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Abstract

In this article we examine the primes that appear in the prime fac-
torization of almost all numbers not exceeding x.
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1 Introduction

Let k ≥ 2 be a fixed positive integer. Let αk(x) be the set of numbers n
not exceeding x such that in their prime factorization only appear primes p
pertaining to the interval

[
0, x

k

]
. We assume that 1 pertains to the set αk(x).

Let βk(x) be the set of numbers n not exceeding x such that in their prime

factorization appear some prime p pertaining to the interval
(

x
k
, x
]
.

Note that the sets αk(x) and βk(x) are disjoints and αk(x) ∪ βk(x) = A,
where A is the set of positive integers n such that 1 ≤ n ≤ �x�.

Let Ak(x) be the number of elements in the set αk(x). Let Bk(x) be the
number of elements in the set βk(x). Consequently

Ak(x) + Bk(x) = �x� . (1)

In this article we prove the asymptotic formula

Ak(x) ∼ x. (2)

Consequently almost all numbers n ≤ x have in their prime factorization only
primes p pertaining to the interval

[
0, x

k

]
.

On the other hand, equations (1) and (2) imply the following formula

Bk(x) = o(x). (3)
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In this article we prove the more precise asymptotic formula

Bk(x) ∼ Bk
x

log x
, (4)

where Bk = 1/2 + 1/3 + · · ·+ 1/k.
Let π(x) be the prime counting function. We shall need the well-known

weak limit

lim
x→∞

π(x)

x
= 0, (5)

and the more strong result (prime number Theorem)

lim
x→∞

π(x)
x

log x

= 1. (6)

Elementary proofs of limits (5) and (6) are given, for example, in [1, Chapter
XXII].

2 Main Results

Theorem 2.1 The following formula holds (see equation (3))

Bk(x) = o(x).

Proof. Let k ≥ 2 be a fixed positive integer. Consider the inequality

x

k
< p ≤ x, (7)

where p denotes a positive prime number. Equation (7) implies that

pk > x.

Consequently the number of multiples of p not exceeding x is less than k.
On the other hand, the number of primes p that satisfy (7) is less than or

equal to π(x). Therefore
Bk(x) ≤ kπ(x). (8)

Equations (8) and (5) imply that

lim
x→∞

Bk(x)

x
= 0.

Equation (3) is proved. The theorem is proved.

Now, we prove the following more strong result.
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Theorem 2.2 The following formula holds (see equation (4))

Bk(x) ∼ Bk
x

log x
(k ≥ 2),

where Bk = 1/2 + 1/3 + · · · + 1/k.

Proof. Let k ≥ 2 be a fixed positive integer. Consider the inequality

x

k
< p ≤ x, (9)

where p denotes a positive prime number.
If x ≥ k2 equation (9) gives p > k.
Consider the inequality

x

2
< p ≤ x. (10)

The number of multiples of p not exceeding x is 1, namely p, since p ≤ x and
2p > x.

Consequently the number of multiples of p not exceeding x such that p
satisfies (10) is

π(x) − π(x/2). (11)

Consider the inequality
x

3
< p ≤ x

2
. (12)

The number of multiples of p not exceeding x is 2, namely p and 2p, since
2p ≤ x and 3p > x.

Consequently the number of multiples of p not exceeding x such that p
satisfies (12) is

2 (π(x/2) − π(x/3)) . (13)

...

Consider the inequality
x

k
< p ≤ x

k − 1
. (14)

The number of multiples of p not exceeding x is k−1, namely p, 2p, . . . , (k−1)p,
since (k−1)p ≤ x and kp > x. Note that p is the maximum prime factor in the
prime factorization of the numbers p, 2p, . . . , (k− 1)p, since p > k (see above).

Consequently the number of multiples of p not exceeding x such that p
satisfies (14) is

(k − 1) (π(x/(k − 1)) − π(x/k)) . (15)

Therefore, see (11), (13), . . ., (15), we have

Bk(x) = (π(x) − π(x/2)) + 2 (π(x/2) − π(x/3)) + 3 (π(x/3) − π(x/4)) + · · ·
+ (k − 1) (π(x/(k − 1)) − π(x/k)) = π(x) + π(x/2) + π(x/3) + · · ·
+ π(x/(k − 1)) − (k − 1)π(x/k). (16)
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Equation (6) implies

lim
x→∞

π(x/n)

π(x)
=

1

n
. (17)

Equations (16) and (17) give

lim
x→∞

Bk(x)

π(x)
= 1 +

1

2
+

1

3
+ · · ·+ 1

k − 1
− k − 1

k
=

1

2
+

1

3
+ · · ·+ 1

k
= Bk (18)

Finally, equations (6) and (18) give equation (4). Equation (4) is proved. The
theorem is proved.

Theorem 2.3 The following asymptotic formula holds (see equation (2))

Ak(x) ∼ x.

Proof. It is an immediate consequence of equations (1) and (3). Equation (2)
is proved. The theorem is proved.

In the former theorems we have considered the primes in the interval
[
0, x

k

]
.

This interval has length l(x) = x/k. If k is large, this length l(x) is little
compared with x . That is, we have

l(x)

x
=

x
k

x
=

1

k
.

We wish break the positive barrier 1/k. Therefore, we shall consider an interval
of length l(x) such that

lim
x→∞

l(x)

x
= 0

and such that the former theorems (Theorem 2.1 and Theorem 2.3) hold.
Let s > 0 be a fixed real number.
Let αs(x) be the set of numbers n not exceeding x such that in their prime

factorization only appear primes p pertaining to the interval
[
0, x

logs x

]
. Note

that this interval has length l(x) = x
logs x

and

lim
x→∞

l(x)

x
= 0,

as we desired. That is, l(x) = o(x).
Let βs(x) be the set of numbers n not exceeding x such that in their prime

factorization appear some prime p pertaining to the interval
(

x
logs x

, x
]
.

Note that the sets αs(x) and βs(x) are disjoints and αs(x) ∪ βs(x) = A,
where A is the set of positive integers n such that 1 ≤ n ≤ �x�.
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Let As(x) be the number of elements in the set αs(x). Let Bs(x) be the
number of elements in the set βs(x). Consequently

As(x) + Bs(x) = �x� . (19)

Now, we shall prove two theorems analogous to Theorems 2.1 and 2.3.
Before, we need the following lemma.

Lemma 2.4 The following asymptotic formula holds

π

(
x

logh x

)
= h(x)

x

log1+h x
(h > 0),

where h(x) → 1.

Proof. Equation (6) is

π(x) = f(x)
x

log x
,

where f(x) → 1. Therefore

π

(
x

logh x

)
= f

(
x

logh x

)
x

logh x log
(

x
logh x

) = h(x)
x

log1+h x
,

where h(x) → 1. The lemma is proved.

Theorem 2.5 The following formula holds

Bs(x) = o(x) (s > 0). (20)

Proof. a) Let 0 < s < 1 be a fixed real number. Consider the inequality

x

logs x
< p ≤ x, (21)

where p denotes a positive prime number.
Equation (21) implies that p (�logs x� + 1) > x. Consequently the number

of multiples of p not exceeding x is less than �logs x�+ 1. On the other hand,
the number of primes p that satisfy (21) is less than or equal to π(x). Therefore

Bs(x) ≤ (�logs x� + 1)π(x). (22)

Equations (22) and (6) imply that

lim
x→∞

Bs(x)

x
= 0 (0 < s < 1). (23)
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b) Let h′ be an arbitrary but fixed real number such that 0 ≤ h′ < 1. Consider
the inequality

x

log1+h′
x

< p ≤ x. (24)

Let h be a fixed real number such that 0 < h < 1 and h > h′. Inequality (24)
can be divided in the form

x

logh x
< p ≤ x, (25)

x

log1+h′
x

< p ≤ x

logh x
. (26)

The number of multiples of p not exceeding x such that p satisfies inequality
(25) is o(x) (see part (a), equation (23)).

Equation (26) implies that p
(⌊

log1+h′
x
⌋

+ 1
)

> x. Consequently the num-

ber of multiples of p not exceeding x is less than
⌊
log1+h′

x
⌋
+ 1. On the other

hand, the number of primes p that satisfy (26) is less than or equal to π
(

x
logh x

)
.

Therefore (see lemma 2.4)

B1+h′(x) ≤ o(x) +
(⌊

log1+h′
x
⌋

+ 1
)
π

(
x

logh x

)
≤ o(x)

+
(
1 + log1+h′

x
)

h(x)
x

log1+h x
= o(x),

since h > h′ (see above). Therefore if we put s = 1 + h′ then

lim
x→∞

Bs(x)

x
= 0 (1 ≤ s < 2). (27)

c) Let n be a positive integer. We shall use mathematical induction. The
theorem is true for s = 1 + h (0 ≤ h < 1) (see part (b), equation (27)).
Suppose that the theorem is true for s = n + h (0 ≤ h < 1). We shall prove
that the theorem is also true for s = n + 1 + h′ (0 ≤ h′ < 1).

Let h′ be an arbitrary but fixed real number such that 0 ≤ h′ < 1. Consider
the inequality

x

logn+1+h′
x

< p ≤ x. (28)

Let h be a fixed real number such that 0 < h < 1 and h > h′. Inequality (28)
can be divided in the form

x

logn+h x
< p ≤ x, (29)

x

logn+1+h′
x

< p ≤ x

logn+h x
. (30)
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The number of multiples of p not exceeding x such that p satisfies inequality
(29) is o(x) (inductive hypothesis).

Equation (30) implies that p
(⌊

logn+1+h′
x
⌋

+ 1
)

> x. Consequently the

number of multiples of p not exceeding x is less than
⌊
logn+1+h′

x
⌋
+1. On the

other hand, the number of primes p that satisfy (30) is less than or equal to

π
(

x
logn+h x

)
. Therefore (see lemma 2.4)

Bn+1+h′(x) ≤ o(x) +
(⌊

logn+1+h′
x
⌋

+ 1
)
π

(
x

logn+h x

)
≤ o(x)

+
(
1 + logn+1+h′

x
)
h(x)

x

logn+1+h x
= o(x),

since h > h′ (see above). Therefore if we put s = n + 1 + h′ then

lim
x→∞

Bs(x)

x
= 0 (n + 1 ≤ s < n + 2) (n ≥ 1). (31)

Equations (23), (27) and (31) imply equation (20). The theorem is proved.

Theorem 2.6 The following asymptotic formula holds

As(x) ∼ x (s > 0).

Proof. It is an immediate consequence of equations (19) and (20). The theorem
is proved.

If the interval has length very little compared with x these theorems are false.
For example, let α(x) be the set of numbers n not exceeding x such that

in their prime factorization only appear primes p pertaining to the interval
[0, log x]. Note that this interval has lenght very little l(x) = log x

Let β(x) be the set of numbers n not exceeding x such that in their prime
factorization appear some prime p pertaining to the interval (log x, x].

Note that the sets α(x) and β(x) are disjoints and α(x)∪ β(x) = A, where
A is the set of positive integers n such that 1 ≤ n ≤ �x�.

Let A(x) be the number of elements in the set α(x). Let B(x) be the
number of elements in the set β(x). Consequently

A(x) + B(x) = �x� . (32)

Theorem 2.7 the formula

B(x) = o(x) (33)

is false. Consequently the formula

A(x) ∼ x (34)

is also false.
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Proof. A positive integer is quadratfrei if either is 1 or is a product of different
primes. Let Q(x) be the number of quadratfrei not exceeding x. We have [1,
Chapter XVIII]

Q(x) = f(x)x,

where f(x) → 6
π2 .

If equation (33) holds then the number Q1(x) of quadratfrei such that
in their prime factorization only appear primes p pertaining to the interval
[0, log x] is

Q1(x) = Q(x) − o(x) = f(x)x − o(x) = f1(x)x,

where f1(x) → 6
π2 .

On the other hand, the number of all possible quadratfrei such that in their
prime factorization only appear primes p pertaining to the interval [0, log x] is

(
π(log x)

0

)
+

(
π(log x)

1

)
+

(
π(log x)

2

)
+ · · · +

(
π(log x)

π(log x)

)
= 2π(log x).

Consequently we have

2π(log x) ≥ Q1(x) = f1(x)x.

That is
π(log x) log 2 ≥ f2(x) log x,

where f2(x) → 1.
Therefore

π(log x) ≥ f3(x) log x > h log x, (35)

where f3(x) → 1
log 2

and 1
log 2

> h > 1.

Now, equation (35) is an evident contradiction since π(x) ≤ x. Conse-
quently equation ( 33) is false. The theorem is proved.
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