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Abstract

The existence and uniqueness of the integral solutions of 12,1 —
12 = A are examined and some open questions settled.
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1 Introduction
The sequences X = {x1,xs,...,%,,...} satisfying the nonlinear recurrence

Tnp1Tn 1 —Th = A, (1)
with A # 0 and initial values x1, x5 specified, have been extensively considered,
together with related linear sequences [1, 4, 5, 6, 11]. In particular, Alperin
in [1] looked for integral sequence solutions of (1), i.e. sequences of integer
numbers, and asked for which integer values of A these sequences are unique,
except for shifts and sign changes. This question is apparently still open, and
its investigation is the main concern of this paper. We recall from [1] two
peculiar properties of the sequences satisfying (1), that is

1) any sequence X satisfying (1) also satisfies a linear recurrence x,.; =
pux, — xn—q of the second order, with u specified by A, xq, and x9, [1,
Proposition 2.1];
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2) a sequence X satisfying (1) is integral if the equations

p—4

X? -
4

Y2=—A, pu even, or X*— (u?—4)Y?=—-A, pu odd

have even discriminant; if the discriminant is odd, then necessarily p is
odd and the equation X? — (u? — 4)Y? = —4A has a solution with X
odd [1, Theorem 3.1].

Using the notion of derived sequence, these and other properties may be proved
in a way suitable to tackle the uniqueness problem of integral solutions. The

first derived sequence Y = {y1,y2,...,Yn,...} of a recurring sequence X is
defined, [4], as
Yp = xgll) — Tn+1 Tn = Tpi1Tn_1 — xi ) (2>
Tn Tn—1

If y, = A, then X satisfies the nonlinear recurrence (1), and obviously )
satisfies the first-order recurrence y,.1 = ¥, with initial condition y; = A.
It is a general property of derived sequences that the first derived sequence
satisfies a linear recurrence if and only if the original sequence satisfies a second-
order recurrence [5, Theorem 1]. It follows that X must satisfy a second-
order linear recurrence, i.e. x,y; = cx, + dx,_1, with derived sequence ¥, =
—12 | +CLpi1 T, — (the right-side expression is known as the Simson formula)
satisfying the recurrence y,,.1 = —dy,. Then, identifying the coefficients of the
two equations satisfied by y,,, we have

d=-1, c=pu , A:ylzxgxo—x% , and o = pury — T -

Consequently, A is represented by the principal quadratic form A = —x2 +
pzory — o2, of discriminant p? — 4. These conclusions are summarized in the
following theorem, which may be considered a rephrasing of [1, Theorem 3.1].

Theorem 1. The sequence X defined by equation (1), given the integers A and
u, is integral if and only if the principal quadratic form Q(x,y) = —x*+puxy—1y>
represents A, and the initial values x1 and x5 are integers such that Q (1, xe) =

A.

A necessary condition for A being properly represented by Q(x,y), of discrim-
inant p? — 4, is that this discriminant be a quadratic residue modulo every
prime factor of A [2, 3]. However, necessary and sufficient conditions for A to
be represented by the principal form Q(z,y) are more difficult to establish. An
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idea of the complexity is offered by a sufficient condition that is not difficult
to prove. To this aim, observe that Q(x,y) is equivalent to the forms

p=5

2 N2_42 y
4 )

Qry) =2+ ==y or Qz,y)=—2"+ay+

if 14 is even or odd, respectively.

Theorem 2. Given a square-free A > 0, and fixing u, a sufficient condition
for A being (properly)represented by Q(x,y) = —x? + pxy — y* is that every
prime factor p; of A, or its negative —p;, is represented by Q(x,y), and that
the number of positive primes represented is odd.

PROOF. Since the fundamental unit in the quadratic field Q(y/p? —4) has
field norm 1, the quadratic form Q(x,y) may represent either p, or —p, but
not both. Let A = Hle p; be a product of k distinct primes. Assuming that
the number p is even, the quadratic form Q(x,y) is equivalent to a reduced
form ¢(X,Y) = - X 2+#Y2, then every prime p;, or its negative, represented

by Q(x,y) splits in Q(1/u? —4) as

v(i /'62_4 ,LL2—4
pi:(_l) @) (a’pi+bi A ) (am_bpi A >

where v(7) is 1 if p; is represented by ¢(X,Y') and v(i) is 0 if —p; is represented
by ¢(X,Y). Therefore, A > 0 splits as

' 2_ 4 2_ 4
A= Hpi = H(_l)”(l) H <api + bpi . 4 ) H (am - bpi & 4 )

i

It follows that

_ p?—4 p?—4 0,
A_<A0+BO 4><A0—BO . ]:[(—1)

Then, A > 0 is represented by ¢(X,Y) if and only if [[,(—1)"® = —1, i.e. the
number of positive primes represented by ¢(X,Y’) is odd. The same argument

holds for odd p with a, replaced by a, — %’ and b, by %”, and the conclusion

is the same.
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2 Uniqueness

Given A and pu, let (z1,22) be a proper solution of A = —2? + ury — 32,
then we have four sequences (two if x; = x5) satisfying the recurrence z,,,1 =
ax, — T,_1, which correspond to the initial conditions

(21, 22), (=21, —72) , (T2, 71), (29, —71)

z3+z3+A
xr1x2
invariant when the signs of both variables are changed. Furthermore, given A,

This is because pu = is a symmetric function of xy and x5 that remains
if (z1,72) is a solution of A = —2% + pxry — y?, then (—xy,13) is a solution of
A = —z% — pxy — y?. Therefore, for each sequence satisfying (1) with initial
condition (z1,xs), there are eight sequences (or four if |z1| = |xs|) satisfying
the same recurrence. Since, for any given |A| > 3, a solution certainly exists
which corresponds to u = A+ 2, and x; = x5 = 1, uniqueness is defined as
follows.

Definition 1. An integer A uniquely identifies a class of four sequences sat-
isfying (1), if it specifies a unique absolute value |u| = |A + 2|.

FEquivalently, A uniquely identifies a class of four sequences satisfying (1) if it
is represented by a quadratic form of the type —x? + uxy — y?, with unique |al.

Let N(A) be the number of quadratic forms —z? + pzy — y* that represent A.
Given |A| > 3, the coefficient © = A + 2, that corresponds to the initial
values x; = 9 = 1, certainly identifies a sequence satisfying (1). Thus, a
representation of A is always given by (1, 1), and we have at least four sequences
that represent A

LA+, 1,1, A4
L —A-=3, -1, 1, A+3,...
L A+3, 1, -1, —A-3,...
L —A—1, -1, =1, —A—1,...

(3)

In the search for A’s that admit a unique representation, we should ascertain
that the only pairs representing A are pairs of consecutive numbers in some
of these four sequences. Therefore, besides the sequences (3) related to the
quadratic form —a? + (A + 2)zy — y?, we must look for any other quadratic
form —2? + pwy — y? representing A. In this last case, u must satisfy the
necessary condition that p? — 4 is a quadratic residue for A. This quadratic
residuosity condition is also a sufficient condition if the class number of the field
Q(y/p? — 4) is 1, otherwise, if the class number is greater than 1, we have more
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that one class (or genus) of quadratic forms, then further conditions should be
satisfied in order for A to be represented by a principal form. This problem is
already difficult when A = p is a prime [3]; however, for some particular values
of A we have definitive answers:

A = 1: there is a unique g = 3 such that —a? + pzy — y* represents 1 as
proved in [1].

A = —1: the number of y’s is clearly infinite: the reason, already given in [1],
is that the Pell equation 22> — Dy? = 1, D > 1, is always solvable, thus
—1 = —2% 4 p 2y — y? is solvable for any pu.

A = £2: it will be seen below that there is no p such that —2? + uxy — 32
represents £2.

|A| > 1: the number of u’s such that the equation A = —z% + pu zy — y? is
solvable is finite as shown below.

In the proof of the following theorems, we need the continued fraction expan-
sions of \/u? — 4 and some related properties [7, pages 262-265]:

1. odd u

-3 -3
\//'L2_4:[:U’_17 17/1/ 72)/1/ ,1,2/L—2] )

2. even [

\,/1/2—4:[/1—1, Lg—Q,LQ(M_l)]

Let 2= denote a convergent, and define the sequence A, = pj, — (u* —4)q;. If L
is the period of the continued fraction, then Ay = (—=1)f and z =p;_1, y =
qr—1 is the minimal solution of the Pell equation 2?2 — (u* —4)y* = (—1)~. The
negative Pell equation has no solution when L is even. In our case, with the
exception of y = 3 when L = 1, L is always even, then —2? + uxy —y?> = 1 has
no solutions if |u| > 3. Since, for both even and odd p, the periods are even,
the sequences A,, associated to the convergent 2—: are

4, —p+2,4, -2pu+54,—2u+5 and 4, -2u+5,1,-2u+5 ,

respectively. These sequences give all numbers ¢ in absolute value less than
\/ 112 — 4 such that 22 — (u? — 4)y? = § is solvable [7, Theorem 8.2]. Therefore,
their negatives are the only numbers of absolute value less than /u? — 4 which
are representable by —2? + uxy — y?, that is the numbers —1, —4 , y — 2 and
2u — 5. It follows that A = £2 cannot be represented by any quadratic form.
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Theorem 3. If an integer A is represented by the quadratic form —x?+ paxy —
y?, the absolute value of ju is bounded as || < |A|+2; consequently, the number
of quadratic forms —x? + uxy — y? that represent a given A is finite.

PROOF. Given A, then it is certainly represented by —a? + uxy — y? with
u=A+2. A solution is x = 1,y = 1, the discriminant is p? — 4 = A(A + 2),
A > 0,A < —2, and the prime factors of A ramify in the quadratic field
QAR +2)).

From the discussion preceding the theorem, for any given pu, the only repre-
sentable numbers A of absolute value less than y are —1, —4 , 4 —2 and 2u—5.
It follows that, if u > 0, the only representable number A is pu — 2, besides the
three numbers 1, 3,5 which are of the form 2y — 5 for u = 3,4, 5 respectively.
Whereas, if ;1 < 0 there are no representable numbers less than |u|. For a
given p, if A < p then only the number p — 2 is representable. It follows that
for a given A the absolute value of the number p must be smaller than |A| + 2,
then the number of u’s, and thus of quadratic forms, representing A is finite.

O

The number N(A) of quadratic forms —x? + puzy — y* that represent A is
greater than or equal 1, and the following theorems show that it is frequently
greater than 1.

Theorem 4. If the integer A is not of the form p — 1, with p prime, there is
a quadratic form —a® + pxy — y? with p # A+ 2 that represents A with y = 1
and x a root of the quadratic equation —x* + pr — 1 = A.

PROOF. Writing the equation —z + pz —1 = A in the form z(u—2z) = A+1,
since A 4+ 1 is not prime there is at least a factorization A + 1 = ajay with
both oy and ay greater than 1. Therefore the solution © = oy and pu = as + a3
settles the question. Actually A is represented as («y,1) by the form with
n =9+ Q.

O

Theorem 5. If A =p — 1, where p is a prime of the form 4k + 1 or 2(2h +
1)%k + 1, there exists at least a second representation (2,2) with p = A/4+ 2,
and (2h 4+ 1,2h + 1) with pp =2(2h + 1)(k + 1).

PROOF. If A = p — 1 = 4k, writing the equation —2? + 2ux — 4 = 4k in the
form z(2u — ) = 4(k + 1), then taking z = 2 and = k+ 2 = 4 + 2 we have
a representation.
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If A=p—1=2(2h+1)%k, writing the equation —x?+ (2h+ 1)z — (2h+1)* =
2(2h+1)%k in the form z((2h+1)u—x) = (2h+1)*(2k + 1), we certainly have
the solution z = 2h + 1 and pu = 2(2h + 1)(k + 1).

3 Conclusions

In summary, concerning uniqueness, Theorems 4 and 5 only leave open some
cases when A = p—1 and p is congruent 3 modulo 4. In this case, an exhaustive
analysis, considering all primes p = A 4+ 1 = 3 mod 4 less than 200, showed
that N(A) > 2 for the following values of A

18,66, 126, 138, 150, 162, 198 ,
and N(A) = 1 for the following values of A
6,10, 22,30, 42, 46, 58, 70, 78, 82,102, 106, 130, 166, 178,190 ,

this second list should be completed with the addition of A = 1.

Obviously, one of the two lists certainly extends to infinity; however, it is likely
that both lists are unlimited. Curiously, the second list includes every A < 200
such that A+ 1 is a Sophie Germain prime g,,. This observation together with
the fact that every checked (randomly chosen) g5, had N(gs,+1) = 1, supports
a guess that the second list includes every Sophie Germain prime.
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