obtains

Theorem 2.4. A bmumemcal semigroup S is ﬁmtely generated if and only
if the following sets {(a;, Z B;b;) € S |36, € N} U {(Za a;,b;) € S| 3a; €
N} are finite, where D(S) =< ay,...,a, > and R(S) < bi, ... bm >.

Proof. Let S be a binumerical semigroup and D(S) =< ay,...,a, > and
R(S) =< by,... by >. Since S is finitely generated and any element a € N
such that (a, b) € S for some b € N is a finite sum of aq, ao, ... ,a,. Therefore

the set {(a;, Z B;b;) € S| 36; € N} is finite. Similarly, {(>_ asa;,b;) € S |
i=1

Jdoy; € N} is ﬁmte Conversely, we have show that

S =< {(az,Zﬁj ;) €S| 36; GN}U{(ZaaZ, ;) € S| Ja; € N} >. Clearly

that < {(ai,Zﬁj bj) € S| 3p; GN}U{(ZOMLZ, ;) €S| 3a; € N} > C8S.
=1

Let (a,b) € S, we get that a € D(S) and b E R(S5). Then a€E< Ay, .. a0y >

and b €< by,... by, >. This implies that (a,b) €< {(a;, Z Bib;) € S|3B; €

N} UA{(>® asa;,b;) € S| 3oy € N} >. Therefore, S =< {(a;, Z bj) eS|
i=1 =
El/@j c N} U {(Z oziai,bj) €S ’ do; € N} >.
i=1

For a subsystem of binumerical semigroup, we define

Definition 2.5. Let S be a binumerical semigroup. A subset H C N x N
1s called a subbinumerical semigroup of S if H C S and H is a binumerical
SEMIGTOUD.
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It is clearly that, every binumerical semigroup S is a subbinumerical semi-
group of S, and the intersections of subbinumerical semigroup is again binu-
merical semigroup. Therefore, the class Sub(S) of all subbinumerical semi-
groups of S forms a complete lattice, where the operations A and \/ are
defined by Hy A\ Hy := Hi () Hy and H,\/ Hy :=< H,|J Hy >, respectively.
Moreover, we have the relation between numerical semigroup and binumerical
semigroup.

Theorem 2.6. If S; is a numerical semigroup, then S is isomorphic to
binumerical semigroup S for some binumerical S.

Proof. Let S; be a numerical semigroup and {ai,...,a,} be the generat-
ing set of S;. Let S be a binumerical semigroup which is generated by
{(a1,b1),...,(an,b,)} and we define a mapping f : S; — S by a; — (a;, b;), it
easy to see that f is bijective. Let a,b € 51, then a = aya; + ... + a,a, and
b= (a1 + ...+ Bpa, for some aq, ..., a,, 01, ..., B, € N. Therefore,
fla+b) = f(lanar + ...+ ana,) + (Brar + ...+ Bray))
f((al + ﬁl)afl +...F (an + ﬁn)an)
= ((al + ﬁl)afl +...+ (an + ﬁn)a'nu (al + ﬁl)bl +...F (an + ﬁn)bn)
= (aqay + ...+ apan, a1y + ...+ by )+
(ﬂlal +.o Bnam ﬂlbl +...+ ﬂnbn)
= fla) + f(b)
Hence, S; = S.
U

The converse of the above Theorem is not true, for instance a binumerical
semigroup S contains the set {(2,4),(3,5),(2,6),(4,7),(2,8),(5,9),...} is not
isomorphic to any numerical semigroup. The homomorphism between two of
binumerical semigroups is define as usual semigroup homomorphism.

Definition 2.7. Let S and H be the binumerical semigroups. A mapping
f S — H is call a homomorphism if and only if f(a +b) = f(a) + f(b) for
all a,b € S.

It easy to see that, every zero function and identity function are homomor-
phisms. We need the following condition for the characterization of homomor-
phisms of binumerical semigroups.

Lemma 2.8. A mapping f is a homomorphism of numerical semigroups if
and only if f is either zero or embedding.

Proof. Clearly, zero and embedding mappings are homomorphisms. Assume
that f : S — H is a homomorphism of numerical semigroups and that f is not
zero. Suppose that f is not an embedding, then there is m € S and n € H
such that f(m) = n and m # n. Suppose that there is k € S such that
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f(k) = k. Since f is a homomorphism, we get that f(km) = kf(m) = kn and
f(km) =mf(k) = mk. Then m = n, this contradicts with m # n. Therefore,
f(k) # k for all k € S. Since f is homomorphism, then af(b) = bf(a) for all
a,b € S. This equation implies that f(a) =0 = f(b) for all a,b € S. Then we
get a contradiction, because of f is not zero. Hence f is embedding.

U

Lemma 2.9. If f : S — H is a homomorphism of binumerical semigroups,
then the mappings f1 : D(S) — D(H) and fs : R(S) — R(H) which are defined
by fi(a) = c and fo(b) = d, where c € D(H),d € R(H) and f(a,b) = (c,d)

are homomorphisms.

Proof. For each a € D(S), we have a subset [a] := {z € N | (a,x) € S} of R(S)
is not empty. Let ay,as € D(S) such that a; = ay. Then [a1] = [as], we let
d' € [a1] = [ag] such that (ai,d’), (as,d’) € S. Therefore, f(ai,d") = f(az,d).
By definition, we get that f(ay) = f(a2). Let x,y € D(S), then there are
o',y € R(S) such that (z,2'),(y,y') € S. Since f is homomorphism, then
fle+y, o +y) = f((z,2") + (y,v)) = f(z,2) + f(y,y). This implies that
filz+y) = fi(x) + fi(y). Then f; is a homomorphism. Similarly, f; is also a
homomorphism.

O
Then we get the Theorem

Theorem 2.10. A mapping f is a homomorphism of binumerical semi-
groups if and only if f is either zero or embedding.

Proof. Clearly, zero and embedding mappings are homomorphisms. Let f :
S — H be a homomorphism of binumerical semigroups and f is not zero.
Let (a,b) € S. Since f is a homomorphism, then there are homomorphisms
fi: D(S) — D(H) and f, : R(S) — R(H) such that f(a,b) = (fi(a), f2(D)).
By Lemma 2.1, we get that f; and f, are embeddings, therefore f(a,b) = (a,b).
Hence f is an embedding.

O

As in the case of algebra, one can define that a congruence on an algebra
A is a kernel of some homomorphism.

Definition 2.11. An equivalence relation 6 on a binumerical semigroup S
15 called congruence on S if 0 is equal to the kernel of homomorphism from S
to H, for some a binumerical semigroup H.

Corollary 2.12. If S is a binumerical semigroup, then the congruences on

S is either S x S or Ag.
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Proof. By Theorem 2.4, a homomorphism from S to H such that H is a
binumerical semigroup is either zero or embedding. Then the kernel of such

homomorphisms are S x S and Ag.
U
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