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Abstract

The existence and uniqueness of the integral solutions of xn+1xn−1−
x2

n = A are examined and some open questions settled.
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1 Introduction

The sequences X = {x1, x2, . . . , xn, . . .} satisfying the nonlinear recurrence

xn+1xn−1 − x2
n = A , (1)

with A �= 0 and initial values x1, x2 specified, have been extensively considered,

together with related linear sequences [1, 4, 5, 6, 11]. In particular, Alperin

in [1] looked for integral sequence solutions of (1), i.e. sequences of integer

numbers, and asked for which integer values of A these sequences are unique,

except for shifts and sign changes. This question is apparently still open, and

its investigation is the main concern of this paper. We recall from [1] two

peculiar properties of the sequences satisfying (1), that is

1) any sequence X satisfying (1) also satisfies a linear recurrence xn+1 =

μxn − xn−1 of the second order, with μ specified by A, x1, and x2, [1,

Proposition 2.1];
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2) a sequence X satisfying (1) is integral if the equations

X2 − μ2 − 4

4
Y 2 = −A, μ even, or X2 − (μ2 − 4)Y 2 = −A, μ odd

have even discriminant; if the discriminant is odd, then necessarily μ is

odd and the equation X2 − (μ2 − 4)Y 2 = −4A has a solution with X

odd [1, Theorem 3.1].

Using the notion of derived sequence, these and other properties may be proved

in a way suitable to tackle the uniqueness problem of integral solutions. The

first derived sequence Y = {y1, y2, . . . , yn, . . .} of a recurring sequence X is

defined, [4], as

yn = x(1)
n =

∣∣∣∣ xn+1 xn

xn xn−1

∣∣∣∣ = xn+1xn−1 − x2
n . (2)

If yn = A, then X satisfies the nonlinear recurrence (1), and obviously Y
satisfies the first-order recurrence yn+1 = yn with initial condition y1 = A.

It is a general property of derived sequences that the first derived sequence

satisfies a linear recurrence if and only if the original sequence satisfies a second-

order recurrence [5, Theorem 1]. It follows that X must satisfy a second-

order linear recurrence, i.e. xn+1 = cxn + dxn−1, with derived sequence yn =

−x2
n+1+cxn+1xn−x2

n (the right-side expression is known as the Simson formula)

satisfying the recurrence yn+1 = −dyn. Then, identifying the coefficients of the

two equations satisfied by yn, we have

d = −1 , c = μ , A = y1 = x2x0 − x2
1 , and x2 = μx1 − x0 .

Consequently, A is represented by the principal quadratic form A = −x2
0 +

μx0x1 −x2
1, of discriminant μ2 −4. These conclusions are summarized in the

following theorem, which may be considered a rephrasing of [1, Theorem 3.1].

Theorem 1. The sequence X defined by equation (1), given the integers A and

μ, is integral if and only if the principal quadratic form Q(x, y) = −x2+μxy−y2

represents A, and the initial values x1 and x2 are integers such that Q(x1, x2) =

A.

A necessary condition for A being properly represented by Q(x, y), of discrim-

inant μ2 − 4, is that this discriminant be a quadratic residue modulo every

prime factor of A [2, 3]. However, necessary and sufficient conditions for A to

be represented by the principal form Q(x, y) are more difficult to establish. An



A note on nonlinear recurrence 1943

idea of the complexity is offered by a sufficient condition that is not difficult

to prove. To this aim, observe that Q(x, y) is equivalent to the forms

Q′(x, y) = −x2 +
μ2 − 4

4
y2 or Q′(x, y) = −x2 + xy +

μ2 − 5

4
y2 ,

if μ is even or odd, respectively.

Theorem 2. Given a square-free A > 0, and fixing μ, a sufficient condition

for A being (properly)represented by Q(x, y) = −x2 + μxy − y2 is that every

prime factor pi of A, or its negative −pi, is represented by Q(x, y), and that

the number of positive primes represented is odd.

Proof. Since the fundamental unit in the quadratic field Q(
√

μ2 − 4) has

field norm 1, the quadratic form Q(x, y) may represent either p, or −p, but

not both. Let A =
∏k

i=1 pi be a product of k distinct primes. Assuming that

the number μ is even, the quadratic form Q(x, y) is equivalent to a reduced

form q(X, Y ) = −X2+ μ2−4
4

Y 2, then every prime pi, or its negative, represented

by Q(x, y) splits in Q(
√

μ2 − 4) as

pi = (−1)ν(i)

(
api

+ bpi

√
μ2 − 4

4

)(
api

− bpi

√
μ2 − 4

4

)
,

where ν(i) is 1 if pi is represented by q(X, Y ) and ν(i) is 0 if −pi is represented

by q(X, Y ). Therefore, A > 0 splits as

A =
∏

i

pi =
∏

i

(−1)ν(i)
∏

i

(
api

+ bpi

√
μ2 − 4

4

)∏
i

(
api

− bpi

√
μ2 − 4

4

)
.

It follows that

A =

(
A0 + B0

√
μ2 − 4

4

)(
A0 − B0

√
μ2 − 4

4

)∏
i

(−1)ν(i) .

Then, A > 0 is represented by q(X, Y ) if and only if
∏

i(−1)ν(i) = −1, i.e. the

number of positive primes represented by q(X, Y ) is odd. The same argument

holds for odd μ with ap replaced by ap − bp

2
and bp by bp

2
, and the conclusion

is the same.

�
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2 Uniqueness

Given A and μ, let (x1, x2) be a proper solution of A = −x2 + μxy − y2,

then we have four sequences (two if x1 = x2) satisfying the recurrence xn+1 =

axn − xn−1, which correspond to the initial conditions

(x1, x2), (−x1,−x2) , (x2, x1), (−x2,−x1) .

This is because μ =
x2
1+x2

2+A

x1x2
is a symmetric function of x1 and x2 that remains

invariant when the signs of both variables are changed. Furthermore, given A,

if (x1, x2) is a solution of A = −x2 + μxy − y2, then (−x1, x2) is a solution of

A = −x2 − μxy − y2. Therefore, for each sequence satisfying (1) with initial

condition (x1, x2), there are eight sequences (or four if |x1| = |x2|) satisfying

the same recurrence. Since, for any given |A| ≥ 3, a solution certainly exists

which corresponds to μ = A + 2, and x1 = x2 = 1, uniqueness is defined as

follows.

Definition 1. An integer A uniquely identifies a class of four sequences sat-

isfying (1), if it specifies a unique absolute value |μ| = |A + 2|.
Equivalently, A uniquely identifies a class of four sequences satisfying (1) if it

is represented by a quadratic form of the type −x2 +μxy− y2, with unique |a|.
Let N(A) be the number of quadratic forms −x2 + μxy − y2 that represent A.

Given |A| ≥ 3, the coefficient μ = A + 2, that corresponds to the initial

values x1 = x2 = 1, certainly identifies a sequence satisfying (1). Thus, a

representation of A is always given by (1, 1), and we have at least four sequences

that represent A

. . . , A + 1, 1, 1, A + 1, . . .

. . . ,−A − 3, −1, 1, A + 3, . . .

. . . , A + 3, 1, −1, −A − 3, . . .

. . . ,−A − 1, −1, −1, −A − 1, . . .

. (3)

In the search for A’s that admit a unique representation, we should ascertain

that the only pairs representing A are pairs of consecutive numbers in some

of these four sequences. Therefore, besides the sequences (3) related to the

quadratic form −x2 + (A + 2)xy − y2, we must look for any other quadratic

form −x2 + μxy − y2 representing A. In this last case, μ must satisfy the

necessary condition that μ2 − 4 is a quadratic residue for A. This quadratic

residuosity condition is also a sufficient condition if the class number of the field

Q(
√

μ2 − 4) is 1, otherwise, if the class number is greater than 1, we have more
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that one class (or genus) of quadratic forms, then further conditions should be

satisfied in order for A to be represented by a principal form. This problem is

already difficult when A = p is a prime [3]; however, for some particular values

of A we have definitive answers:

A = 1: there is a unique μ = 3 such that −x2 + μxy − y2 represents 1 as

proved in [1].

A = −1: the number of μ’s is clearly infinite: the reason, already given in [1],

is that the Pell equation x2 − Dy2 = 1, D > 1, is always solvable, thus

−1 = −x2 + μ xy − y2 is solvable for any μ.

A = ±2: it will be seen below that there is no μ such that −x2 + μxy − y2

represents ±2.

|A| > 1: the number of μ’s such that the equation A = −x2 + μ xy − y2 is

solvable is finite as shown below.

In the proof of the following theorems, we need the continued fraction expan-

sions of
√

μ2 − 4 and some related properties [7, pages 262-265]:

1. odd μ √
μ2 − 4 = [μ − 1, 1,

μ − 3

2
, 2,

μ − 3

2
, 1, 2μ − 2] ,

2. even μ √
μ2 − 4 = [μ − 1, 1,

μ

2
− 2, 1, 2(μ − 1)] .

Let pn

qn
denote a convergent, and define the sequence Δn = p2

n−(μ2−4)q2
n. If L

is the period of the continued fraction, then ΔL−1 = (−1)L and x = pL−1, y =

qL−1 is the minimal solution of the Pell equation x2− (μ2−4)y2 = (−1)L. The

negative Pell equation has no solution when L is even. In our case, with the

exception of μ = 3 when L = 1, L is always even, then −x2 +μxy−y2 = 1 has

no solutions if |μ| > 3. Since, for both even and odd μ, the periods are even,

the sequences Δn associated to the convergent pn

qn
are

4,−μ + 2, 4,−2μ + 5, 4,−2μ + 5 and 4,−2μ + 5, 1,−2μ + 5 ,

respectively. These sequences give all numbers δ in absolute value less than√
μ2 − 4 such that x2 − (μ2 −4)y2 = δ is solvable [7, Theorem 8.2]. Therefore,

their negatives are the only numbers of absolute value less than
√

μ2 − 4 which

are representable by −x2 + μxy − y2, that is the numbers −1, −4 , μ − 2 and

2μ − 5. It follows that A = ±2 cannot be represented by any quadratic form.
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Theorem 3. If an integer A is represented by the quadratic form −x2 +μxy−
y2, the absolute value of μ is bounded as |μ| ≤ |A|+2; consequently, the number

of quadratic forms −x2 + μxy − y2 that represent a given A is finite.

Proof. Given A, then it is certainly represented by −x2 + μxy − y2 with

μ = A + 2. A solution is x = 1, y = 1, the discriminant is μ2 − 4 = A(A + 2),

A > 0, A < −2, and the prime factors of A ramify in the quadratic field

Q(
√

A(A + 2)).

From the discussion preceding the theorem, for any given μ, the only repre-

sentable numbers A of absolute value less than μ are −1, −4 , μ−2 and 2μ−5.

It follows that, if μ > 0, the only representable number A is μ− 2, besides the

three numbers 1, 3, 5 which are of the form 2μ − 5 for μ = 3, 4, 5 respectively.

Whereas, if μ < 0 there are no representable numbers less than |μ|. For a

given μ, if A < μ then only the number μ − 2 is representable. It follows that

for a given A the absolute value of the number μ must be smaller than |A|+2,

then the number of μ’s, and thus of quadratic forms, representing A is finite.

�

The number N(A) of quadratic forms −x2 + μxy − y2 that represent A is

greater than or equal 1, and the following theorems show that it is frequently

greater than 1.

Theorem 4. If the integer A is not of the form p − 1, with p prime, there is

a quadratic form −x2 + μxy − y2 with μ �= A + 2 that represents A with y = 1

and x a root of the quadratic equation −x2 + μx − 1 = A.

Proof. Writing the equation −x2 +μx−1 = A in the form x(μ−x) = A+1,

since A + 1 is not prime there is at least a factorization A + 1 = α1α2 with

both α1 and α2 greater than 1. Therefore the solution x = α1 and μ = α2 +α1

settles the question. Actually A is represented as (α1, 1) by the form with

μ = α2 + α1.

�

Theorem 5. If A = p − 1, where p is a prime of the form 4k + 1 or 2(2h +

1)2k + 1, there exists at least a second representation (2, 2) with μ = A/4 + 2,

and (2h + 1, 2h + 1) with μ = 2(2h + 1)(k + 1).

Proof. If A = p − 1 = 4k, writing the equation −x2 + 2μx − 4 = 4k in the

form x(2μ − x) = 4(k + 1), then taking x = 2 and μ = k + 2 = A
4

+ 2 we have

a representation.
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If A = p−1 = 2(2h+1)2k, writing the equation −x2 +(2h+1)μx−(2h+1)2 =

2(2h+1)2k in the form x((2h+1)μ−x) = (2h+1)2(2k +1), we certainly have

the solution x = 2h + 1 and μ = 2(2h + 1)(k + 1).

�

3 Conclusions

In summary, concerning uniqueness, Theorems 4 and 5 only leave open some

cases when A = p−1 and p is congruent 3 modulo 4. In this case, an exhaustive

analysis, considering all primes p = A + 1 = 3 mod 4 less than 200, showed

that N(A) ≥ 2 for the following values of A

18, 66, 126, 138, 150, 162, 198 ,

and N(A) = 1 for the following values of A

6, 10, 22, 30, 42, 46, 58, 70, 78, 82, 102, 106, 130, 166, 178, 190 ,

this second list should be completed with the addition of A = 1.

Obviously, one of the two lists certainly extends to infinity; however, it is likely

that both lists are unlimited. Curiously, the second list includes every A < 200

such that A+1 is a Sophie Germain prime qsg. This observation together with

the fact that every checked (randomly chosen) qsg had N(qsg +1) = 1, supports

a guess that the second list includes every Sophie Germain prime.
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