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Abstract
In this article we examine the primes that appear in the prime fac-

torization of almost all numbers not exceeding .
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1 Introduction

Let £ > 2 be a fixed positive integer. Let ai(x) be the set of numbers n
not exceeding x such that in their prime factorization only appear primes p
pertaining to the interval [0, %] We assume that 1 pertains to the set ay(x).
Let k() be the set of numbers n not exceeding = such that in their prime
factorization appear some prime p pertaining to the interval (%, :1:}

Note that the sets ay(z) and S(x) are disjoints and ay(z) U Gi(x) = A,
where A is the set of positive integers n such that 1 <n < [z].

Let Ag(z) be the number of elements in the set ay(x). Let By(x) be the
number of elements in the set Oy (x). Consequently

Ap(z) + Br(z) = |=]. (1)
In this article we prove the asymptotic formula
Ap(z) ~ x. (2)

Consequently almost all numbers n < x have in their prime factorization only
primes p pertaining to the interval {0, %]
On the other hand, equations (1) and (2) imply the following formula

By(z) = o(x). (3)
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In this article we prove the more precise asymptotic formula

X

log z’
where By =1/24+1/3+ -+ 1/k.
Let m(x) be the prime counting function. We shall need the well-known
weak limit
lim m(z) =0, (5)

Tr—00 €T

and the more strong result (prime number Theorem)

lim () =1. (6)

Elementary proofs of limits (5) and (6) are given, for example, in [1, Chapter
XXI1].

2 Main Results

Theorem 2.1 The following formula holds (see equation (3))

Proof. Let k > 2 be a fixed positive integer. Consider the inequality

C<p<u (7)

where p denotes a positive prime number. Equation (7) implies that
pk > x.

Consequently the number of multiples of p not exceeding x is less than k.
On the other hand, the number of primes p that satisfy (7) is less than or
equal to 7(x). Therefore

By(z) < km(x). (8)
Equations (8) and (5) imply that
B
tim 2 _
r—o0

Equation (3) is proved. The theorem is proved.

Now, we prove the following more strong result.
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Theorem 2.2 The following formula holds (see equation (4))

T

log x
where By =1/2+1/3+---+ 1/k.
Proof. Let k > 2 be a fixed positive integer. Consider the inequality

C<p<w (9)

where p denotes a positive prime number.
If z > k? equation (9) gives p > k.
Consider the inequality

g<p§x. (10)

The number of multiples of p not exceeding x is 1, namely p, since p < x and
2p > x.
Consequently the number of multiples of p not exceeding = such that p
satisfies (10) is
m(x) — m(x/2). (11)
Consider the inequality
T ep<? (12)
3 ~P=7
The number of multiples of p not exceeding x is 2, namely p and 2p, since
2p < x and 3p > .
Consequently the number of multiples of p not exceeding = such that p

satisfies (12) is
2(m(z/2) —m(x/3)). (13)

Consider the inequality

X T
Tep< L 14
A (14)

The number of multiples of p not exceeding x is k—1, namely p, 2p, ..., (k—1)p,
since (k—1)p < x and kp > z. Note that p is the maximum prime factor in the
prime factorization of the numbers p, 2p, ..., (k—1)p, since p > k (see above).

Consequently the number of multiples of p not exceeding = such that p

satisfies (14) is

(k= 1) (w(z/(k = 1)) = m(x/k)). (15)
Therefore, see (11), (13), ..., (15), we have
By(x) = (n(z) =7(2/2)) +2(w(2/2) = m(x/3)) + 3 (n(x/3) — m(x/4)) + - -

+ (k=1 (n(z/(k—1)) —m(x/k)) = m(x) + 7(x/2) + m(x/3) + - -
+ 7w(z/(k—1))—(k—Dr(z/k). (16)
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Equation (6) implies

lim S (17)
Equations (16) and (17) give

_ Byu(x) 11 1 k-1 1 1
hm — . _
z—o0 (1) 2 3 k—1 k 2 3

1
ot = By (18)

Finally, equations (6) and (18) give equation (4). Equation (4) is proved. The
theorem is proved.

Theorem 2.3 The following asymptotic formula holds (see equation (2))
Ap(z) ~ x.

Proof. It is an immediate consequence of equations (1) and (3). Equation (2)
is proved. The theorem is proved.

In the former theorems we have considered the primes in the interval [O, ﬂ
This interval has length I(z) = x/k. If k is large, this length I(z) is little

compared with x . That is, we have

I(x) i1

x x k

We wish break the positive barrier 1/k. Therefore, we shall consider an interval
of length I(z) such that
I(z)

lim —= =20
T—00

and such that the former theorems (Theorem 2.1 and Theorem 2.3) hold.

Let s > 0 be a fixed real number.

Let as(z) be the set of numbers n not exceeding = such that in their prime
factorization only appear primes p pertaining to the interval [O, logLsx} Note
that this interval has length [(x) = —%— and

T log®z

lim M =0,
T—00

as we desired. That is, [(z) = o(x).
Let 5(x) be the set of numbers n not exceeding  such that in their prime
factorization appear some prime p pertaining to the interval (log%x, :1:}

Note that the sets as(z) and fs(x) are disjoints and ag(x) U Gs(z) = A,
where A is the set of positive integers n such that 1 <n < [z].
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Let Ag(x) be the number of elements in the set ag(x). Let By(x) be the
number of elements in the set 3s(z). Consequently

As(@) + Bs(x) = [2] . (19)

Now, we shall prove two theorems analogous to Theorems 2.1 and 2.3.
Before, we need the following lemma.

Lemma 2.4 The following asymptotic formula holds

x x
= h(2) —— h > 0),
" <logh x) (@) log'™ ( )

where h(z) — 1.

Proof. Equation (6) is

where f(xz) — 1. Therefore

x x x x
4 (loghx> =/ <loghx> log" z log (bg%x) - hu)@’
where h(x) — 1. The lemma is proved.
Theorem 2.5 The following formula holds
By(z) = o(x) (s >0). (20)

Proof. a) Let 0 < s < 1 be a fixed real number. Consider the inequality

<p<u, (21)

log®

where p denotes a positive prime number.

Equation (21) implies that p (|log®z| + 1) > z. Consequently the number
of multiples of p not exceeding x is less than [log® x| + 1. On the other hand,
the number of primes p that satisfy (21) is less than or equal to m(x). Therefore

By(x) < ([log’ 2] + 1) m(x). (2)
Equations (22) and (6) imply that

B
lim S(x)

T—00 g

=0 (0<s<1). (23)
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b) Let A’ be an arbitrary but fixed real number such that 0 < A" < 1. Consider
the inequality

A
—— <p<ux. 24
10g1+h T p ( )

Let h be a fixed real number such that 0 < h < 1 and h > h'. Inequality (24)
can be divided in the form

<p<uw, (25)

log"

<p< (26)

_—
1+h T

log log" z

The number of multiples of p not exceeding x such that p satisfies inequality
(25) is o(z) (see part (a), equation (23)).

Equation (26) implies that p Qloth, JJJ + 1) > z. Consequently the num-
ber of multiples of p not exceeding x is less than {loth/ xJ + 1. On the other

hand, the number of primes p that satisfy (26) is less than or equal to 7 ( < x)

log
Therefore (see lemma 2.4)

Brante) < ofe) + (o] + 1) 7 (15 ) < o)

’ X
+ (1 + log"th x) h(x)log1+h - = o(z),

since h > h’ (see above). Therefore if we put s = 1+ A’ then

B
lim —=—2 (z)

T—00 €T

=0 (1<s<2). (27)

c) Let n be a positive integer. We shall use mathematical induction. The
theorem is true for s = 1+ h (0 < h < 1) (see part (b), equation (27)).
Suppose that the theorem is true for s = n+ h (0 < h < 1). We shall prove
that the theorem is also true for s=n+1+h" (0 < KW < 1).

Let A’ be an arbitrary but fixed real number such that 0 < A’ < 1. Consider

the inequality
x

n+1+h' T

<p<uw. (28)
log

Let h be a fixed real number such that 0 < h < 1 and h > h'. Inequality (28)
can be divided in the form

<p<uz, 29
10gn+hl‘ b= ( )

T T

. ep<—
n+1+h’ T 1Ogn+h T

log (30)
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The number of multiples of p not exceeding x such that p satisfies inequality
(29) is o(z) (inductive hypothesis).

Equation (30) implies that p Qlog”““‘/ xJ + 1) > x. Consequently the
number of multiples of p not exceeding x is less than {log”“”ﬂ xJ +1. On the
other hand, the number of primes p that satisfy (30) is less than or equal to
T (1og’+hx) Therefore (see lemma 2.4)

n ’ X
Burew(x) < o(x) + ([log" " x| +1)m <1g> < ofx)

T

o = ol@);

+ (1 + log" T+ x) h(x)1
0g

since h > h' (see above). Therefore if we put s =n + 1+ A’ then
. By(z)
lim

T—00

=0 m+1<s<n+2) (n>1). (31)

Equations (23), (27) and (31) imply equation (20). The theorem is proved.
Theorem 2.6 The following asymptotic formula holds

As(z) ~x (s >0).

Proof. It is an immediate consequence of equations (19) and (20). The theorem
is proved.

If the interval has length very little compared with x these theorems are false.

For example, let a(z) be the set of numbers n not exceeding z such that
in their prime factorization only appear primes p pertaining to the interval
[0,log z]. Note that this interval has lenght very little [(x) = logz

Let B(x) be the set of numbers n not exceeding z such that in their prime
factorization appear some prime p pertaining to the interval (logz, z].

Note that the sets a(z) and f(x) are disjoints and a(x) U 3(z) = A, where
A is the set of positive integers n such that 1 <n < |z].

Let A(z) be the number of elements in the set a(x). Let B(z) be the
number of elements in the set §(x). Consequently

A(x) + B(z) = |z] . (32)
Theorem 2.7 the formula
B(z) = o(x) (33)

Alx) ~x (34)

18 also false.
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Proof. A positive integer is quadratfrei if either is 1 or is a product of different
primes. Let Q(x) be the number of quadratfrei not exceeding x. We have [1,
Chapter XVIII]

where f(z) — 5.

If equation (33) holds then the number @;(z) of quadratfrei such that
in their prime factorization only appear primes p pertaining to the interval
0, log z] is

Qi(z) = Q(z) — o(z) = f(x)z — o(z) = fi(x)z,
where fi(z) — 5.

On the other hand, the number of all possible quadratfrei such that in their

prime factorization only appear primes p pertaining to the interval [0, log ] is

() () () ) e

Consequently we have
ores) > 0, (z) = fi(x)z.

That is
m(logx)log2 > fa(x)logz,

where fy(z) — 1.
Therefore
n(logx) > f3(x)logz > hlogz, (35)

: Loand 15 > h > 1.
og?2 log 2
Now, equation (35) is an evident contradiction since m(x) < z. Conse-

quently equation ( 33) is false. The theorem is proved.

where f3(x) —
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