A Note on the Primes in the Prime Factorization of an Integer

Rafael Jakimczuk

División Matemática, Universidad Nacional de Luján Buenos Aires, Argentina jakimczu@mail.unlu.edu.ar

Abstract

In this article we examine the primes that appear in the prime factorization of almost all numbers not exceeding x.

Mathematics Subject Classification: 11A99

Keywords: primes, prime factorization

1 Introduction

Let $k \geq 2$ be a fixed positive integer. Let $\alpha_k(x)$ be the set of numbers n not exceeding x such that in their prime factorization only appear primes p pertaining to the interval $\left[0, \frac{x}{k}\right]$. We assume that 1 pertains to the set $\alpha_k(x)$.

Let $\beta_k(x)$ be the set of numbers n not exceeding x such that in their prime factorization appear some prime p pertaining to the interval $\left(\frac{x}{k}, x\right]$.

Note that the sets $\alpha_k(x)$ and $\beta_k(x)$ are disjoints and $\alpha_k(x) \cup \beta_k(x) = A$, where A is the set of positive integers n such that $1 \leq n \leq \lfloor x \rfloor$.

Let $A_k(x)$ be the number of elements in the set $\alpha_k(x)$. Let $B_k(x)$ be the number of elements in the set $\beta_k(x)$. Consequently

$$A_k(x) + B_k(x) = \lfloor x \rfloor. \tag{1}$$

In this article we prove the asymptotic formula

$$A_k(x) \sim x.$$
 (2)

Consequently almost all numbers $n \leq x$ have in their prime factorization only primes p pertaining to the interval $\left[0, \frac{x}{k}\right]$.

On the other hand, equations (1) and (2) imply the following formula

$$B_k(x) = o(x). (3)$$

In this article we prove the more precise asymptotic formula

$$B_k(x) \sim B_k \frac{x}{\log x},$$
 (4)

where $B_k = 1/2 + 1/3 + \cdots + 1/k$.

Let $\pi(x)$ be the prime counting function. We shall need the well-known weak limit

$$\lim_{x \to \infty} \frac{\pi(x)}{x} = 0,\tag{5}$$

and the more strong result (prime number Theorem)

$$\lim_{x \to \infty} \frac{\pi(x)}{\frac{x}{\log x}} = 1. \tag{6}$$

Elementary proofs of limits (5) and (6) are given, for example, in [1, Chapter XXII].

2 Main Results

Theorem 2.1 The following formula holds (see equation (3))

$$B_k(x) = o(x).$$

Proof. Let $k \geq 2$ be a fixed positive integer. Consider the inequality

$$\frac{x}{k}$$

where p denotes a positive prime number. Equation (7) implies that

$$pk > x$$
.

Consequently the number of multiples of p not exceeding x is less than k.

On the other hand, the number of primes p that satisfy (7) is less than or equal to $\pi(x)$. Therefore

$$B_k(x) \le k\pi(x). \tag{8}$$

Equations (8) and (5) imply that

$$\lim_{x \to \infty} \frac{B_k(x)}{x} = 0.$$

Equation (3) is proved. The theorem is proved.

Now, we prove the following more strong result.

Theorem 2.2 The following formula holds (see equation (4))

$$B_k(x) \sim B_k \frac{x}{\log x}$$
 $(k \ge 2),$

where $B_k = 1/2 + 1/3 + \cdots + 1/k$.

Proof. Let $k \geq 2$ be a fixed positive integer. Consider the inequality

$$\frac{x}{k}$$

where p denotes a positive prime number.

If $x \ge k^2$ equation (9) gives p > k.

Consider the inequality

$$\frac{x}{2}$$

The number of multiples of p not exceeding x is 1, namely p, since $p \le x$ and 2p > x.

Consequently the number of multiples of p not exceeding x such that p satisfies (10) is

$$\pi(x) - \pi(x/2). \tag{11}$$

Consider the inequality

$$\frac{x}{3}$$

The number of multiples of p not exceeding x is 2, namely p and 2p, since $2p \le x$ and 3p > x.

Consequently the number of multiples of p not exceeding x such that p satisfies (12) is

$$2(\pi(x/2) - \pi(x/3)). (13)$$

:

Consider the inequality

$$\frac{x}{k}$$

The number of multiples of p not exceeding x is k-1, namely $p, 2p, \ldots, (k-1)p$, since $(k-1)p \le x$ and kp > x. Note that p is the maximum prime factor in the prime factorization of the numbers $p, 2p, \ldots, (k-1)p$, since p > k (see above).

Consequently the number of multiples of p not exceeding x such that p satisfies (14) is

$$(k-1)(\pi(x/(k-1)) - \pi(x/k)). (15)$$

Therefore, see (11), (13), ..., (15), we have

$$B_{k}(x) = (\pi(x) - \pi(x/2)) + 2(\pi(x/2) - \pi(x/3)) + 3(\pi(x/3) - \pi(x/4)) + \cdots + (k-1)(\pi(x/(k-1)) - \pi(x/k)) = \pi(x) + \pi(x/2) + \pi(x/3) + \cdots + \pi(x/(k-1)) - (k-1)\pi(x/k).$$
(16)

Equation (6) implies

$$\lim_{x \to \infty} \frac{\pi(x/n)}{\pi(x)} = \frac{1}{n}.$$
(17)

Equations (16) and (17) give

$$\lim_{x \to \infty} \frac{B_k(x)}{\pi(x)} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{k-1} - \frac{k-1}{k} = \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{k} = B_k$$
 (18)

Finally, equations (6) and (18) give equation (4). Equation (4) is proved. The theorem is proved.

Theorem 2.3 The following asymptotic formula holds (see equation (2))

$$A_k(x) \sim x$$
.

Proof. It is an immediate consequence of equations (1) and (3). Equation (2) is proved. The theorem is proved.

In the former theorems we have considered the primes in the interval $\left[0, \frac{x}{k}\right]$. This interval has length l(x) = x/k. If k is large, this length l(x) is little compared with x. That is, we have

$$\frac{l(x)}{x} = \frac{\frac{x}{k}}{x} = \frac{1}{k}.$$

We wish break the positive barrier 1/k. Therefore, we shall consider an interval of length l(x) such that

$$\lim_{x \to \infty} \frac{l(x)}{x} = 0$$

and such that the former theorems (Theorem 2.1 and Theorem 2.3) hold.

Let s > 0 be a fixed real number.

Let $\alpha_s(x)$ be the set of numbers n not exceeding x such that in their prime factorization only appear primes p pertaining to the interval $\left[0, \frac{x}{\log^s x}\right]$. Note that this interval has length $l(x) = \frac{x}{\log^s x}$ and

$$\lim_{x \to \infty} \frac{l(x)}{r} = 0,$$

as we desired. That is, l(x) = o(x).

Let $\beta_s(x)$ be the set of numbers n not exceeding x such that in their prime factorization appear some prime p pertaining to the interval $\left(\frac{x}{\log^s x}, x\right]$.

Note that the sets $\alpha_s(x)$ and $\beta_s(x)$ are disjoints and $\alpha_s(x) \cup \beta_s(x) = A$, where A is the set of positive integers n such that $1 \le n \le \lfloor x \rfloor$.

Let $A_s(x)$ be the number of elements in the set $\alpha_s(x)$. Let $B_s(x)$ be the number of elements in the set $\beta_s(x)$. Consequently

$$A_s(x) + B_s(x) = |x|.$$
 (19)

Now, we shall prove two theorems analogous to Theorems 2.1 and 2.3. Before, we need the following lemma.

Lemma 2.4 The following asymptotic formula holds

$$\pi\left(\frac{x}{\log^h x}\right) = h(x)\frac{x}{\log^{1+h} x} \qquad (h > 0),$$

where $h(x) \to 1$.

Proof. Equation (6) is

$$\pi(x) = f(x) \frac{x}{\log x},$$

where $f(x) \to 1$. Therefore

$$\pi\left(\frac{x}{\log^h x}\right) = f\left(\frac{x}{\log^h x}\right) \frac{x}{\log^h x \log\left(\frac{x}{\log^h x}\right)} = h(x) \frac{x}{\log^{1+h} x},$$

where $h(x) \to 1$. The lemma is proved.

Theorem 2.5 The following formula holds

$$B_s(x) = o(x)$$
 (s > 0). (20)

Proof. a) Let 0 < s < 1 be a fixed real number. Consider the inequality

$$\frac{x}{\log^s x}$$

where p denotes a positive prime number.

Equation (21) implies that $p(\lfloor \log^s x \rfloor + 1) > x$. Consequently the number of multiples of p not exceeding x is less than $\lfloor \log^s x \rfloor + 1$. On the other hand, the number of primes p that satisfy (21) is less than or equal to $\pi(x)$. Therefore

$$B_s(x) \le (\lfloor \log^s x \rfloor + 1) \pi(x). \tag{22}$$

Equations (22) and (6) imply that

$$\lim_{x \to \infty} \frac{B_s(x)}{x} = 0 \qquad (0 < s < 1). \tag{23}$$

b) Let h' be an arbitrary but fixed real number such that $0 \le h' < 1$. Consider the inequality

$$\frac{x}{\log^{1+h'} x}$$

Let h be a fixed real number such that 0 < h < 1 and h > h'. Inequality (24) can be divided in the form

$$\frac{x}{\log^h x}$$

$$\frac{x}{\log^{1+h'} x}$$

The number of multiples of p not exceeding x such that p satisfies inequality (25) is o(x) (see part (a), equation (23)).

Equation (26) implies that $p\left(\left\lfloor \log^{1+h'} x \right\rfloor + 1\right) > x$. Consequently the number of multiples of p not exceeding x is less than $\left\lfloor \log^{1+h'} x \right\rfloor + 1$. On the other hand, the number of primes p that satisfy (26) is less than or equal to $\pi\left(\frac{x}{\log^h x}\right)$. Therefore (see lemma 2.4)

$$B_{1+h'}(x) \le o(x) + \left(\left\lfloor \log^{1+h'} x \right\rfloor + 1 \right) \pi \left(\frac{x}{\log^h x} \right) \le o(x)$$

 $+ \left(1 + \log^{1+h'} x \right) h(x) \frac{x}{\log^{1+h} x} = o(x),$

since h > h' (see above). Therefore if we put s = 1 + h' then

$$\lim_{x \to \infty} \frac{B_s(x)}{x} = 0 \qquad (1 \le s < 2). \tag{27}$$

c) Let n be a positive integer. We shall use mathematical induction. The theorem is true for s=1+h $(0 \le h < 1)$ (see part (b), equation (27)). Suppose that the theorem is true for s=n+h $(0 \le h < 1)$. We shall prove that the theorem is also true for s=n+1+h' $(0 \le h' < 1)$.

Let h' be an arbitrary but fixed real number such that $0 \le h' < 1$. Consider the inequality

$$\frac{x}{\log^{n+1+h'} x}$$

Let h be a fixed real number such that 0 < h < 1 and h > h'. Inequality (28) can be divided in the form

$$\frac{x}{\log^{n+h} x}$$

$$\frac{x}{\log^{n+1+h'} x} (30)$$

The number of multiples of p not exceeding x such that p satisfies inequality (29) is o(x) (inductive hypothesis).

Equation (30) implies that $p\left(\left\lfloor \log^{n+1+h'}x\right\rfloor+1\right)>x$. Consequently the number of multiples of p not exceeding x is less than $\left\lfloor \log^{n+1+h'}x\right\rfloor+1$. On the other hand, the number of primes p that satisfy (30) is less than or equal to $\pi\left(\frac{x}{\log^{n+h}x}\right)$. Therefore (see lemma 2.4)

$$B_{n+1+h'}(x) \leq o(x) + \left(\left[\log^{n+1+h'} x \right] + 1 \right) \pi \left(\frac{x}{\log^{n+h} x} \right) \leq o(x) + \left(1 + \log^{n+1+h'} x \right) h(x) \frac{x}{\log^{n+1+h} x} = o(x),$$

since h > h' (see above). Therefore if we put s = n + 1 + h' then

$$\lim_{x \to \infty} \frac{B_s(x)}{x} = 0 \qquad (n+1 \le s < n+2) \qquad (n \ge 1). \tag{31}$$

Equations (23), (27) and (31) imply equation (20). The theorem is proved.

Theorem 2.6 The following asymptotic formula holds

$$A_s(x) \sim x$$
 $(s > 0).$

Proof. It is an immediate consequence of equations (19) and (20). The theorem is proved.

If the interval has length very little compared with x these theorems are false.

For example, let $\alpha(x)$ be the set of numbers n not exceeding x such that in their prime factorization only appear primes p pertaining to the interval $[0, \log x]$. Note that this interval has length very little $l(x) = \log x$

Let $\beta(x)$ be the set of numbers n not exceeding x such that in their prime factorization appear some prime p pertaining to the interval $(\log x, x]$.

Note that the sets $\alpha(x)$ and $\beta(x)$ are disjoints and $\alpha(x) \cup \beta(x) = A$, where A is the set of positive integers n such that $1 \le n \le \lfloor x \rfloor$.

Let A(x) be the number of elements in the set $\alpha(x)$. Let B(x) be the number of elements in the set $\beta(x)$. Consequently

$$A(x) + B(x) = \lfloor x \rfloor. \tag{32}$$

Theorem 2.7 the formula

$$B(x) = o(x) \tag{33}$$

is false. Consequently the formula

$$A(x) \sim x \tag{34}$$

is also false.

Proof. A positive integer is quadratfrei if either is 1 or is a product of different primes. Let Q(x) be the number of quadratfrei not exceeding x. We have [1, Chapter XVIII]

$$Q(x) = f(x)x,$$

where $f(x) \to \frac{6}{\pi^2}$.

If equation (33) holds then the number $Q_1(x)$ of quadratfrei such that in their prime factorization only appear primes p pertaining to the interval $[0, \log x]$ is

$$Q_1(x) = Q(x) - o(x) = f(x)x - o(x) = f_1(x)x,$$

where $f_1(x) \to \frac{6}{\pi^2}$.

On the other hand, the number of all possible quadratfrei such that in their prime factorization only appear primes p pertaining to the interval $[0, \log x]$ is

$$\binom{\pi(\log x)}{0} + \binom{\pi(\log x)}{1} + \binom{\pi(\log x)}{2} + \dots + \binom{\pi(\log x)}{\pi(\log x)} = 2^{\pi(\log x)}.$$

Consequently we have

$$2^{\pi(\log x)} \ge Q_1(x) = f_1(x)x.$$

That is

$$\pi(\log x)\log 2 \ge f_2(x)\log x$$
,

where $f_2(x) \to 1$.

Therefore

$$\pi(\log x) \ge f_3(x)\log x > h\log x,\tag{35}$$

where $f_3(x) \to \frac{1}{\log 2}$ and $\frac{1}{\log 2} > h > 1$.

Now, equation (35) is an evident contradiction since $\pi(x) \leq x$. Consequently equation (33) is false. The theorem is proved.

ACKNOWLEDGEMENTS. The author is very grateful to Universidad Nacional de Luján.

References

[1] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Fourth Edition. Oxford. 1960.

Received: March, 2012