The Sequence Spaces $[\hat{w}(M, \Delta_u^v, q, s)]$ and $[\hat{w}(M, \Delta_u^v, q, s)]_{\theta}$ and Related Results

Ahmad H. A. Bataineh

Department of Mathematics
Al al-Bayt University
P.O. Box: 130095 Mafraq, Jordan
ahabf2003@yahoo.ca

Abstract

In this paper, we define sequence spaces : $[\hat{w}(M, \Delta_u^v, q, s)]$ and $[\hat{w}(M, \Delta_u^v, q, s)]_{\theta}$ and give some inclusion relations between these spaces and some related results.

Mathematics Subject Classification: 46A45, 40C05

Keywords: Sequence spaces, lacunary sequence, almost convergence and Orlicz function

1 Introduction

The spaces of lacunary strong convergence have been introduced by Freedman et al. [4]. A sequence of positive integers $\theta = (k_r)$ is called lacunary if $k_0 = 0$, $0 < k_r < k_{r+1}$ and $h_r = (k_r - k_{r-1}) \to \infty$ as $r \to \infty$. The intervals determined by θ are denoted by $I_r = (k_{r-1}, k_r]$ and the ratio $\frac{k_r}{k_{r-1}}$ will be denoted by q_r .

We recall that an Orlicz function is a function $M:[0,\infty)\to[0,\infty)$ which is continuous, nondecreasing and convex with $M(0)=0,\,M(x)>0$ for x>0 and $M(x)\to\infty$, as $x\to\infty$.

The Orlicz function M can always be represented in the following integral form (see Krasnoselskii and Rutickii [8])

$$M(x) = \int_0^x \varphi(t)dt,$$

where φ , known as the kernel of M, is right-differentiable for $t \geq 0, \varphi(0) = 0, \varphi(t) > 0$ for $t > 0, \varphi$ is nondecreasing and $\varphi(t) \to \infty$, as $t \to \infty$.

If convexity of M is replaced by $M(x+y) \leq M(x) + M(y)$, then it is called a modulus function, defined and discussed by Ruckle [14] and Maddox [11].

A sequence $x \in l_{\infty}$, the space of bounded sequences $x = (x_k)$, is said to be almost convergent to L (see [10]) if

 $\lim_{k\to\infty} t_{km}(x) = L$, uniformly in m, where

$$t_{km}(x) = \frac{1}{k+1} \sum_{i=0}^{k} x_{m+i}.$$

Using the concept of almost convergence, Das and sahoo [2] introduced the sequence spaces

$$\hat{w} = \{x = (x_k) : \lim_{n \to \infty} \frac{1}{n+1} \sum_{k=0}^{n} t_{km}(x-L) = 0, \text{ uniformly in } m, \text{ for some } L\},$$

and

$$[\hat{w}] = \{x = (x_k) : \lim_{n \to \infty} \frac{1}{n+1} \sum_{k=0}^{n} |t_{km}(x-L)| = 0, \text{ uniformly in } m, \text{ for some } L\}.$$

Lindenstrauss and Tzafriri [9] used the idea of Orlicz function to define what is called an Orlicz sequence space :

$$l_M := \{ x = (x_k) : \sum_{k=1}^{\infty} M(\frac{|x_k|}{\rho}) < \infty, \text{ for some } \rho > 0 \}$$

which is a Banach space with the norm:

$$||x||_{M} = \inf\{\rho > 0 : \sum_{k=1}^{\infty} M(\frac{|x_k|}{\rho}) \le 1\}.$$

Chishti [1] introduced the sequenc spaces : For an Orlicz function M and some $\rho > 0$,

$$[\hat{w}(M)] = \{x = (x_k) : \frac{1}{n+1} \sum_{k=0}^{n} M(\frac{|t_{km}(x-L)|}{\rho}) \to 0,$$

as $n \to \infty$, uniformly in m , for some $L\}$,

and

$$[\hat{w}(M)]_{\theta} = \{x = (x_k) : \sup_{m} \frac{1}{h_r} \sum_{k \in I_r} M(\frac{|t_{km}(x-L)|}{\rho}) \to 0,$$

as $r \to \infty$, for some $L\}$.

Now, if v is a nonnegative integer, $u = (u_k)$ is any sequence such that $u_k \neq 0$ for each k, w(X) denotes the space of all sequences with elements in X, where (X, q) denotes a seminormed space, seminormed by q, and s is any real number such that $s \geq 0$, then we define the following sequence spaces:

$$[\hat{w}(M, \Delta_u^v, q, s)] = \{x = (x_k) : \frac{1}{n+1} \sum_{k=0}^n k^{-s} M(q(\frac{t_{km}(\Delta_u^v x - L)}{\rho})) \to 0,$$

as $n \to \infty$, uniformly in m , for some $L\}$,

and

$$[\hat{w}(M, \Delta_u^v, q, s)]_{\theta} = \{x = (x_k) : \sup_{m} \frac{1}{h_r} \sum_{k \in I_r} k^{-s} M(q(\frac{t_{km}(\Delta_u^v x - L)}{\rho})) \to 0,$$
as $r \to \infty$, for some $L\}$,

where

$$\Delta_u^0 x = u_k x_k,$$

$$\Delta_u^1 x = u_k x_k - u_{k+1} x_{k+1},$$

$$\Delta_u^2 x = \Delta(\Delta_u^1 x),$$

:

$$\Delta_u^v x = \Delta(\Delta_u^{v-1} x),$$

so that

$$\Delta_u^v x = \Delta_{u_k}^v x_k = \sum_{r=0}^v (-1)^r \binom{v}{r} u_{k+r} x_{k+r}.$$

If v = 0, $\Delta x_k = x_k$ for all k, $u = e = (1, 1, 1, \cdots)$ and s = 0, then the above spaces reduce to those defined and studied by Chishti [1]. Also, we give the following definition:

Definition 1 A sequence $x = (x_k)$ is said to be lacunary $[\hat{w}(M, \Delta_u^v, q, s)]$ convergent to L if

$$\lim_{r \to \infty} \sup_{m} \frac{1}{h_r} \sum_{k \in I_r} k^{-s} M\left(q\left(\frac{t_{km}(\Delta_u^v x - L)}{\rho}\right)\right) = 0.$$

By $[\hat{w}(M, \Delta_u^v, q, s)]_{\theta}$, we denote the set of all lacunary $[\hat{w}(M, \Delta_u^v, q, s)]_{\theta}$ convergent sequences and we write $[\hat{w}(M, \Delta_u^v, q, s)]_{\theta} - \lim x = L$, for $x \in [\hat{w}(M, \Delta_u^v, q, s)]_{\theta}$

If M(x) = x, v = 0, $\Delta x_k = x_k$ for all k, u = e and s = 0, then $[\hat{w}(M, \Delta_u^v, q, s)] = [\hat{w}]$ and $[\hat{w}(M, \Delta_u^v, q, s)]_{\theta} = [\hat{w}]_{\theta}$.

2 Main Results

In this section we prove the following theorems:

Theorem 2.1 Let $\theta = (k_r)$ be a lacunary sequence with $\liminf q_r > 1$. Then $[\hat{w}(M, \Delta_u^v, q, s)] \subset [\hat{w}(M, \Delta_u^v, q, s)]_{\theta}$ and $[\hat{w}(M, \Delta_u^v, q, s)] - \lim x = [\hat{w}(M, \Delta_u^v, q, s)]_{\theta} - \lim x$.

Proof. Let $\liminf q_r > 1$. Then there exists $\delta > 0$ such that $q_r > 1 + \delta$ and therefore

$$\frac{h_r}{k_r} = 1 - \frac{k_{r-1}}{k_r} > 1 - \frac{1}{1+\delta} = \frac{\delta}{1+\delta}.$$

This implies that

$$\frac{1}{k_r} \sum_{i=1}^{k_r} i^{-s} M(q(\frac{t_{im}(\Delta_u^{\upsilon}x - L)}{\rho})) \geq \frac{1}{k_r} \sum_{i \in I_r} i^{-s} M(q(\frac{t_{im}(\Delta_u^{\upsilon}x - L)}{\rho}))$$

$$\geq \frac{\delta}{1 + \delta} \frac{1}{h_r} \sum_{i \in I_r} i^{-s} M(q(\frac{t_{im}(\Delta_u^{\upsilon}x - L)}{\rho})),$$

and if $x \in [\hat{w}(M, \Delta_u^v, q, s)]$ with $[\hat{w}(M, \Delta_u^v, q, s)] - \lim x = L$, then it follows that $x \in [\hat{w}(M, \Delta_u^v, q, s)]_{\theta}$ with $[\hat{w}(M, \Delta_u^v, q, s)]_{\theta} - \lim x = L$.

Theorem 2.2 Let $\theta = (k_r)$ be a lacunary sequence with $\limsup q_r < \infty$. Then $[\hat{w}(M, \Delta_u^v, q, s)]_{\theta} \subset [\hat{w}(M, \Delta_u^v, q, s)]$ and $[\hat{w}(M, \Delta_u^v, q, s)]_{\theta} - \lim x = [\hat{w}(M, \Delta_u^v, q, s)] - \lim x$.

Proof. Let $x \in [\hat{w}(M, \Delta_u^v, q, s)]_{\theta}$ with $[\hat{w}(M, \Delta_u^v, q, s)]_{\theta} - \lim x = L$. Then for $\epsilon > 0$, there exists j_0 such that for every $j \ge j_0$ and all m,

$$g_{im} = \frac{1}{h_r} \sum_{i \in I_j} i^{-s} M(q(\frac{t_{im}(\Delta_u^{\upsilon} x - L)}{\rho})) < \epsilon$$

, that is, we can find some positive constant C such that

$$g_{im} < C, \tag{1}$$

for all j and m. Now, $\limsup q_r < \infty$ implies that

$$\frac{h_r}{k_r} = 1 - \frac{k_{r-1}}{k_r} > 1 - \frac{1}{1+\delta} = \frac{\delta}{1+\delta}.$$

This implies that there exists some positive number K such that

$$q_r < K$$
, for all $r \ge 1$. (2)

Therefore for $k_{r-1} < n \le k_r$, we have by (2.1) and (2.2),

$$\frac{1}{n+1} \sum_{i=0}^{n} i^{-s} M(q(\frac{t_{im}(\Delta_{u}^{v}x - L)}{\rho})) \leq \frac{1}{k_{r-1}} \sum_{i=1}^{k_{r}} i^{-s} M(q(\frac{t_{im}(\Delta_{u}^{v}x - L)}{\rho}))$$

$$= \frac{1}{k_{r-1}} \sum_{j=0}^{r} \sum_{i \in I_{j}} i^{-s} M(q(\frac{t_{im}(\Delta_{u}^{v}x - L)}{\rho}))$$

$$= \frac{1}{k_{r-1}} [\sum_{j=0}^{j_{0}} \sum_{i \in I_{j}}^{r}] \sum_{i \in I_{r}} i^{-s} M(q(\frac{t_{im}(\Delta_{u}^{v}x - L)}{\rho}))$$

$$\leq \frac{1}{k_{r-1}} (\sup_{l \leq p \leq j_{0}} g_{pm}) k_{j_{0}} + \epsilon(k_{r} - k_{j_{0}}) \frac{1}{k_{r-1}}$$

$$\leq C \frac{k_{j_{0}}}{k_{r-1}} + \epsilon K.$$

Since $k_{r-1} \to \infty$ as $r \to \infty$, we get that $x \in [\hat{w}(M, \Delta_u^v, q, s)]$ with $[\hat{w}(M, \Delta_u^v, q, s)] - \lim x = L$.

Theorem 2.3 Let $\liminf q_r \leq \limsup q_r < \infty$. Then $[\hat{w}(M, \Delta_u^v, q, s)] = [\hat{w}(M, \Delta_u^v, q, s)]_{\theta}$.

Proof. It follows from Theorem 2.1 and Theorem 2.2

Theorem 2.4 Let $x \in [\hat{w}(M, \Delta_u^v, q, s)] \cap [\hat{w}(M, \Delta_u^v, q, s)]_{\theta}$. Then $[\hat{w}(M, \Delta_u^v, q, s)] - \lim x = [\hat{w}(M, \Delta_u^v, q, s)]_{\theta} - \lim x$ and $[\hat{w}(M, \Delta_u^v, q, s)]_{\theta} - \lim x$ is unique for any lacunary sequence $\theta = (k_r)$.

Proof. Let $x \in [\hat{w}(M, \Delta_u^v, q, s)] \cap [\hat{w}(M, \Delta_u^v, q, s)]_{\theta}$ and $[\hat{w}(M, \Delta_u^v, q, s)] - \lim x = L, [\hat{w}(M, \Delta_u^v, q, s)]_{\theta} - \lim x = L'$.

Suppose that $L \neq L'$. Then we see that

$$\begin{split} i^{-s}M(q(\frac{L-L'}{\rho})) & \leq & \frac{1}{h_r}\sum_{i\in I_r}i^{-s}M(q(\frac{t_{im}(\Delta_u^vx-L)}{\rho})) \\ & + \frac{1}{h_r}\sum_{i\in I_r}i^{-s}M(q(\frac{t_{im}(\Delta_u^vx-L')}{\rho})), \text{ for each } m \\ & \leq & \lim_{r\to\infty}\sup_{m}\frac{1}{h_r}\sum_{i\in I_r}i^{-s}M(q(\frac{t_{im}(\Delta_u^vx-L)}{\rho})) + 0. \end{split}$$

Hence there exists r_0 such that for $r > r_0$, we have

$$\frac{1}{h_r} \sum_{i \in I_r} i^{-s} M(q(\frac{t_{im}(\Delta_u^v x - L}{\rho})) > \frac{1}{2} i^{-s} M(q(\frac{L - L'}{\rho})).$$

But $[\hat{w}(M, \Delta_u^v, q, s)] - \lim x = L$ implies that

$$0 \ge \limsup(\frac{h_r}{k_r})i^{-s}M(q(\frac{L-L'}{\rho})) \ge \liminf(\frac{h_r}{k_r})i^{-s}M(q(\frac{L-L'}{\rho})) \ge 0$$

and therefore $\lim q_r = 1$. Hence using Theorem 2.2, we conclude that $[\hat{w}(M, \Delta_u^v, q, s)]_{\theta} \subset [\hat{w}(M, \Delta_u^v, q, s)]$ and $[\hat{w}(M, \Delta_u^v, q, s)]_{\theta} - \lim x = L' = L = [\hat{w}(M, \Delta_u^v, q, s)] - \lim x$.

Further,

$$\frac{1}{n+1} \sum_{i=0}^{n} i^{-s} M(q(\frac{t_{im}(\Delta_{u}^{v}x - L)}{\rho})) + \frac{1}{n+1} \sum_{i=0}^{n} i^{-s} M(q(\frac{t_{im}(\Delta_{u}^{v}x - L')}{\rho}))$$

$$\geq i^{-s} M(q(\frac{L - L'}{\rho})) \geq 0$$

and taking the limit of both sides as $n \to \infty$, we see that $i^{-s}M(q(\frac{L-L'}{\rho})) = 0$ and this shows that L = L' for any Orlicz function M.

Theorem 2.5 Suppose that for a given $\epsilon > 0$, there exist n_0 and m_0 such that

$$\frac{1}{n} \sum_{k=0}^{n-1} k^{-s} M\left(q\left(\frac{t_{km}(\Delta_u^v x - L)}{\rho}\right)\right) < \epsilon \text{ for all } n \ge n_0, m \ge m_0$$
 (3)

Then $x \in [\hat{w}(M, \Delta_u^v, q, s)].$

Proof. Let $\epsilon > 0$ be given and choose n'_0 and m_0 such that

$$\frac{1}{n}\sum_{k=0}^{n-1}k^{-s}M(q(\frac{t_{km}(\Delta_u^v x - L)}{\rho})) < \frac{\epsilon}{4}$$

for $n \ge n_0$, $m \ge m_0$.

Now, it is enough to show that there exists n_0'' such that for $n \ge n_0'', 0 \le m \le m_0$, we have

$$\frac{1}{n}\sum_{k=0}^{n-1}k^{-s}M(q(\frac{t_{km}(\Delta_u^{\upsilon}x-L)}{\rho}))<\epsilon.$$

Since m_0 is fixed, put $\sum_{k=0}^{m_0-1} \frac{1}{k} \sum_{j=0}^{m_0-1} k^{-s} M(q(\frac{\Delta_u^v x_j - L}{\rho})) = B$. Now, let $0 \le m \le m_0$ and $n > m_0$, then

$$\frac{1}{n} \sum_{k=0}^{n-1} k^{-s} M(q(\frac{t_{km}(\Delta_u^v x - L)}{\rho})) \leq \frac{1}{n} \sum_{k=0}^{m_0 - 1} \frac{1}{k} \sum_{j=0}^{m_0 - 1} k^{-s} M(q(\frac{\Delta_u^v x_j - L}{\rho})) + \frac{1}{n} \sum_{k=0}^{m_0 - 1} \left| \frac{1}{k} \sum_{j=m_0}^{m_0 + 1} k^{-s} M(q(\frac{\Delta_u^v x_j - L}{\rho})) \right|$$

$$+\frac{1}{n}\sum_{k=m_0}^{n-1}\frac{1}{k}\sum_{j=m}^{m+k-1}k^{-s}M(q(\frac{\Delta_u^{\nu}x_j-L}{\rho}))$$
(4)

$$\leq \frac{B}{n} + \frac{1}{n} \sum_{k=0}^{m_0-1} \left| \frac{1}{k} \sum_{j=m_0}^{m_0+(k+m-m_0)-1} k^{-s} M(q(\frac{\Delta_u^v x_j - L}{\rho})) \right| + \frac{1}{n} \sum_{k=m_0}^{n-1} \left| \frac{1}{k} \sum_{j=m}^{m+k-1} k^{-s} M(q(\frac{\Delta_u^v x_j - L}{\rho})) \right|.$$

Let $k - m_0 > n_0'$. Then for $0 \le m \le m_0$, we have $k + m - m_0 \ge n_0'$. Then from (2.3), we see that

$$\frac{1}{m_0} \sum_{k=0}^{m_0-1} \left| \frac{1}{k+m-m_0} \sum_{j=m_0}^{m_0+(k+m-m_0)-1} k^{-s} M(q(\frac{\Delta_u^{\upsilon} x_j - L}{\rho})) \right| < \frac{\epsilon}{4}.$$
 (5)

From (2.4) and (2.5), we get that

$$\frac{1}{n}\sum_{k=0}^{n-1}k^{-s}M(q(\frac{t_{km}(\Delta_u^v x - L)}{\rho})) \le \frac{B}{n} + \frac{\epsilon}{4} + \frac{\epsilon}{4} < \epsilon,$$

for sufficiently large n. Hence the result.

Theorem 2.6 for every lacunary sequence $\theta = (k_r)$, we have $[\hat{w}(M, \Delta_u^v, q, s)]_{\theta} \cap l_{\infty} = [\hat{w}(M, \Delta_u^v, q, s)]$.

Proof. Let $x \in [\hat{w}(M, \Delta_u^v, q, s)]_{\theta} \cap l_{\infty}$. Then for $\epsilon > 0$, there exist r_0 and p_0 such that

$$\frac{1}{h_r} \sum_{k=0}^{h_r - 1} k^{-s} M\left(q\left(\frac{t_{kp}(\Delta_u^v x - L)}{\rho}\right)\right) < \frac{\epsilon}{2}$$
 (6)

for $r \ge r_0$ and $p \ge p_0$, $p = k_{r-1} + 1 + i$, $i \ge 0$.

Now, let $n \geq h_r$, m be an integergreater than or equal to 1. Then

$$\frac{1}{n} \sum_{k=0}^{n-1} k^{-s} M(q(\frac{t_{kp}(\Delta_u^v x - L)}{\rho})) \le \frac{1}{n} \sum_{k=0}^{n-1} \frac{1}{k} \sum_{k=0}^{m-1} \left| \sum_{j=p+\mu h_r}^{p+(\mu+1)h_r - 1} k^{-s} M(q(\frac{\Delta_u^v x_j - L}{\rho})) \right|$$

$$+\frac{1}{n}\sum_{k=0}^{n-1}\frac{1}{k}\sum_{j=n+mh_r}^{m-1}\sum_{j=n+\mu h_r}^{p+k-1}k^{-s}M(q(\frac{\Delta_u^{\nu}x_j-L}{\rho}))$$
(7)

$$\leq \frac{1}{n} \sum_{\mu=0}^{m-1} \sum_{k=\mu h_r}^{(\mu+1)h_r-1} \frac{1}{k} \left| \sum_{j=p}^{p+k-1} k^{-s} M(q(\frac{\Delta_u^v x_j - L}{\rho})) \right| + \frac{1}{n} \sum_{k=mh_r}^{n-1} \frac{1}{k} \sum_{j=p}^{p+k-1} k^{-s} M(q(\frac{\Delta_u^v x_j - L}{\rho})).$$

Since $x \in l_{\infty}$, for all j, $M(q(\frac{\Delta_u^{\nu}x_j-L}{\rho})) < B$. So from (2.6) and (2.7), we have

$$\frac{1}{n}\sum_{k=0}^{n-1}k^{-s}M(q(\frac{t_{kp}(\Delta_u^vx-L)}{\rho})) \le \frac{1}{n}mh_r\frac{\epsilon}{2} + \frac{Bh_r}{n}.$$

For $\frac{h_r}{n} \leq 1$, $\frac{Bh_r}{n}$ can be made less than $\frac{\epsilon}{2}$ by taking n sufficiently large and since $\frac{mh_r^n}{n} \leq 1$, then

$$\frac{1}{n} \sum_{k=0}^{n-1} k^{-s} M(q(\frac{t_{kp}(\Delta_u^v x - L)}{\rho})) < \epsilon$$

for $r \geq r_0$, $p \geq p_0$. Hence, by Theorem 2.5, we get that $[\hat{w}(M, \Delta_u^v, q, s)]_{\theta} \cap l_{\infty} \subset [\hat{w}(M, \Delta_u^v, q, s)]$. It is trivial that $[\hat{w}(M, \Delta_u^v, q, s)] \subset [\hat{w}(M, \Delta_u^v, q, s)]_{\theta} \cap l_{\infty}$. Hence the result.

References

- [1] Chishti, T. A., Some spaces of lacunary convergent sequences defined by Orlicz functions, Novi Sad J. Math., 30 (2) (2005), 19-25.
- [2] Das, G., and Sahoo, A. K., On some sequence spaces, J. Math. Anal. Appl. 164 (1992), 381-398.
- [3] Fast, H., Sur la convergence statistique, Collaq. Math. 2 (1951), 241-244.
- [4] Freedman, A.R., Sember, I. J., and Raphael, M., Some Cesaro-type summability spaces, Proc. Lond. Math. Soc. 37 (1978), 508-520.
- [5] Fridy, J. A., On statistical convergence, Analysis 5 (1985), 301-313.
- [6] Fridy, J. A., and Miller, H. I., A matrix characterization of statistical convergence, Analysis 11 (1991), 59-66.
- [7] Karakaya, V., On lacunary σ -statistical convergence, Information Sciences 166 (2004), 271-280.
- [8] Krasnoselskii, M. A., and Rutickii, Ya b.: Convex Functions and Orlicz Spaces, Groning, the Netherlands, 1961 (Trnslated from the first Russian Edition, by: Leo F. Boron).
- [9] Lindenstrauss, J., and Tzafriri, L.: On Orlicz sequence spaces, Israel J. Math., 10 (3) (1971), 379-390.
- [10] Lorentz, G. G., A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190.
- [11] Maddox, I. J., Sequence spaces defined by a modulus, Mat. Proc. Camb. Phil. Soc. 100 (1986), 161-166.
- [12] Miller, H.I., and Orhan, C., On almost convergent and statistically convergent subsequences, Acta Math. Hungar. 93 (1-2) (2001), 135-151.

[13] Mursaleen, M., On infinite matrices and invariant means, Indian J. Pure Appl. Math. 10 (4) (1979), 457-460.

- [14] Ruckle, W. H., FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25 (1973), 973-978.
- [15] Salat, T., On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139-150.
- [16] Savas, E., On some generalized sequence spaces defined by a modulus, Indian J. Pure Appl. Math. 38 (1) (1999), 459-464.
- [17] Savas, E., On statistically convergent sequences of fuzzy numbers, Inform. Sci. 137 (1-4) (2001), 277-282.
- [18] Savas, E., and Nuray, F., On σ -statistically convergence and lacunary σ -statistically convergence, Math. Slovaca 43 (3) (1993), 309-315.
- [19] Schaefer, P., Infinite matrices and invariant means, Proc. Am. Math. Soc. 36 (1) (1972), 104-110.
- [20] Schoenberg, I. J., The integrability of certain functions and related summability methods, Am. Math. Monthly 66 (1959), 361-375.

Received: March, 2012