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Abstract

Graph algebras establish a connection between directed graphs with-
out multiple edges and special universal algebras of type (2,0). We say
that a graph G satisfies a term equation s ≈ t if the corresponding
graph algebra A(G) satisfies s ≈ t. A class of graph algebras V is called
a graph variety if V = ModgΣ where Σ is a subset of T (X) × T (X). A
graph variety V ′ = ModgΣ

′
is called a triregular leftmost without loop

and reverse arc graph variety if Σ
′
is a set of triregular leftmost without

loop and reverse arc term equations. A term equation s ≈ t is called an
identity in a variety V if A(G) satisfies s ≈ t for all G ∈ V . An identity
s ≈ t of a variety V is called a hyperidentity of a graph algebra A(G),
G ∈ V whenever the operation symbols occuring in s and t are replaced
by any term operations of A(G) of the appropriate arity, the resulting
identities hold in A(G). An identity s ≈ t of a variety V is called an
M -hyperidentity of a graph algebra A(G), G ∈ V whenever the opera-
tion symbols occuring in s and t are replaced by any term operations in
a subgroupoid M of term operations of A(G) of the appropriate arity,
the resulting identities hold in A(G).

In this paper we characterize special M -hyperidentities in each trireg-
ular leftmost without loop and reverse arc graph variety. For identities,
varieties and other basic concepts of universal algebra see e.g. in [4].
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1 Introduction.

An identity s ≈ t of terms s, t of any type τ is called a hyperidentity (M-
hyperidentity) of an algebra A if whenever the operation symbols occurring
in s and t are replaced by any term operations (any term operations in a
subgroupoid M of term operations) of A of the appropriate arity, the resulting
identity holds in A. Hyperidentities can be defined more precisely by using
the concept of a hypersubstitution, which was introduced by K. Denecke, D.
Lau, R. Pöschel and D. Schweigert in [6].

We fix a type τ = (ni)i∈I , ni > 0 for all i ∈ I, and operation symbols
(fi)i∈I , where fi is ni − ary. Let Wτ (X) be the set of all terms of type τ over
some fixed alphabet X, and let Alg(τ) be the class of all algebras of type τ .
Then a mapping

σ : {fi|i ∈ I} −→ Wτ (X)

which assigns to every ni − ary operation symbol fi an ni − ary term will be
called a hypersubstitution of type τ (for short, a hypersubstitution). By σ̂ we
denote the extension of the hypersubstitution σ to a mapping

σ̂ : Wτ (X) −→ Wτ (X).

The term σ̂[t] is defined inductively by
(i) σ̂[x] = x for any variable x in the alphabet X, and
(ii) σ̂[fi(t1, ..., tni

)] = σ(fi)
Wτ (X)(σ̂[t1], ..., σ̂[tni

]).
Here σ(fi)

Wτ (X) on the right hand side of (ii) is the operation induced by σ(fi)
on the term algebra with the universe Wτ (X).

Graph algebras have been invented in [13] to obtain examples of nonfinitely
based finite algebras. To recall this concept, let G = (V, E) be a (directed)
graph with the vertex set V and the set of edges E ⊆ V ×V . Define the graph
algebra A(G) corresponding to G with the underlying set V ∪ {∞}, where
∞ is a symbol outside V , and with two basic operations, namely a nullary
operation pointing to ∞ and a binary one denoted by juxtaposition, given for
u, v ∈ V ∪ {∞} by

uv =

{
u, if (u, v) ∈ E,
∞, otherwise.

In [12], graph varieties had been investigated for finite undirected graphs in
order to get graph theoretic results (structure theorems) from universal alge-
bra via graph algebras. In [11], these investigations are extended to arbitrary
(finite) directed graphs where the authors ask for a graph theoretic charac-
terization of graph varieties, i.e., of classes of graphs which can be defined by
identities for their corresponding graph algebras. The answer is a theorem of
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Birkhoff-type, which uses graph theoretic closure operations. A class of fi-
nite directed graphs is equational (i.e., a graph variety) if and only if it is closed
with respect to finite restricted pointed subproducts and isomorphic copies.

In [1], Apinant Ananpinitwatna and Tiang Poomsa-ard characterized spe-
cial M-hyperidentity in all biregular leftmost graph varieties of type (2,0). In
[2], Apinant Ananpinitwatna and Tiang Poomsa-ard characterized special M-
hyperidentity in all (x(yz))z with loop graph varieties of type (2,0). In [15], M.
Thongmoon and T. Poomsa-ard characterized all triregular leftmost without
loop and reverse arc graph varieties of type (2,0). In [3], R. Butkote and T.
Poomsa-ard characterized identities in each triregular leftmost without loop
and reverse arc graph variety of type (2,0). In [15], M. Thongmoon and T.
Poomsa-ard characterized hyperidentities in each triregular leftmost without
loop and reverse arc graph variety of type (2,0).

In this paper we characterize special M-hyperidentities in each triregular
leftmost without loop and reverse arc graph variety of type (2,0).

2 Terms, identities and graph varieties.

Dealing with terms for graph algebras, the underlying formal language has
to contain a binary operation symbol (juxtaposition) and a symbol for the
constant ∞ (denoted by ∞, too).

Definition 2.1. The set T (X) of all terms over the alphabet

X = {x1, x2, x3, ...}
is defined inductively as follows:

(i) every variable xi, i = 1, 2, 3, ..., and ∞ are terms;
(ii) if t1 and t2 are terms, then t1t2 is a term;
(iii) T (X) is the set of all terms which can be obtained from (i) and (ii) in

finitely many steps.

Terms built up from the two-element set X2 = {x1, x2} of variables are thus
binary terms. We denote the set of all binary terms by T (X2). The leftmost
variable of a term t is denoted by L(t) and rightmost variable of a term t is
denoted by R(t). A term, in which the symbol ∞ occurs is called a trivial
term.

Definition 2.2. For each non-trivial term t of type τ = (2, 0) one can define
a directed graph G(t) = (V (t), E(t)), where the vertex set V (t) is the set of
all variables occurring in t and the edge set E(t) is defined inductively by

E(t) = φ if t is a variable and E(t1t2) = E(t1) ∪ E(t2) ∪ {(L(t1), L(t2))}
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where t = t1t2 is a compound term.
L(t) is called the root of the graph G(t), and the pair (G(t), L(t)) is the

rooted graph corresponding to t. Formally, we assign the empty graph φ to
every trivial term t.

Definition 2.3. A non-trivial term t of type τ = (2, 0) is called a term without
loop and reverse arc if and only if for any x ∈ V (t), (x, x) /∈ E(t) and for any
x, y ∈ V (t) with x �= y if (x, y) ∈ E(t), then (y, x) /∈ E(t). A term equation
s ≈ t of type τ = (2, 0) is called triregular leftmost without loop and reverse
arc term equation if and only if V (s) = V (t), L(s) = L(t), |V (s)| = 3 and s, t
are terms without loop and reverse arc.

Definition 2.4. We say that a graph G = (V, E) satisfies an identity s ≈ t if
the corresponding graph algebra A(G) satisfies s ≈ t (i.e. we have s = t for
every assignment V (s)∪V (t) → V ∪{∞}), and in this case, we write G |= s ≈ t.
Given a class G of graphs and a set Σ of identities (i.e., Σ ⊂ T (X) × T (X))
we introduce the following notation:

G |= Σ if G |= s ≈ t for all s ≈ t ∈ Σ, G |= s ≈ t if G |= s ≈ t for all
G ∈ G,

G |= Σ if G |= Σ for all G ∈ G, IdG = {s ≈ t | s, t ∈ T (X), G |= s ≈ t,
ModgΣ = {G | G is a graph and G |= Σ}, Vg(G) = ModgIdG.

Vg(G) is called the graph variety generated by G and G is called graph variety
if Vg(G) = G. G is called equational if there exists a set Σ′ of identities such
that G = ModgΣ′. Obviously Vg(G) = G if and only if G is an equational class.

3 Triregular leftmost without loop and reverse

arc graph varieties and identities.

In [15] M. Thongmoon and T. Poomsa-ard characterized all triregular leftmost
without loop and reverse arc graph varieties as the following.

K0 = Mod{x(yz) ≈ x(yz)}, K1 = Mod{x(yz) ≈ x(zy)}
K2 = Mod{x(yz) ≈ (xy)z}, K3 = Mod{x(yz) ≈ x(y(zx))}
K4 = Mod{x(yz) ≈ x(z(yx))}, K5 = Mod{x(yz) ≈ (x(yz))z}
K6 = Mod{(xy)z ≈ x(y(zx))}, K7 = Mod{(xy)z ≈ (x(yz))z}
K8 = Mod{x(y(zx)) ≈ x(z(yx))}, K9 = Mod{x(y(zx)) ≈ (x(yz))z}
K10 = Mod{(x(yz))z ≈ (xy)(zy)}, K11 = K5 ∩ K10, K12 = K8 ∩ K10.
In [3] R. Butkote and T. Poomsa-ard characterized identities in each trireg-

ular leftmost without loop and reverse arc graph variety. The common prop-
erties of an identity s ≈ t in each triregular leftmost without loop and reverse
arc graph variety are (i) L(s) = L(t), (ii) V (s) = V (t). Clearly, if s ≈ t is a
trivial equation (s,t are trivial or G(s) = G(t) and, L(s) = L(t)), then s ≈ t
is an identity in each triregular leftmost without loop and reverse arc graph
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variety. Further, if s is a trivial term and t is a non-trivial term or both of them
are non-trivial with L(s) �= L(t) or V (s) �= V (t), then s ≈ t is not an identity
in every triregular leftmost without loop and reverse arc graph variety, since
for a complete graph G with more than one vertex, we have an evaluation of
the variables h such that h(s) = ∞ and h(t) �= ∞. Hence, we consider the
case that s ≈ t is a non-trivial equation with G(s) �= G(t), V (s) = V (t) and
L(s) = L(t). For short, we will quote only which we need to referent. Before
we do this let us introduce some notation. For any non-trivial term t, x ∈ V (t)
and for any (x, y) ∈ E(t) with x �= y, let

N t
i (x) = {x′ ∈ V (t) | x′ is an in-neighbor of x in G(t)},

N t
o(x) = {x′ ∈ V (t) | x′ is an out-neighbor of x in G(t)},

Ax(t) = {x′ ∈ V (t) | x′ = x or there exists a dipath from x to x′ in G(t)},
A

′
x(t) = {x′ ∈ V (t) | x′ = x or there exists a dipath from x′ to x in G(t)},

A∗
x(t) = Ax(t) ∪ A

′
x(t), Bx(t) =

⋃
x′∈A∗

x(t)

Ax′(t), B
′
x(t) =

⋃
x′∈A∗

x(t)

A
′
x′(t).

A0
(x,y)(t) = {(x, y)}, A1

(x,y)(t) be the set of edges (u, x), (y, u) ∈ E(t) for

some u ∈ V (s), A2
(x,y)(t) be the set of edge (u′, v′) ∈ E(t) whenever (u′, v′) ∈

A1
(u,v)(t) for some (u, v) ∈ A1

(x,y)(t),...,A
n
(x,y)(t) be the set of edge (u

′′
, v

′′
) ∈

E(t) whenever (u
′′
, v

′′
) ∈ A1

(u,v)(t) for some (u, v) ∈ An−1
(x,y)(t). Let A∗

(x,y)(t) =
∞⋃
i=0

Ai
(x,y)(t).

The identities in each triregular without loop and reverse arc graph variety
was characterized in each [3] as the following table:
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Table 2. Triregular leftmost without loop and reverse arc graph varieties
and the property of terms s and t.

Variety Property of s and t
K1 (i) N s

i (L(s)) �= φ if and only if N t
i (L(t)) �= φ,

(ii) if N s
i (L(s)) = φ, then (a) for any x ∈ V (s) there exist

y, z ∈ V (s) such that (z, y), (y, x) ∈ E(s) if and only if
there exist y′, z′ ∈ V (s) such that (z′, y′), (y′, x) ∈ E(t) or
there exist u′, v′ ∈ V (s) such that (u′, x), (x, v′) ∈ E(t),
(b) for any x, y ∈ V (s) with x �= y, (Bx(s) ∩ By(s)) �= φ or
(B

′
x(s) ∩ B

′
y(s)) − {L(s)} �= φ if and only if (Bx(t) ∩ By(t))

�= φ or (B
′
x(t) ∩ B

′
y(t)) − {L(t)} �= φ.

K5 (i) for any x ∈ V (s), there exists y ∈ V (s) such that
(x, y), (y, x) ∈ E(s) if and only if there exists y′ ∈ V (s)
such that (x, y′), (y′, x) ∈ E(t),
(ii) for any x, y ∈ V (s) with x �= y, y ∈ Ax(s) if and
only if y ∈ Ax(t).

K8 (i) for any x ∈ V (s), (x, x) ∈ E(s) if and only if (x, x) ∈
E(t),
(ii) for any x, y ∈ V (s) with x �= y, (x, y) ∈ E(s) or
there exists z ∈ V (s) with z �= x, z �= y such that
(y, x), (x, z), (z, y) ∈ E(s) if and only if (x, y) ∈ E(t) or
there exists z′ ∈ V (s) with z′ �= x, z′ �= y such that
(y, x), (x, z′), (z′, y) ∈ E(t).

K9 (i) for any x ∈ V (s), (x, x) ∈ E(s) if and only if (x, x) ∈
E(t),
(ii) for any x, y ∈ V (s) with x �= y, (x, y) ∈ E(s) or (y, x) ∈
E(s) and, (x, x) ∈ E(s) or (y, y) ∈ E(s) or there exists z ∈
V (s), z �= x, z �= y such that z is an in-neighbor or an out
-neighbor both of x and y in G(s) if and only if (x, y) ∈
E(t) or (y, x) ∈ E(t) and, (x, x) ∈ E(t) or (y, y) ∈ E(t) or
there exists z′ ∈ V (s), z′ �= x, z′ �= y such that z′ is an in-
neighbor or an out-neighbor both of x and y in G(t).

K10 (i) for any x ∈ V (s), (x, x) ∈ E(s) if and only if (x, x) ∈
E(t),
(ii) for any x, y ∈ V (s) with x �= y, (x, y) ∈ E(s) or (y, x) ∈
E(s) and, there exists (u, v) ∈ A∗

(y,x)(s) such that (u, u) ∈
E(s) or there exists w ∈ V (s) such that (w, u), (w, v) ∈ E(s)
if and only if (x, y) ∈ E(t) or (y, x) ∈ E(t) and, there exists
(u′, v′) ∈ A∗

(y,x)(t) such that (u′, u′) ∈ E(t) or there exists

w′ ∈ V (s) such that (w′, u′), (w′, v′) ∈ E(t).
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Table 2. (Continued)
Variety Property of s and t
K11 (i) for any x ∈ V (s), there exist u, v ∈ V (s) such that (u, x),

(x, v) ∈ E(s) or (u, v), (v, x) ∈ E(s) if and only if there exist
u′, v′ ∈ V (s) such that (u′, x), (x, v′) ∈ E(t) or (u′, v′), (v′, x)
∈ E(t),
(ii) for any x, y ∈ V (s), x �= y, y ∈ Ax(s) or N s

i (y) �= φ and
x ∈ Ay(s) if and only if y ∈ Ax(t) or N t

i (y) �= φ and
x ∈ Ay(t).

4 Hypersubstitution and proper hypersubsti-

tution

Let K be a graph variety. Now we want to formulate precisely the concept of
a graph hypersubstitution for graph algebras.

Definition 4.1. A mapping σ : {f,∞} → T (X2), where X2 = {x1, x2} and
f is the operation symbol corresponding to the binary operation of a graph
algebra is called graph hypersubstitution if σ(∞) = ∞ and σ(f) = s ∈ T (X2).
The graph hypersubstitution with σ(f) = s is denoted by σs.

Definition 4.2. An identity s ≈ t is a K graph hyperidentity iff for all graph
hypersubstitutions σ, the equations σ̂[s] ≈ σ̂[t] are identities in K.

If we want to check that an identity s ≈ t is a hyperidentity in K we can
restrict our consideration to a (small) subset of HypG - the set of all graph
hypersubstitutions.

In [8], the following relation between hypersubstitutions was defined:

Definition 4.3. Two graph hypersubstitutions σ1, σ2 are called K-equivalent
iff σ1(f) ≈ σ2(f) is an idetity in K. In this case we write σ1 ∼K σ2.

The following lemma was proved in [9].

Lemma 4.1. If σ̂1[s] ≈ σ̂1[t] ∈ IdK and σ1 ∼K σ2 then, σ̂2[s] ≈ σ̂2[t] ∈ IdK.

Therefore, it is enough to consider the quotient set HypG/ ∼K.
In [10], it was shown that any non-trivial term t over the class of graph

algebras has a uniquely determined normal form term NF (t) and there is an
algorithm to construct the normal form term to a given term t. Now, we want
to describe how to construct the normal form term. Let t be a non-trivial term.
The normal form term of t is the term NF (t) constructed by the following
algorithm:

(i) Construct G(t) = (V (t), E(t)).
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(ii) Construct for every x ∈ V (t) the list lx = (xi1 , ..., xik(x)
) of all out-

neighbors (i.e. (x, xij ) ∈ E(t), 1 ≤ j ≤ k(x)) ordered by increasing indices
i1 ≤ ... ≤ ik(x) and let sx be the term (...((xxi1)xi2)...xik(x)

).
(iii) Starting with x := L(t), Z := V (t), s := L(t), choose the variable

xi ∈ Z ∩ V (s) with the least index i, substitute the first occurrence of xi by
the term sxi

, denote the resulting term again by s and put Z := Z \ {xi}.
While Z �= φ continue this procedure. The resulting term is the normal form
NF (t).
The algorithm stops after a finite number of steps, since G(t) is a rooted graph.
Without difficulties one shows G(NF (t)) = G(t), L(NF (t)) = L(t).

The following definition was given in [5].

Definition 4.4. The graph hypersubstitution σNF (t), is called normal form
graph hypersubstitution. Here NF (t) is the normal form of the binary term t.

Since for any binary term t the rooted graphs of t and NF (t) are the same,
we have t ≈ NF (t) ∈ IdK. Then for any graph hypersubstitution σt with
σt(f) = t ∈ T (X2), one obtains σt ∼K σNF (t).

In [5], all rooted graphs with at most two vertices were considered. Then
we formed the corresponding binary terms and used the algorithm to construct
normal form terms. The result is given in the Table 2.

Table 2. normal form terms

normal form term graph hypers normal form term graph hypers
x1x2 σ0 x1 σ1

x2 σ2 x1x1 σ3

x2x2 σ4 x2x1 σ5

(x1x1)x2 σ6 (x2x1)x2 σ7

x1(x2x2) σ8 x2(x1x1) σ9

(x1x1)(x2x2) σ10 (x2(x1x1))x2 σ11

x1(x2x1) σ12 x2(x1x2) σ13

(x1x1)(x2x1) σ14 (x2(x1x2))x2 σ15

x1((x2x1)x2) σ16 x2((x1x1)x2) σ17

(x1x1)((x2x1)x2) σ18 (x2((x1x1)x2))x2 σ19

Let MG be the set of all normal form graph hypersubstitutions. Then we
get,

MG = {σ0, σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8, σ9, σ10, σ11, σ12, σ13, σ14, σ15, σ16, σ17, σ18, σ19}.

The concept of a proper hypersubstitution of a class of algebras was intro-
duced in [9].
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Definition 4.5. A hypersubstitution σ is called proper with respect to a class
K of algebras if σ̂[s] ≈ σ̂[t] ∈ IdK for all s ≈ t ∈ IdK.

The following lemma was proved in [5].

Lemma 4.2. For each non-trivial term s, (s �= x ∈ X) and for all u, v ∈ X,
we have

E(σ̂6[s]) = E(s) ∪ {(u, u)|(u, v) ∈ E(s)},

E(σ̂8[s]) = E(s) ∪ {(v, v)|(u, v) ∈ E(s)},

and
E(σ̂12[s]) = E(s) ∪ {(v, u)|(u, v) ∈ E(s)}.

By the similar way we prove that,

E(σ̂10[s]) = E(s) ∪ {(u, u), (v, v)|(u, v) ∈ E(s)}.
Let PMK be the set of all proper graph hypersubstitutions with respect to

the class K. In [14] it was found that:
PMK0 = PMK8 = {σ0, σ6, σ8, σ10, σ12, σ14, σ16, σ18}.
PMK1 = PMK11 = {σ0, σ6, σ8}.
PMK2 = PMK3 = PMK4 = PMK7 = {σ0, σ6}.
PMK6 = {σ0}. PMK9 = {σ0, σ10, σ12}.
PMK10 = PMK12{σ0, σ8, σ10, σ12, σ16}.

5 Special M-hyperidentities

We know that a graph identity s ≈ t is a graph hyperidentity, if σ̂[s] ≈ σ̂[t] is a
graph identity for all σ ∈ MG . Let M be a subgroupoid of MG. Then, a graph
identity s ≈ t is an M-graph hyperidentity (M-hyperidentity), if σ̂[s] ≈ σ̂[t] is
a graph identity for all σ ∈ M . In [4], K. Denecke and S.L. Wismath defined
special subgroupoid of Mg as the following.

Definition 5.1. (i) A hypersubstitution σ ∈ Hyp(τ) is said to be leftmost if
for every i ∈ I, the first variable in σ̂[fi(x1, ..., xni

)] is x1. Let Left(τ) be the
set of all leftmost hypersubstitutions of type τ .
(ii) A hypersubstitution σ ∈ Hyp(τ) is said to be outermost if for every i ∈ I,
the first variable in σ̂[fi(x1, ..., xni

)] is x1 and the last variable is xni
. Let

Out(τ ) be the set of all outermost hypersubstitutions of type τ .
(iii) A hypersubstitution σ ∈ Hyp(τ) is said to be rightmost if for every i ∈
I, the last variable in σ̂[fi(x1, ..., xni

)] is xni
. Let Right(τ) be the set of all

rightmost hypersubstitutions of type τ . Note that Out(τ ) = Right(τ)∩Left(τ).
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(iv) A hypersubstitution σ ∈ Hyp(τ) is called regular if for every i ∈ I, each
of the variables x1, ..., xni

occurs in σ̂[fi(x1, ..., xni
)]. Let Reg(τ) be the set of

all regular hypersubstitutions of type τ .
(v) A hypersubstitution σ ∈ Hyp(τ) is called symmetrical if for every i ∈ I,
there is a permutation si on the set {1, ..., ni} such that σ̂[fi(x1, ..., xni

)] =
fi(xsi(1), ..., xsi(ni)). Let D(τ) be the set of all symmetrical hypersubstitutions
of type τ .
(vi) We will call a hypersubstitution σ of type τ a pre-hypersubstitution if for
every i ∈ I, the term σ(fi) is not a variable. Let Pre(τ) be the set of all
pre-hypersubstitutions of type τ .

From Definition 5.1, we have:
MLeft = {σ0, σ1, σ3, σ6, σ8, σ10, σ12, σ14, σ16, σ18}.
MRight = {σ0, σ2, σ4, σ6, σ7, σ8, σ10, σ11, σ13, σ15, σ16, σ17, σ18, σ19}.
MOut = {σ0, σ6, σ8, σ10, σ16, σ18}.
MReg = {σ0, σ5, σ6, σ7, σ8, σ9, σ10, σ11, σ12, σ13, σ14, σ15, σ16, σ17, σ18, σ19}.
MD = {σ0, σ5}.
MPre = {σ0, σ3, σ4, σ5, σ6, σ7, σ8, σ9, σ10, σ11, σ12, σ13, σ14, σ15, σ16, σ17, σ18,

σ19}.

Definition 5.2. Let V be a graph variety of type τ , and let s ≈ t be an
identity of V . Let M be a subgroupoid of Hyp(τ). Then s ≈ t is called an M-
hyperidentity with respect to V , if for every σ ∈ M , σ̂[s] ≈ σ̂[t] is an identity
of V .

For any triregular leftmost without loop and reverse arc graph variety K
and for any s ≈ t ∈ IdK. We want to characterize the property of s and t such
that s ≈ t is an MLeft-hyperidentity, MRight-hyperidentity, MOut-hyperidentity,
MReg-hyperidentity, MD-hyperidentity and MPre-hyperidentity with respect to
K for all triregular leftmost without loop and reverse arc graph varieties K.

At first we consider the MD-hyperidentity. Since MD = {σ0, σ5}, let K be
any triregular leftmost without loop and reverse arc graph variety and for any
s ≈ t ∈ IdK. We see that if s ≈ t is a trivial term equation, then s ≈ t is
an MD-hyperidentity with respect to K. For the case s ≈ t is a non-trivial
equation, we have s ≈ t is an MD-hyperidentity with respect to K if and only
if σ̂5[s] ≈ σ̂5[t] ∈ IdK.

For MLeft-hyperidentity. Since MLeft = {σ0, σ1, σ3, σ6, σ8, σ10, σ12, σ14, σ16,
σ18}, let K be any triregular leftmost without loop and reverse arc graph variety
and for any s ≈ t ∈ IdK. We see that if s ≈ t is a trivial term equation, then
s ≈ t is an MLeft-hyperidentity with respect to K if and only if L(s) = L(t).
Now we consider the case s ≈ t is a non-trivial equation. We characterize
MLeft-hyperidentity with respect to all triregular leftmost without loop and
reverse arc graph varieties as the following theorems:
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Theorem 5.1. Let s ≈ t be a non-trivial equation and let Ki, i ∈ {0, 1, 2, ..., 11}
be triregular leftmost without loop and reverse arc graph varieties. If s ≈ t ∈
IdKi, then s ≈ t is an MLeft-hyperidentity with respect to Ki.

Proof. Consider for K1. If σ ∈ {σ0, σ6, σ8}, then σ is a proper hypersub-
stitution. Hence σ̂[s] ≈ σ̂[t] ∈ IdK1. Since σ̂1[s] = L(s) = L(t) = σ̂1[t]
and σ̂3[s] = L(s)L(s) = L(t)L(t) = σ̂3[t], we have σ̂1[s] ≈ σ̂1[t] ∈ IdK1 and
σ̂3[s] ≈ σ̂3[t] ∈ IdK1. Since σ6∼K1σ10∼K1σ12∼K1σ14∼K1σ16∼K1σ18. We get
that σ̂[s] ≈ σ̂[t] ∈ IdK1 for all σ ∈ {σ10, σ12, σ14, σ16, σ18}. Hence, s ≈ t is an
MLeft-hyperidentity with respect to K1. The proof of other graph varieties is
similar to the proof of Ki.

Theorem 5.2. Let s ≈ t be a non-trivial equation and let s ≈ t ∈ IdK9.
Then, s ≈ t is an MLeft-hyperidentity with respect to K9 if and only if σ̂6[s] ≈
σ̂6[t] ∈ IdK9 and σ̂8[s] ≈ σ̂8[t] ∈ IdK9.

Proof. If s ≈ t is an MLeft-hyperidentity with respect to K9, then σ̂6[s] ≈
σ̂6[t] ∈ IdK9 and σ̂8[s] ≈ σ̂8[t] ∈ IdK9. Conversely, assume that s ≈ t is an
identity in K9 and that σ̂6[s] ≈ σ̂6[t], and σ̂8[s] ≈ σ̂8[t] are also identities in K9,
too. We have to prove that s ≈ t is closed under all graph hypersubstitutions
from MLeft. If σ ∈ {σ0, σ10, σ12}, then σ is a proper hypersubstitution. Hence
σ̂[s] ≈ σ̂[t] ∈ IdK9. By assumption, σ̂6[s] ≈ σ̂6[t] and σ̂8[s] ≈ σ̂8[t] are also
identities in K9. Since σ̂1[s] = L(s) = L(t) = σ̂1[t] and σ̂3[s] = L(s)L(s) =
L(t)L(t) = σ̂3[t], we have σ̂1[s] ≈ σ̂1[t] ∈ IdK9 and σ̂3[s] ≈ σ̂3[t] ∈ IdK9. Since
σ6∼K9σ14, σ8∼K9σ16 and σ10∼K9σ18. We get that σ̂[s] ≈ σ̂[t] ∈ IdK9 for all
σ ∈ {σ14, σ16, σ18}. Hence, s ≈ t is an MLeft-hyperidentity with respect to
K9.

Theorem 5.3. Let s ≈ t be a non-trivial equation and let s ≈ t ∈ IdKi i =
10, 12. Then, s ≈ t is an MLeft-hyperidentity with respect to Ki if and only if
σ̂6[s] ≈ σ̂6[t] ∈ IdKi.

Proof. The proof is similar to the proof of Theorem 5.2.

For MOut-hyperidentity. Since MOut = {σ0, σ6, σ8, σ10, σ16, σ18}, let K be
any triregular leftmost without loop and reverse arc graph variety and for any
s ≈ t ∈ IdK. We see that if s ≈ t is a trivial term equation, then s ≈ t is
an MOut-hyperidentity with respect to K. For the case s ≈ t is a non-trivial
equation, since MOut ⊂ MLeft, so we can check that it has the same results as
MLeft-hyperidentity.

For MReg-hyperidentity. Since MReg = {σ0, σ5, σ6, σ7, σ8, σ9, σ10, σ11, σ12,
σ13, σ14, σ15, σ16, σ17, σ18, σ19}, let K be any triregular leftmost without loop
and reverse arc graph variety and for any s ≈ t ∈ IdK. We see that if s ≈ t
is a trivial term equathion, then s ≈ t is an MReg-hyperidentity with respect
to K. For the case s ≈ t is a non-trivial equation. We get the same result as
hyperidentity which we can see the prove in [14].
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Theorem 5.4. An identity s ≈ t in K ∈ {K0,K1,K2, ...,K8,K11}, where s ≈ t
is a non-trivial equation is an MReg-hyperidentity with respect to K if and only
if σ̂5[s] ≈ σ̂5[t] is also an identity in K.

Theorem 5.5. An identity s ≈ t in K9, where s ≈ t is a non-trivial equation
is an MReg-hyperidentity with respect to K9 if and only if σ̂5[s] ≈ σ̂5[t], σ̂6[s] ≈
σ̂6[t], σ̂7[s] ≈ σ̂7[t], σ̂8[s] ≈ σ̂8[t] and σ̂9[s] ≈ σ̂9[t] are also identities in K9.

Theorem 5.6. An identity s ≈ t in K ∈ {K10,K12}, where s ≈ t is a non-
trivial equation is an MReg-hyperidentity with respect to K if and only if σ̂5[s] ≈
σ̂5[t], σ̂6[s] ≈ σ̂6[t] and σ̂7[s] ≈ σ̂7[t] are also identities in K.

For MPre-hyperidentity. Since MPre = {σ0, σ3, σ4, σ5, σ6, σ7, σ8, σ9, σ10, σ11

, σ12, σ13, σ14, σ15, σ16, σ17, σ18, σ19}, let K be any triregular leftmost without
loop and reverse arc graph variety and for any s ≈ t ∈ IdK. We see that
if s ≈ t is a trivial term equation, then s ≈ t is an MPre-hyperidentity with
respect to K if and only if s and t have the same leftmost variable and the
same rightmost variable. For the case s ≈ t is non-trivial equation, since
MReg = MPre − {σ3, σ4}, we have the same results as MReg-hyperidentity.

For MRight-hyperidentity. Since MRight = {σ0, σ2, σ4, σ6, σ7, σ8, σ10, σ11, σ13

, σ15, σ16, σ17, σ18, σ19}, let K be any triregular leftmost without loop and re-
verse arc graph variety and for any s ≈ t ∈ IdK. We see that if s ≈ t is a
trivial term equation, then s ≈ t is an MRight-hyperidentity with respect to K
if and only if they have the same rightmost variables. So, we will consider the
case s ≈ t is non-trivial equation. We characterize MRight-hyperidentity with
respect to all triregular leftmost without loop and reverse arc graph varieties
as the following theorems:

Theorem 5.7. Let s ≈ t be a non-trivial equation and let s ≈ t ∈ IdKi,
i = 0, 8 Then, s ≈ t is an MRight-hyperidentity with respect to Ki if and only
if σ̂7[s] ≈ σ̂7[t], σ̂13[s] ≈ σ̂13[t] and σ̂17[s] ≈ σ̂17[t] are also identities in Ki.

Proof. Consider for σ̂8, let s ≈ t is an MRight-hyperidentity with respect to
K8. We have σ̂7[s] ≈ σ̂7[t], σ̂13[s] ≈ σ̂13[t] and σ̂17[s] ≈ σ̂17[t] are also identities
in Ki. Conversely, assume that s ≈ t is an identity in K8 and that σ̂7[s] ≈
σ̂7[t],σ̂13[s] ≈ σ̂13[t] and σ̂17[s] ≈ σ̂17[t] are also identities in K8. We have to
prove that s ≈ t is closed under all graph hypersubstitutions from MRight.
If σ ∈ {σ0, σ6, σ8, σ10, σ12, σ14, σ16, σ18}, then σ is a proper hypersubstitution.
Hence σ̂[s] ≈ σ̂[t] ∈ IdK8. By assumption, K8 and that σ̂7[s] ≈ σ̂7[t], σ̂13[s] ≈
σ̂13[t] and σ̂17[s] ≈ σ̂17[t] are also identities in K8. Hence, R(s) = L(σ̂7[s]) =
L(σ̂7[t]) = R(t). Since σ̂2[s] = R(s) = R(t) = σ̂2[t] and σ̂4[s] = R(s)R(s) =
R(t)R(t) = σ̂4[t], we have σ̂2[s] ≈ σ̂2[t] ∈ IdK8 and σ̂4[s] ≈ σ̂4[t] ∈ IdK8.
Since σ10◦Nσ7 = σ11, σ12◦Nσ7 = σ15, σ12◦Nσ11 = σ19 and σ̂10, σ̂12 are proper
hypersubstitution, we have that σ̂11[s] ≈ σ̂11[t], σ̂15[s] ≈ σ̂15[t] and σ̂19[s] ≈
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σ̂19[t] are identities in K8. Hence, s ≈ t is an Mright-hyperidentity with respect
to K2. The proof of K0 graph variety is similar to the proof of K8.

Theorem 5.8. Let s ≈ t be a non-trivial equation and let s ≈ t ∈ IdKi,
i = 1, 11 Then, s ≈ t is an MRight-hyperidentity with respect to Ki if and only
if σ̂7[s] ≈ σ̂7[t] ∈ IdKi.

Proof. Consider for K1, let s ≈ t is an MRight-hyperidentity with respect to K1.
We have σ̂7[s] ≈ σ̂7[t] ∈ IdK1. Conversely, assume that s ≈ t is an identity in
K1 and that σ̂7[s] ≈ σ̂7[t] ∈ IdK1. We have to prove that s ≈ t is closed under
all graph hypersubstitutions from MRight. If σ ∈ {σ0, σ6, σ8}, then σ is a proper
hypersubstitution. Hence σ̂[s] ≈ σ̂[t] ∈ IdK1. By assumption, σ̂7[s] ≈ σ̂7[t]
is also an identity in K1. Hence, R(s) = L(σ̂7[s]) = L(σ̂7[t]) = R(t). Since
σ̂2[s] = R(s) = R(t) = σ̂2[t] and σ̂4[s] = R(s)R(s) = R(t)R(t) = σ̂4[t], we have
σ̂2[s] ≈ σ̂2[t] ∈ IdK1 and σ̂4[s] ≈ σ̂4[t] ∈ IdK1. Since σ6∼K1σ10∼K1σ16∼K1σ18

and σ7∼K1σ11∼K1σ13∼K1σ15∼K1σ17∼K1σ19. We get that σ̂[s] ≈ σ̂[t] ∈ IdK1

for all σ ∈ {σ10, σ11, σ13, σ15, σ16, σ17, σ18, σ19}. Hence, s ≈ t is an MLeft-
hyperidentity with respect to K1. The proof of K11 graph variety is similar to
the proof of K1.

Theorem 5.9. Let s ≈ t be a non-trivial equation and let s ≈ t ∈ IdKi,
i = 2, 3, 4, 7 Then, s ≈ t is an MRight-hyperidentity with respect to Ki if and
only if σ̂7[s] ≈ σ̂7[t] ∈ IdKi.

Proof. Consider for K3, let s ≈ t is an MRight-hyperidentity with respect to K1.
We have σ̂7[s] ≈ σ̂7[t] ∈ IdK3. Conversely, assume that s ≈ t is an identity in
K3 and that σ̂7[s] ≈ σ̂7[t] ∈ IdK3. We have to prove that s ≈ t is closed under
all graph hypersubstitutions from MRight. If σ ∈ {σ0, σ6}, then σ is a proper
hypersubstitution. Hence σ̂[s] ≈ σ̂[t] ∈ IdK3. By assumption, σ̂7[s] ≈ σ̂7[t] is
also an identity in K3. Hence, R(s) = L(σ̂7[s]) = L(σ̂7[t]) = R(t). Since σ̂2[s] =
R(s) = R(t) = σ̂2[t] and σ̂4[s] = R(s)R(s) = R(t)R(t) = σ̂4[t], we have σ̂2[s] ≈
σ̂2[t] ∈ IdK3 and σ̂4[s] ≈ σ̂4[t] ∈ IdK3. Since σ6∼K3σ8∼K3σ10∼K3σ16∼K3σ18

and σ7∼K3σ11∼K3σ13∼K3σ15∼K3σ17∼K3σ19. We get that σ̂[s] ≈ σ̂[t] ∈ IdK3

for all σ ∈ {σ8, σ10, σ11, σ13, σ15, σ16, σ17, σ18, σ19}. Hence, s ≈ t is an MRight-
hyperidentity with respect to K3. The proof of other graph varieties are similar
to the proof of K3.

Theorem 5.10. Let s ≈ t be a non-trivial equation and let s ≈ t ∈ IdK5.
Then, s ≈ t is an MRight-hyperidentity with respect to K5 if and only if σ̂7[s] ≈
σ̂7[t] ∈ IdK5.

Proof. If s ≈ t is an MRight-hyperidentity with respect to K5, then σ̂7[s] ≈
σ̂7[t] ∈ IdK5. Conversely, assume that s ≈ t is an identity in K5 and that
σ̂7[s] ≈ σ̂7[t] is also an identity in K5, too. We have to prove that s ≈ t is closed
under all graph hypersubstitutions from MRight. If σ ∈ {σ0, σ6, σ8, σ10, σ12},
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then σ is a proper hypersubstitution. Hence, σ̂[s] ≈ σ̂[t] ∈ IdK5. By assump-
tion, σ̂7[s] ≈ σ̂7[t] is also an identity in K5. Hence, σ̂7[s] = R(s) = R(t) = σ̂7[t].
Since σ̂2[s] = R(s) = R(t) = σ̂2[t] and σ̂4[s] = R(s)R(s) = R(t)R(t) = σ̂4[t],
we have σ̂2[s] ≈ σ̂2[t] ∈ IdK5 and σ̂4[s] ≈ σ̂4[t] ∈ IdK5. Since σ10◦Nσ7 =
σ11, σ12◦Nσ7 = σ15 and σ̂10, σ̂12 are proper hypersubstitution, we have that
σ̂11[s] ≈ σ̂11[t] and σ̂15[s] ≈ σ̂15[t] are identities in K5. Since σ12∼K5σ16∼K5σ18

and σ13∼K5σ15∼K5σ17∼K5σ19. We get that σ̂[s] ≈ σ̂[t] ∈ IdK5 for all σ ∈
{σ13, σ15, σ16, σ17, σ18, σ19}. Hence, s ≈ t is an MRight-hyperidentity with re-
spect to K5.

Theorem 5.11. Let s ≈ t be a non-trivial equation and let s ≈ t ∈ IdK9.
Then, s ≈ t is an MRight-hyperidentity with respect to K9 if and only if σ̂6[s] ≈
σ̂6[t], σ̂7[s] ≈ σ̂7[t], σ̂8[s] ≈ σ̂8[t], σ̂9[s] ≈ σ̂9[t] and σ̂13[s] ≈ σ̂13[t] are also
identities in IdK9.

Proof. Let s ≈ t is an MRight-hyperidentity with respect to K9. Then, we
have σ̂6[s] ≈ σ̂6[t], σ̂7[s] ≈ σ̂7[t], σ̂8[s] ≈ σ̂8[t], σ̂9[s] ≈ σ̂9[t] and σ̂13[s] ≈ σ̂13[t]
are also identities in IdK9. Conversely, assume that s ≈ t is an identity
in K9 and that σ̂6[s] ≈ σ̂6[t], σ̂7[s] ≈ σ̂7[t], σ̂8[s] ≈ σ̂8[t], σ̂9[s] ≈ σ̂9[t] and
σ̂13[s] ≈ σ̂13[t] are also identities in IdK9. We have to prove that s ≈ t is closed
under all graph hypersubstitutions from MRight. If σ ∈ {σ0, σ10, σ12}, then σ
is a proper hypersubstitution. Hence σ̂[s] ≈ σ̂[t] ∈ IdK9. By assumption,
σ̂6[s] ≈ σ̂6[t], σ̂7[s] ≈ σ̂7[t], σ̂8[s] ≈ σ̂8[t], σ̂9[s] ≈ σ̂9[t] and σ̂13[s] ≈ σ̂13[t]
are identities in IdK9. Hence, R(s) = L(σ̂7[s]) = L(σ̂7[t]) = R(t). Since
σ̂2[s] = R(s) = R(t) = σ̂2[t] and σ̂4[s] = R(s)R(s) = R(t)R(t) = σ̂4[t], we
have σ̂2[s] ≈ σ̂2[t] ∈ IdK9 and σ̂4[s] ≈ σ̂4[t] ∈ IdK9. Since σ10◦Nσ7 = σ11

and σ̂10 is a proper hypersbstitution, we have that σ̂11[s] ≈ σ̂11[t] ∈ IdK9.
Since σ7∼K9σ15, σ8∼K9σ16, σ9∼K9σ17, σ10∼K10σ18 and σ11∼K10σ19. We get that
σ̂[s] ≈ σ̂[t] ∈ IdK9 for all σ ∈ {σ15, σ16, σ17, σ18, σ19}. Hence, s ≈ t is an
MRight-hyperidentity with respect to K9.

Theorem 5.12. Let s ≈ t be a non-trivial equation and let s ≈ t ∈ IdKi i =
10, 12. Then, s ≈ t is an MRight-hyperidentity with respect to Ki if and only if
σ̂6[s] ≈ σ̂6[t], σ̂7[s] ≈ σ̂7[t], σ̂13[s] ≈ σ̂13[t] and σ̂17[s] ≈ σ̂17[t] are identities in
Ki.

Proof. Consider for K10, let s ≈ t is an MRight-hyperidentity with respect to
K10. Then, we have σ̂6[s] ≈ σ̂6[t], σ̂7[s] ≈ σ̂7[t], σ̂13[s] ≈ σ̂13[t] and σ̂17[s] ≈
σ̂17[t] are identities in K10. Conversely, assume that s ≈ t is an identity in
K10 and that σ̂6[s] ≈ σ̂6[t], σ̂7[s] ≈ σ̂7[t], σ̂13[s] ≈ σ̂13[t] and σ̂17[s] ≈ σ̂17[t] are
also identities in K10. We have to prove that s ≈ t is closed under all graph
hypersubstitutions from MRight. If σ ∈ {σ0, σ8, σ10, σ12, σ16}, then σ is a proper
hypersubstitution. Hence σ̂[s] ≈ σ̂[t] ∈ IdK10. By assumption, σ̂6[s] ≈ σ̂6[t],
σ̂7[s] ≈ σ̂7[t], σ̂13[s] ≈ σ̂13[t] and σ̂17[s] ≈ σ̂17[t] are identities in K10. Hence,
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R(s) = L(σ̂7[s]) = L(σ̂7[t]) = R(t). Since σ̂2[s] = R(s) = R(t) = σ̂2[t] and
σ̂4[s] = R(s)R(s) = R(t)R(t) = σ̂4[t], we have σ̂2[s] ≈ σ̂2[t] ∈ IdK10 and
σ̂4[s] ≈ σ̂4[t] ∈ IdK10. Since σ10◦Nσ7 = σ11 and σ̂10 is a proper, we have
that σ̂11[s] ≈ σ̂11[t] is an identity in K10. Since σ7∼K10σ15, σ10∼K10σ18 and
σ11∼K10σ19. We get that σ̂[s] ≈ σ̂[t] ∈ IdK10 for all σ ∈ {σ15, σ18, σ19}. Hence,
s ≈ t is an MRight-hyperidentity with respect to K10. The proof of K12 is
similar to the proof of K10.
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