A Note on the Nonlinear Recurrence

$$x_{n+1}x_{n-1} - x_n^2 = A$$

Michele Elia

Politecnico di Torino C.so Duca degli Abruzzi 24 I - 10129 Torino, Italy elia@polito.it

Abstract

The existence and uniqueness of the integral solutions of $x_{n+1}x_{n-1} - x_n^2 = A$ are examined and some open questions settled.

Mathematics Subject Classification: 39A99, 12F05, 11B39

1 Introduction

The sequences $\mathcal{X} = \{x_1, x_2, \dots, x_n, \dots\}$ satisfying the nonlinear recurrence

$$x_{n+1}x_{n-1} - x_n^2 = A \quad , \tag{1}$$

with $A \neq 0$ and initial values x_1, x_2 specified, have been extensively considered, together with related linear sequences [1, 4, 5, 6, 11]. In particular, Alperin in [1] looked for integral sequence solutions of (1), i.e. sequences of integer numbers, and asked for which integer values of A these sequences are unique, except for shifts and sign changes. This question is apparently still open, and its investigation is the main concern of this paper. We recall from [1] two peculiar properties of the sequences satisfying (1), that is

1) any sequence \mathcal{X} satisfying (1) also satisfies a linear recurrence $x_{n+1} = \mu x_n - x_{n-1}$ of the second order, with μ specified by A, x_1 , and x_2 , [1, Proposition 2.1];

2) a sequence \mathcal{X} satisfying (1) is integral if the equations

$$X^2 - \frac{\mu^2 - 4}{4}Y^2 = -A$$
, μ even, or $X^2 - (\mu^2 - 4)Y^2 = -A$, μ odd

have even discriminant; if the discriminant is odd, then necessarily μ is odd and the equation $X^2 - (\mu^2 - 4)Y^2 = -4A$ has a solution with X odd [1, Theorem 3.1].

Using the notion of derived sequence, these and other properties may be proved in a way suitable to tackle the uniqueness problem of integral solutions. The first derived sequence $\mathcal{Y} = \{y_1, y_2, \dots, y_n, \dots\}$ of a recurring sequence \mathcal{X} is defined, [4], as

$$y_n = x_n^{(1)} = \begin{vmatrix} x_{n+1} & x_n \\ x_n & x_{n-1} \end{vmatrix} = x_{n+1} x_{n-1} - x_n^2 .$$
 (2)

If $y_n = A$, then \mathcal{X} satisfies the nonlinear recurrence (1), and obviously \mathcal{Y} satisfies the first-order recurrence $y_{n+1} = y_n$ with initial condition $y_1 = A$. It is a general property of derived sequences that the first derived sequence satisfies a linear recurrence if and only if the original sequence satisfies a second-order recurrence [5, Theorem 1]. It follows that \mathcal{X} must satisfy a second-order linear recurrence, i.e. $x_{n+1} = cx_n + dx_{n-1}$, with derived sequence $y_n = -x_{n+1}^2 + cx_{n+1}x_n - x_n^2$ (the right-side expression is known as the Simson formula) satisfying the recurrence $y_{n+1} = -dy_n$. Then, identifying the coefficients of the two equations satisfied by y_n , we have

$$d = -1$$
, $c = \mu$, $A = y_1 = x_2 x_0 - x_1^2$, and $x_2 = \mu x_1 - x_0$.

Consequently, A is represented by the principal quadratic form $A = -x_0^2 + \mu x_0 x_1 - x_1^2$, of discriminant $\mu^2 - 4$. These conclusions are summarized in the following theorem, which may be considered a rephrasing of [1, Theorem 3.1].

Theorem 1. The sequence \mathcal{X} defined by equation (1), given the integers A and μ , is integral if and only if the principal quadratic form $Q(x,y) = -x^2 + \mu xy - y^2$ represents A, and the initial values x_1 and x_2 are integers such that $Q(x_1, x_2) = A$.

A necessary condition for A being properly represented by Q(x, y), of discriminant $\mu^2 - 4$, is that this discriminant be a quadratic residue modulo every prime factor of A [2, 3]. However, necessary and sufficient conditions for A to be represented by the principal form Q(x, y) are more difficult to establish. An

idea of the complexity is offered by a sufficient condition that is not difficult to prove. To this aim, observe that Q(x, y) is equivalent to the forms

$$Q'(x,y) = -x^2 + \frac{\mu^2 - 4}{4}y^2$$
 or $Q'(x,y) = -x^2 + xy + \frac{\mu^2 - 5}{4}y^2$,

if μ is even or odd, respectively.

Theorem 2. Given a square-free A > 0, and fixing μ , a sufficient condition for A being (properly)represented by $Q(x,y) = -x^2 + \mu xy - y^2$ is that every prime factor p_i of A, or its negative $-p_i$, is represented by Q(x,y), and that the number of positive primes represented is odd.

PROOF. Since the fundamental unit in the quadratic field $\mathbb{Q}(\sqrt{\mu^2-4})$ has field norm 1, the quadratic form Q(x,y) may represent either p, or -p, but not both. Let $A=\prod_{i=1}^k p_i$ be a product of k distinct primes. Assuming that the number μ is even, the quadratic form Q(x,y) is equivalent to a reduced form $q(X,Y)=-X^2+\frac{\mu^2-4}{4}Y^2$, then every prime p_i , or its negative, represented by Q(x,y) splits in $\mathbb{Q}(\sqrt{\mu^2-4})$ as

$$p_i = (-1)^{\nu(i)} \left(a_{p_i} + b_{p_i} \sqrt{\frac{\mu^2 - 4}{4}} \right) \left(a_{p_i} - b_{p_i} \sqrt{\frac{\mu^2 - 4}{4}} \right) ,$$

where $\nu(i)$ is 1 if p_i is represented by q(X,Y) and $\nu(i)$ is 0 if $-p_i$ is represented by q(X,Y). Therefore, A>0 splits as

$$A = \prod_{i} p_{i} = \prod_{i} (-1)^{\nu(i)} \prod_{i} \left(a_{p_{i}} + b_{p_{i}} \sqrt{\frac{\mu^{2} - 4}{4}} \right) \prod_{i} \left(a_{p_{i}} - b_{p_{i}} \sqrt{\frac{\mu^{2} - 4}{4}} \right) .$$

It follows that

$$A = \left(A_0 + B_0 \sqrt{\frac{\mu^2 - 4}{4}}\right) \left(A_0 - B_0 \sqrt{\frac{\mu^2 - 4}{4}}\right) \prod_i (-1)^{\nu(i)}.$$

Then, A > 0 is represented by q(X,Y) if and only if $\prod_i (-1)^{\nu(i)} = -1$, i.e. the number of positive primes represented by q(X,Y) is odd. The same argument holds for odd μ with a_p replaced by $a_p - \frac{b_p}{2}$ and b_p by $\frac{b_p}{2}$, and the conclusion is the same.

2 Uniqueness

Given A and μ , let (x_1, x_2) be a proper solution of $A = -x^2 + \mu xy - y^2$, then we have four sequences (two if $x_1 = x_2$) satisfying the recurrence $x_{n+1} = ax_n - x_{n-1}$, which correspond to the initial conditions

$$(x_1, x_2), (-x_1, -x_2), (x_2, x_1), (-x_2, -x_1)$$
.

This is because $\mu = \frac{x_1^2 + x_2^2 + A}{x_1 x_2}$ is a symmetric function of x_1 and x_2 that remains invariant when the signs of both variables are changed. Furthermore, given A, if (x_1, x_2) is a solution of $A = -x^2 + \mu xy - y^2$, then $(-x_1, x_2)$ is a solution of $A = -x^2 - \mu xy - y^2$. Therefore, for each sequence satisfying (1) with initial condition (x_1, x_2) , there are eight sequences (or four if $|x_1| = |x_2|$) satisfying the same recurrence. Since, for any given $|A| \geq 3$, a solution certainly exists which corresponds to $\mu = A + 2$, and $x_1 = x_2 = 1$, uniqueness is defined as follows.

Definition 1. An integer A uniquely identifies a class of four sequences satisfying (1), if it specifies a unique absolute value $|\mu| = |A+2|$. Equivalently, A uniquely identifies a class of four sequences satisfying (1) if it is represented by a quadratic form of the type $-x^2 + \mu xy - y^2$, with unique |a|.

Let N(A) be the number of quadratic forms $-x^2 + \mu xy - y^2$ that represent A. Given $|A| \geq 3$, the coefficient $\mu = A + 2$, that corresponds to the initial values $x_1 = x_2 = 1$, certainly identifies a sequence satisfying (1). Thus, a representation of A is always given by (1,1), and we have at least four sequences that represent A

$$\dots, A+1, \quad 1, \quad 1, \quad A+1, \dots \\
\dots, -A-3, \quad -1, \quad 1, \quad A+3, \dots \\
\dots, A+3, \quad 1, \quad -1, \quad -A-3, \dots \\
\dots, -A-1, \quad -1, \quad -1, \quad -A-1, \dots$$
(3)

In the search for A's that admit a unique representation, we should ascertain that the only pairs representing A are pairs of consecutive numbers in some of these four sequences. Therefore, besides the sequences (3) related to the quadratic form $-x^2 + (A+2)xy - y^2$, we must look for any other quadratic form $-x^2 + \mu xy - y^2$ representing A. In this last case, μ must satisfy the necessary condition that $\mu^2 - 4$ is a quadratic residue for A. This quadratic residuosity condition is also a sufficient condition if the class number of the field $\mathbb{Q}(\sqrt{\mu^2 - 4})$ is 1, otherwise, if the class number is greater than 1, we have more

that one class (or genus) of quadratic forms, then further conditions should be satisfied in order for A to be represented by a principal form. This problem is already difficult when A = p is a prime [3]; however, for some particular values of A we have definitive answers:

- A=1: there is a unique $\mu=3$ such that $-x^2+\mu xy-y^2$ represents 1 as proved in [1].
- A=-1: the number of μ 's is clearly infinite: the reason, already given in [1], is that the Pell equation $x^2-Dy^2=1,\ D>1$, is always solvable, thus $-1=-x^2+\mu\ xy-y^2$ is solvable for any μ .
- $A=\pm 2$: it will be seen below that there is no μ such that $-x^2+\mu xy-y^2$ represents ± 2 .
- |A| > 1: the number of μ 's such that the equation $A = -x^2 + \mu xy y^2$ is solvable is finite as shown below.

In the proof of the following theorems, we need the continued fraction expansions of $\sqrt{\mu^2 - 4}$ and some related properties [7, pages 262-265]:

1. odd
$$\mu$$

$$\sqrt{\mu^2-4}=[\mu-1, \ \ \overline{1,\frac{\mu-3}{2},2,\frac{\mu-3}{2},1,2\mu-2}] \ ,$$

2. even
$$\mu$$

$$\sqrt{\mu^2 - 4} = [\mu - 1, \frac{\mu}{1, \frac{\mu}{2} - 2, 1, 2(\mu - 1)}].$$

Let $\frac{p_n}{q_n}$ denote a convergent, and define the sequence $\Delta_n = p_n^2 - (\mu^2 - 4)q_n^2$. If L is the period of the continued fraction, then $\Delta_{L-1} = (-1)^L$ and $x = p_{L-1}$, $y = q_{L-1}$ is the minimal solution of the Pell equation $x^2 - (\mu^2 - 4)y^2 = (-1)^L$. The negative Pell equation has no solution when L is even. In our case, with the exception of $\mu = 3$ when L = 1, L is always even, then $-x^2 + \mu xy - y^2 = 1$ has no solutions if $|\mu| > 3$. Since, for both even and odd μ , the periods are even, the sequences Δ_n associated to the convergent $\frac{p_n}{q_n}$ are

$$4, -\mu + 2, 4, -2\mu + 5, 4, -2\mu + 5$$
 and $4, -2\mu + 5, 1, -2\mu + 5$,

respectively. These sequences give all numbers δ in absolute value less than $\sqrt{\mu^2 - 4}$ such that $x^2 - (\mu^2 - 4)y^2 = \delta$ is solvable [7, Theorem 8.2]. Therefore, their negatives are the only numbers of absolute value less than $\sqrt{\mu^2 - 4}$ which are representable by $-x^2 + \mu xy - y^2$, that is the numbers -1, -4, $\mu - 2$ and $2\mu - 5$. It follows that $A = \pm 2$ cannot be represented by any quadratic form.

Theorem 3. If an integer A is represented by the quadratic form $-x^2 + \mu xy - y^2$, the absolute value of μ is bounded as $|\mu| \leq |A| + 2$; consequently, the number of quadratic forms $-x^2 + \mu xy - y^2$ that represent a given A is finite.

PROOF. Given A, then it is certainly represented by $-x^2 + \mu xy - y^2$ with $\mu = A + 2$. A solution is x = 1, y = 1, the discriminant is $\mu^2 - 4 = A(A + 2)$, A > 0, A < -2, and the prime factors of A ramify in the quadratic field $\mathbb{Q}(\sqrt{A(A+2)})$.

From the discussion preceding the theorem, for any given μ , the only representable numbers A of absolute value less than μ are -1, -4, $\mu-2$ and $2\mu-5$. It follows that, if $\mu>0$, the only representable number A is $\mu-2$, besides the three numbers 1, 3, 5 which are of the form $2\mu-5$ for $\mu=3,4,5$ respectively. Whereas, if $\mu<0$ there are no representable numbers less than $|\mu|$. For a given μ , if $A<\mu$ then only the number $\mu-2$ is representable. It follows that for a given A the absolute value of the number μ must be smaller than |A|+2, then the number of μ 's, and thus of quadratic forms, representing A is finite.

The number N(A) of quadratic forms $-x^2 + \mu xy - y^2$ that represent A is greater than or equal 1, and the following theorems show that it is frequently greater than 1.

Theorem 4. If the integer A is not of the form p-1, with p prime, there is a quadratic form $-x^2 + \mu xy - y^2$ with $\mu \neq A+2$ that represents A with y=1 and x a root of the quadratic equation $-x^2 + \mu x - 1 = A$.

PROOF. Writing the equation $-x^2 + \mu x - 1 = A$ in the form $x(\mu - x) = A + 1$, since A + 1 is not prime there is at least a factorization $A + 1 = \alpha_1 \alpha_2$ with both α_1 and α_2 greater than 1. Therefore the solution $x = \alpha_1$ and $\mu = \alpha_2 + \alpha_1$ settles the question. Actually A is represented as $(\alpha_1, 1)$ by the form with $\mu = \alpha_2 + \alpha_1$.

Theorem 5. If A = p - 1, where p is a prime of the form 4k + 1 or $2(2h + 1)^2k + 1$, there exists at least a second representation (2,2) with $\mu = A/4 + 2$, and (2h + 1, 2h + 1) with $\mu = 2(2h + 1)(k + 1)$.

PROOF. If A = p - 1 = 4k, writing the equation $-x^2 + 2\mu x - 4 = 4k$ in the form $x(2\mu - x) = 4(k+1)$, then taking x = 2 and $\mu = k + 2 = \frac{A}{4} + 2$ we have a representation.

If $A = p - 1 = 2(2h + 1)^2 k$, writing the equation $-x^2 + (2h + 1)\mu x - (2h + 1)^2 = 2(2h + 1)^2 k$ in the form $x((2h + 1)\mu - x) = (2h + 1)^2 (2k + 1)$, we certainly have the solution x = 2h + 1 and $\mu = 2(2h + 1)(k + 1)$.

3 Conclusions

In summary, concerning uniqueness, Theorems 4 and 5 only leave open some cases when A = p-1 and p is congruent 3 modulo 4. In this case, an exhaustive analysis, considering all primes $p = A + 1 = 3 \mod 4$ less than 200, showed that $N(A) \geq 2$ for the following values of A

$$18, 66, 126, 138, 150, 162, 198$$
,

and N(A) = 1 for the following values of A

$$6, 10, 22, 30, 42, 46, 58, 70, 78, 82, 102, 106, 130, 166, 178, 190$$

this second list should be completed with the addition of A = 1.

Obviously, one of the two lists certainly extends to infinity; however, it is likely that both lists are unlimited. Curiously, the second list includes every A < 200 such that A+1 is a Sophie Germain prime q_{sg} . This observation together with the fact that every checked (randomly chosen) q_{sg} had $N(q_{sg}+1)=1$, supports a guess that the second list includes every Sophie Germain prime.

References

- [1] R. Alperin, Integer sequences generated by $x_{n+1} = \frac{x_n^2 + A}{x_{n-1}}$, Fibonacci Quart., vol. 49, November 2011, n.4, 362-365.
- [2] D.A. Buell, Binary Quadratic Forms, Springer-Verlag, New York, 1989.
- [3] D.A., Cox, Primes of the Form $x^2 + ny^2$, Wiley, New York, 1989.
- [4] L.E. Dickson, History of the Theory of Numbers, Dover, New York, 1971.
- [5] M. Elia, Derived sequences, the Tribonacci recurrence and cubic forms, *Fibonacci Quart.*, 39 (2001), no. 2, 107-115.
- [6] S. Fomin, A. Zelevinsky, The Laurent phenomenon, Adv. in Appl. Math., 28 (2002), no. 2, 119-144.

- [7] Hua, L. K., Introduction to Number Theory, Springer, New York, 1982.
- [8] Mollin, R.A., Algebraic Number Theory, Chapman & Hall, Boca Raton, 1999.
- [9] W. Sierpinsky, *Elementary Theory of Numbers*, North Holland, New York, 1988.
- [10] S. Vajda, Fibonacci & Lucas Numbers, and the Golden Section, Ellis Horwood, Chichester (UK), 1989.
- [11] B.A. Venkov, *Elementary Number Theory*, Wolters-Noordhoff, Groningen, 1970.

Received: March, 2012