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Abstract

Graph algebras establish a connection between directed graphs with-
out multiple edges and special universal algebras of type (2,0). We say
that a graph G satisfies a term equation s & t if the corresponding
graph algebra A(G) satisfies s & t. A class of graph algebras V' is called
a graph variety if V = Mod,¥ where ¥ is a subset of T(X) x T(X). A
graph variety V' = M odgE/ is called a triregular leftmost without loop
and reverse arc graph variety if ¥’ is a set of triregular leftmost without
loop and reverse arc term equations. A term equation s = t is called an
identity in a variety V if A(G) satisfies s ~ ¢ for all G € V. An identity
s ~ t of a variety V is called a hyperidentity of a graph algebra A(G),
G € V whenever the operation symbols occuring in s and ¢ are replaced
by any term operations of A(G) of the appropriate arity, the resulting
identities hold in A(G). An identity s ~ t of a variety V is called an
M-hyperidentity of a graph algebra A(G), G € V whenever the opera-
tion symbols occuring in s and ¢ are replaced by any term operations in
a subgroupoid M of term operations of A(G) of the appropriate arity,
the resulting identities hold in A(G).

In this paper we characterize special M-hyperidentities in each trireg-
ular leftmost without loop and reverse arc graph variety. For identities,
varieties and other basic concepts of universal algebra see e.g. in [4].
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1 Introduction.

An identity s ~ t of terms s, t of any type 7 is called a hyperidentity (M-
hyperidentity) of an algebra A if whenever the operation symbols occurring
in s and t are replaced by any term operations (any term operations in a
subgroupoid M of term operations) of A of the appropriate arity, the resulting
identity holds in A. Hyperidentities can be defined more precisely by using
the concept of a hypersubstitution, which was introduced by K. Denecke, D.
Lau, R. Poschel and D. Schweigert in [6].

We fix a type 7 = (n;)ier, n; > 0 for all ¢ € I, and operation symbols
(fi)ier, where f; is n; — ary. Let W, (X) be the set of all terms of type 7 over
some fixed alphabet X, and let Alg(7) be the class of all algebras of type 7.
Then a mapping

o:{filiel} — W, (X)

which assigns to every n; — ary operation symbol f; an n; — ary term will be
called a hypersubstitution of type 7 (for short, a hypersubstitution). By ¢ we
denote the extension of the hypersubstitution ¢ to a mapping

G W (X) — Wo(X).

The term 6[t] is defined inductively by

(i) 6[z] = z for any variable = in the alphabet X, and

(i) 61,11, tn)] = oV 1], .o 6t ])

Here o(f;)"*) on the right hand side of (ii) is the operation induced by o( f;)
on the term algebra with the universe W, (X).

Graph algebras have been invented in [13] to obtain examples of nonfinitely
based finite algebras. To recall this concept, let G = (V, E) be a (directed)
graph with the vertex set V' and the set of edges £ C V' x V. Define the graph
algebra A(G) corresponding to G with the underlying set V' U {oco}, where
oo is a symbol outside V', and with two basic operations, namely a nullary
operation pointing to oo and a binary one denoted by juxtaposition, given for
u,v € VU {oo} by

uv:{ u, if  (u,v) € E,

0, otherwise.

In [12], graph varieties had been investigated for finite undirected graphs in
order to get graph theoretic results (structure theorems) from universal alge-
bra via graph algebras. In [11], these investigations are extended to arbitrary
(finite) directed graphs where the authors ask for a graph theoretic charac-
terization of graph varieties, i.e., of classes of graphs which can be defined by
identities for their corresponding graph algebras. The answer is a theorem of
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Birkhoff-type, which uses graph theoretic closure operations. A class of fi-
nite directed graphs is equational (i.e., a graph variety) if and only if it is closed
with respect to finite restricted pointed subproducts and isomorphic copies.

In [1], Apinant Ananpinitwatna and Tiang Poomsa-ard characterized spe-
cial M-hyperidentity in all biregular leftmost graph varieties of type (2,0). In
2], Apinant Ananpinitwatna and Tiang Poomsa-ard characterized special M-
hyperidentity in all (x(yz))z with loop graph varieties of type (2,0). In [15], M.
Thongmoon and T. Poomsa-ard characterized all triregular leftmost without
loop and reverse arc graph varieties of type (2,0). In [3], R. Butkote and T.
Poomsa-ard characterized identities in each triregular leftmost without loop
and reverse arc graph variety of type (2,0). In [15], M. Thongmoon and T.
Poomsa-ard characterized hyperidentities in each triregular leftmost without
loop and reverse arc graph variety of type (2,0).

In this paper we characterize special M-hyperidentities in each triregular
leftmost without loop and reverse arc graph variety of type (2,0).

2 Terms, identities and graph varieties.

Dealing with terms for graph algebras, the underlying formal language has
to contain a binary operation symbol (juxtaposition) and a symbol for the
constant oo (denoted by oo, too).

Definition 2.1. The set 7'(X) of all terms over the alphabet
X = {Il,ZEQ, xs3, }

is defined inductively as follows:

(i) every variable z;,7 = 1,2,3, ..., and oo are terms;

(ii) if t; and ty are terms, then t1t; is a term;

(iii) T'(X) is the set of all terms which can be obtained from (i) and (ii) in
finitely many steps.

Terms built up from the two-element set Xy = {z1, 25} of variables are thus
binary terms. We denote the set of all binary terms by 7'(X5). The leftmost
variable of a term ¢ is denoted by L(t) and rightmost variable of a term ¢ is
denoted by R(t). A term, in which the symbol co occurs is called a trivial
term.

Definition 2.2. For each non-trivial term ¢ of type 7 = (2,0) one can define
a directed graph G(t) = (V(t), E(t)), where the vertex set V(¢) is the set of
all variables occurring in ¢ and the edge set E(t) is defined inductively by

E(t) = Qb if ¢ is a variable and E(tltg) = E(tl) U E(tg) U {(L(tl), L(tg))}
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where t = t,t5 is a compound term.

L(t) is called the root of the graph G(t), and the pair (G(t), L(t)) is the
rooted graph corresponding to t. Formally, we assign the empty graph ¢ to
every trivial term t.

Definition 2.3. A non-trivial term ¢ of type 7 = (2, 0) is called a term without
loop and reverse arc if and only if for any x € V(t), (z,z) ¢ E(t) and for any
z,y € V(t) with x # y if (z,y) € E(t), then (y,z) ¢ E(t). A term equation
s ~ t of type 7 = (2,0) is called triregular leftmost without loop and reverse
arc term equation if and only if V(s) = V(t), L(s) = L(t), |V (s)| =3 and s, t
are terms without loop and reverse arc.

Definition 2.4. We say that a graph G = (V, E) satisfies an identity s =~ t if
the corresponding graph algebra A(G) satisfies s ~ t (i.e. we have s =t for
every assignment V (s)UV (t) — VU{oo}), and in this case, we write G |= s ~ t.
Given a class G of graphs and a set X of identities (i.e., ¥ C T(X) x T(X))
we introduce the following notation:

GEXiftGEs~tforalls~teX GEs~tifGEs=~tforall
Geg,

GEYUfGEXforal Geg, I[dG={s~t]|s,tecT(X), GEs~t,

Mod,¥ = {G | G is a graph and G =X}, V,(G) = Mod,1dgG.
Vy(G) is called the graph variety generated by G and G is called graph variety
if Vg(g) = G. G is called equational if there exists a set X’ of identities such
that G = Mod,X'. Obviously V,(G) = G if and only if G is an equational class.

3 Triregular leftmost without loop and reverse
arc graph varieties and identities.

In [15] M. Thongmoon and T. Poomsa-ard characterized all triregular leftmost
without loop and reverse arc graph varieties as the following.

Ko = Mod{z(yz) ~ z(yz)}, K1 = Mod{z(yz) ~ z(zy)}

Ko = Mod{z(yz) =~ (xy)z}, Ks = Mod{z(yz) ~ x(y(zx))}
Ky = Mod{z(yz) =~ x(z(yx))}, Ks = Mod{z(yz) ~ (x(yz))z}
Ko = Mod{(zy)z ~ 2(y(zr))}, K7 = Mod{(xy)z ~ (x(yz))z}

Ks = Mod{x(y(zx)) = x(2(yx))}, Ko = Mod{x(y(zr)) = (x(yz))z}

Kio = Mod{(z(y2))z = (zy)(zy)}, K =KsNKi, Ki2=KsNKp.

In [3] R. Butkote and T. Poomsa-ard characterized identities in each trireg-
ular leftmost without loop and reverse arc graph variety. The common prop-
erties of an identity s &~ ¢ in each triregular leftmost without loop and reverse
arc graph variety are (i) L(s) = L(t), (ii) V(s) = V(t). Clearly, if s ~ ¢ is a
trivial equation (s,t are trivial or G(s) = G(t) and, L(s) = L(t)), then s ~ t
is an identity in each triregular leftmost without loop and reverse arc graph
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variety. Further, if s is a trivial term and ¢ is a non-trivial term or both of them
are non-trivial with L(s) # L(t) or V(s) # V(t), then s ~ ¢ is not an identity
in every triregular leftmost without loop and reverse arc graph variety, since
for a complete graph G with more than one vertex, we have an evaluation of
the variables h such that h(s) = oo and h(t) # oco. Hence, we consider the
case that s & t is a non-trivial equation with G(s) # G(t), V(s) = V(¢) and
L(s) = L(t). For short, we will quote only which we need to referent. Before
we do this let us introduce some notation. For any non-trivial term ¢, x € V()
and for any (z,y) € E(t) with = # y, let

Nt( )= {2’ € V(t) | 2/ is an in-neighbor of x in G(t)},

Ni(z) = {2’ € V() | «’ is an out-neighbor of z in G(t)},

A, (t) ={a' € V(t) | 2’ = x or there exists a dipath from z to 2’ in G(t)},
A(t) = {x € V(t) | ' = z or there exists a dipath from 2’ to z in G(t)},
AL(t) = A UAL(L), Bo(t) = U Ax(t), Bi(t)= U Au(t).

x' €A% (t) x' €A% (t)

Al (@) = {(z,9)}, Al () be the set of edges (u,z), (y,u) € E(t) for
some u € V(s), A, \(t) be the set of edge (u',v") € E(t) whenever (u',0v') €
Al (t) for some”(ul,lv) € Al ()AL () be the set of edge (u',v") €
E( ) whenever (u',v") € A, (t) for some (u,v) € A"le( ). Let A7, (t) =

The identities in each triregular without loop and reverse arc graph variety
was characterized in each [3] as the following table:
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Table 2. Triregular leftmost without loop and reverse arc graph varieties
and the property of terms s and ¢.
Variety Property of s and t
Ko [ () NAL() £ i and only T NI(LD) £ 6,
(1) if N7(L(s)) = ¢, then (a) for any z € V(s) there exist
y,z € V(s) such that (z,v), (y,x) € E(s) if and only if
there exist ¢/, 2" € V(s) such that (2',y'), (v/,x) € E(t) or
there exist v/, v € V(s) such that (v, x), (z,v") € E(t),
(b) for any =,y € V(s) with z # y, (By(s) N By(s)) # ¢ or
(B, (s)N B;(s)) —{L(s)} # ¢ if and only if (B,(t) N B,(t))
# ¢ or (B,(t) N B,(t)) — {L(t)} # ¢.
ICs (1) for any = € V(s), there exists y € V(s) such that
(x,y), (y,z) € E(s) if and only if there exists y' € V (s)
such that (z,v"), (v, x) € E(t),
(1) for any z,y € V(s) with x # y, y € A,(s) if and
only if y € A, ().
Ks (2) for any x € V(s), (z,z) € E(s) if and only if (z,z) €
o)
(17) for any z,y € V(s) with = # y, (z,y) € E(s) or
there exists z € V/(s) with z # x, z # y such that
(y,x), (z,2),(z,y) € E(s) if and only if (z,y) € E(t) or
there exists 2’ € V(s) with 2/ # x, 2’ # y such that
(49,2), (5, ), (2, 9) € E(t).
Ko (¢) for any x € V(s), (z,z) € E(s) if and only if (z,z) €
o)
(1) for any x,y € V(s) with x # y, (x,y) € E(s) or (y,x) €
E(s) and, (z,z) € E(s) or (y,y) € E(s) or there exists z €
V(s), z # x, z # y such that z is an in-neighbor or an out
-neighbor both of x and y in G(s) if and only if (z,y) €
E(t) or (y,x) € E(t) and, (x,x) € E(t) or (y,y) € E(t) or
there exists 2’ € V(s), 2/ # x, 2/ # y such that 2’ is an in-
neighbor or an out-neighbor both of = and y in G(t).
Ko (¢) for any = € V(s), (z,x) € E(s) if and only if (z,z) €
E(t).
(1) for any x,y € V(s) with x # y, (x,y) € E(s) or (y,x) €
E(s) and, there exists (u,v) € A7, ) (s) such that (u,u) €
E(s) or there exists w € V(s) such that (w,u), (w,v) € E(s)
if and only if (x,y) € E(t) or (y,x) € E(t) and, there exists
(W', v') € A, ,y(t) such that (u',u’) € E(t) or there exists

w' € V(s) such that (w',u'), (w',v") € E(t).
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Table 2. (Continued)

Variety Property of s and t

K11 (7) for any = € V(s), there exist u,v € V(s) such that (u,z),
(x ,v) E(s) or (u,v), (v,z) € E(s) if and only if there exist
uw', v € V(s) such that (v/,x), (x,v") € E(t) or (v/,v), (v, )
e B(1),

(1) for any z,y € V(s), © £y, y € A(s) or Ni(y) # ¢ and
xr € Ay(s) if and only if y € A,(¢) or Nf(y) # ¢ and
v € Ay(0)

S
S

4 Hypersubstitution and proper hypersubsti-
tution

Let K be a graph variety. Now we want to formulate precisely the concept of
a graph hypersubstitution for graph algebras.

Definition 4.1. A mapping o : {f,00} — T'(X3), where Xy = {21, 25} and
f is the operation symbol corresponding to the binary operation of a graph
algebra is called graph hypersubstitution if o(c0) = oo and o(f) = s € T'(X3).
The graph hypersubstitution with o(f) = s is denoted by 0.

Definition 4.2. An identity s ~ t is a IC graph hyperidentity iff for all graph
hypersubstitutions o, the equations ¢[s| ~ 7[t] are identities in K.

If we want to check that an identity s = t is a hyperidentity in K we can
restrict our consideration to a (small) subset of HypG - the set of all graph
hypersubstitutions.

In [8], the following relation between hypersubstitutions was defined:

Definition 4.3. Two graph hypersubstitutions oy, oo are called KC-equivalent
iff o1 (f) = o2(f) is an idetity in . In this case we write oy ~x 0.

The following lemma was proved in [9].
Lemma 4.1. [f 6'1[8] ~ 61[t] e IdK and 01 ~K 09 then, &2[8] ~ &Q[t] e IdK.

Therefore, it is enough to consider the quotient set HypG/ ~.

In [10], it was shown that any non-trivial term t over the class of graph
algebras has a uniquely determined normal form term NF(¢) and there is an
algorithm to construct the normal form term to a given term t. Now, we want
to describe how to construct the normal form term. Let ¢ be a non-trivial term.
The normal form term of t is the term NF'(t) constructed by the following
algorithm:

(i) Construct G(t) = (V (t), E(t)).
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(ii) Construct for every x € V() the list I, = (x4, ..., 7;,,,) of all out-
neighbors (i.e. (z,7;) € E(t),1 < j < k(x)) ordered by increasing indices
i1 < ... <iige) and let s, be the term (...((zzi, )7s,).. 25y ,))-

(iii) Starting with = := L(t),Z := V(t),s := L(t), choose the variable
x; € ZNV(s) with the least index i, substitute the first occurrence of z; by
the term s,,, denote the resulting term again by s and put Z := Z \ {x;}.
While Z # ¢ continue this procedure. The resulting term is the normal form
NF(t).

The algorithm stops after a finite number of steps, since G(t) is a rooted graph.
Without difficulties one shows G(NF(t)) = G(t), L(NF(t)) = L(t).
The following definition was given in [5].

Definition 4.4. The graph hypersubstitution oxp(), is called normal form
graph hypersubstitution. Here N F(t) is the normal form of the binary term t.

Since for any binary term ¢ the rooted graphs of t and N F(t) are the same,
we have t & NF(t) € IdK. Then for any graph hypersubstitution o; with
o¢(f) =t € T(X,), one obtains oy ~k onp().-

In [5], all rooted graphs with at most two vertices were considered. Then
we formed the corresponding binary terms and used the algorithm to construct
normal form terms. The result is given in the Table 2.

Table 2. normal form terms

normal form term|graph hypers|normal form term graph hypers
1T (o) I 01
) 09 T1T1 03
Lol 04 Tolq 05
(Ill'l)l’g O¢ (IQIEl)ZL’Q (%rd
l‘l(ZEQZEQ) (oF] l‘g(l’lfﬁl) 09
(I1$1)($2$2) 010 ($2($1$1))I2 011
$1($2$1) 012 $2($1$2) 013
(I1$1)($2$1) 014 (I2($1$2) o) 015
$1(($2$1)I2) O16 $2(($1$1)I2) o17
(951%1)((952951)@) 018 ($2(($1$1)$2))$2 019

Let Mg be the set of all normal form graph hypersubstitutions. Then we
get,

Mg = {an 01,02,03,04,05,06,07,08,09,010,011,012,013,014, 015,016,017, 018, 019}-

The concept of a proper hypersubstitution of a class of algebras was intro-
duced in [9].
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Definition 4.5. A hypersubstitution o is called proper with respect to a class
IC of algebras if 6[s] ~ ¢[t] € IdK for all s ~ t € IdK.

The following lemma was proved in [5].

Lemma 4.2. For each non-trivial term s, (s # x € X) and for all u,v € X,
we have

E(06[s]) = E(s) U {(u, u)|(u,v) € E(s)},
E(os]s]) = E(s) U {(v,v)[(u,v) € E(s)},

and

E(612[s]) = E(s) U{(v, u)[(u, v) € E(s)}.

By the similar way we prove that,
E(&lo[s]) = E(S) U {(U, U), (Uu U)|(U, U) € E(S)}

Let PMj be the set of all proper graph hypersubstitutions with respect to
the class K. In [14] it was found that:

PMICO = PMlcg = {UO,06,08,010,012,014,016,018}-

PMjy, = PMy,, = {00,06,0s}.

P]\4;C2 = PM}C3 = PM}C4 = pM)C7 = {0'0,06}.

PMIC(; = {0’0}. PM;CQ = {0'0,0'10,0'12}.

PMjy,, = PMk,,{00, 08,010, 012, 016 }-

5 Special M-hyperidentities

We know that a graph identity s ~ ¢ is a graph hyperidentity, if 6[s] ~ 5]t] is a
graph identity for all o € Mg. Let M be a subgroupoid of Mg. Then, a graph
identity s & t is an M-graph hyperidentity (M-hyperidentity), if 6[s| ~ o[t] is
a graph identity for all o € M. In [4], K. Denecke and S.L. Wismath defined
special subgroupoid of M, as the following.

Definition 5.1. (i) A hypersubstitution o € Hyp(T) is said to be leftmost if
for every i € I, the first variable in 6[f;(x1, ..., Ty,)] is x1. Let Left(r) be the
set of all leftmost hypersubstitutions of type T.

(ii) A hypersubstitution o € Hyp(T) is said to be outermost if for everyi € I,
the first variable in 6[fi(x1,...,xn,)] is 1 and the last variable is x,,. Let
Out(T) be the set of all outermost hypersubstitutions of type 7.

(iii) A hypersubstitution o € Hyp(T) is said to be rightmost if for every i €
I, the last variable in 6[fi(z1,...,xp,)]| is x,,. Let Right(r) be the set of all
rightmost hypersubstitutions of type 7. Note that Out(1) = Right(T)NLeft(T).
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(iv) A hypersubstitution o € Hyp(T) is called reqular if for every i € I, each
of the variables x1, ..., x,, occurs in &[f;i(xy,...,z,,)]. Let Reg(T) be the set of
all reqular hypersubstitutions of type 7.

(v) A hypersubstitution o € Hyp(T) is called symmetrical if for every i € I,
there is a permutation s; on the set {1,...,n;} such that &[fi(xy,...,xn,)] =
[i(@s,(1)5 s Tsy(ny)) . Let D(T) be the set of all symmetrical hypersubstitutions
of type T.

(vi) We will call a hypersubstitution o of type T a pre-hypersubstitution if for
every i € I, the term o(f;) is not a variable. Let Pre(T) be the set of all
pre-hypersubstitutions of type T.

From Definition 5.1, we have:

MLeft = {00,01,03,06,08,010,012701470167018}.

MRight = {007027047067077087010701170—1370—1&0—16701770'18a0'19}'

Mow = {00706708701070167018}-

MReg = {0'070570670770870970107011701270'1370'14a0'1570'16a0'1770'18a0'19}~

MD = {0'0,0'5}.

Mp,e = {0'070'370470570'670'770870'970'1070'1170'1270'13701470157016701770187
0'19}.

Definition 5.2. Let V be a graph variety of type 7, and let s =~ t be an
identity of V.. Let M be a subgroupoid of Hyp(t). Then s =t is called an M-
hyperidentity with respect to V., if for every o € M, 6[s] = d[t] is an identity
of V.

For any triregular leftmost without loop and reverse arc graph variety X
and for any s = t € IdKC. We want to characterize the property of s and ¢ such
that s ~ ¢ is an Mp.p-hyperidentity, Mg;gn.-hyperidentity, Mo,,-hyperidentity,
Mpeq-hyperidentity, Mp-hyperidentity and Mp,.-hyperidentity with respect to
IC for all triregular leftmost without loop and reverse arc graph varieties K.

At first we consider the Mp-hyperidentity. Since Mp = {0, 05}, let K be
any triregular leftmost without loop and reverse arc graph variety and for any
s~ t e IdC. We see that if s &~ t is a trivial term equation, then s ~ ¢ is
an Mp-hyperidentity with respect to K. For the case s ~ t is a non-trivial
equation, we have s &~ t is an Mp-hyperidentity with respect to K if and only
if 65(s] =~ a5[t] € IdK.

For Mp.p-hyperidentity. Since Mpcs = {00, 01,03, 06,08, 010, 012, 014, 01,
018}, let K be any triregular leftmost without loop and reverse arc graph variety
and for any s &~ t € IdK. We see that if s = t is a trivial term equation, then
s ~ t is an Mp.p-hyperidentity with respect to K if and only if L(s) = L(t).
Now we consider the case s ~ t is a non-trivial equation. We characterize
M p-hyperidentity with respect to all triregular leftmost without loop and
reverse arc graph varieties as the following theorems:
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Theorem 5.1. Let s = t be a non-trivial equation and let IC;, i € {0,1,2,...,11}
be trireqular leftmost without loop and reverse arc graph varieties. If s =t €
IdK;, then s =t is an My.s-hyperidentity with respect to IC;.

Proof. Consider for ICy. If o € {09, 06,08}, then ¢ is a proper hypersub-
stitution. Hence &[s| ~ &d[t] € IdK,. Since d1[s] = L(s) = L(t) = a1][t]
and G3[s] = L(s)L(s) = L(t)L(t) = d3]t], we have &1[s] ~ &1[t] € IdK; and
5’3[8] ~ 6‘3[15] € IdK,. Since O6™~K1010™K10127°7K,0147~ K1 016 ™K1 018 - We get
that &[s] = a[t] € IdK, for all o € {010,012, 014,016,018} Hence, s ~ ¢t is an
M p-hyperidentity with respect to Ky. The proof of other graph varieties is
similar to the proof of IC;. O

Theorem 5.2. Let s ~ t be a non-trivial equation and let s ~ t € IdIC,.
Then, s =~ t is an Mpep-hyperidentity with respect to ICo if and only if G¢[s] ~
6’6[t] € IdlCQ and (3'8[8] ~ a'g[t] € [d’Cg

Proof. If s ~ t is an Mp.p-hyperidentity with respect to Ky, then 6¢[s] ~
gglt] € 1dKy and dg[s| =~ ds[t] € IdKy. Conversely, assume that s ~ ¢ is an
identity in K9 and that 6¢[s] ~ d¢[t], and ds[s] ~ ds[t] are also identities in Ky,
too. We have to prove that s ~ t is closed under all graph hypersubstitutions
from Mycs. If 0 € {00, 010,012}, then o is a proper hypersubstitution. Hence
o[s] = alt] € IdKy. By assumption, dg[s] =~ d4[t] and ds[s] ~ dg[t] are also
identities in Co. Since d1[s| = L(s) = L(t) = &1[t] and a3[s| = L(s)L(s) =
L(t)L(t) = a3[t], we have 61[s] = 61[t] € IdKy and 63[s| = 3[t] € 1dICq. Since
T6~Ics 014, O8~ic,016 and ojg~ic,018. We get that o[s| = d[t] € IdKy for all
o € {o14,016,018}. Hence, s ~ t is an Mp.p-hyperidentity with respect to
Ko. O]

Theorem 5.3. Let s =~ t be a non-trivial equation and let s =t € IdK; i =
10,12. Then, s =t is an Mp.s-hyperidentity with respect to K; if and only if
5’6[8] ~ &G[t] S IdlCZ

Proof. The proof is similar to the proof of Theorem 5.2. 0

For Moy-hyperidentity. Since Mo, = {00, 06, 0s, 010, 016, 018}, let K be
any triregular leftmost without loop and reverse arc graph variety and for any
s~ t e IdC. We see that if s =~ t is a trivial term equation, then s ~ t is
an Mo,-hyperidentity with respect to K. For the case s &~ t is a non-trivial
equation, since Mo, C Mpcs, so we can check that it has the same results as
M7, p-hyperidentity.

For Mp.q-hyperidentity. Since Mg, = {00, 05, 06, 07, 08, 09, 010, T11, 12,
013, 014, 015, 016, 017, 018, 019 }, let K be any triregular leftmost without loop
and reverse arc graph variety and for any s ~ t € IdK. We see that if s ~ t
is a trivial term equathion, then s ~ t is an Mpg.,-hyperidentity with respect
to IC. For the case s ~ t is a non-trivial equation. We get the same result as
hyperidentity which we can see the prove in [14].
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Theorem 5.4. An identity s =t in K € {Ko, K1,Ka, ..., Ks, K11}, where s =~ t
is a non-trivial equation is an Mpcq-hyperidentity with respect to K if and only
if 05(s] = d5[t] is also an identity in K.

Theorem 5.5. An identity s =~ t in Ky, where s =t is a non-trivial equation
is an Mpeq-hyperidentity with respect to Ky if and only if 65[s] = 65[t], d6[s] ~
gglt], o7]s] = 07[t], ds[s] = ds[t] and G9[s] = G9[t] are also identities in Ky.

Theorem 5.6. An identity s =~ t in K € {Kq9, K12}, where s =~ t is a non-
trivial equation is an Mpeq-hyperidentity with respect to IC if and only if 65[s] ~
as(t], o6ls] = d¢[t] and o¢[s| = 7[t] are also identities in K.

For Mp,.-hyperidentity. Since Mp,. = {09, 03, 04, 05, 06, 07, 03, 9, 010, O11
, 012, 013, 014, 015, 016, 017, 018, 019 }, let K be any triregular leftmost without
loop and reverse arc graph variety and for any s =~ ¢t € IdKC. We see that
if s &~ t is a trivial term equation, then s ~ t is an Mp,.-hyperidentity with
respect to K if and only if s and ¢ have the same leftmost variable and the
same rightmost variable. For the case s ~ t is non-trivial equation, since
Mpgey = Mpye — {03,04}, we have the same results as Mp.,-hyperidentity.

For Mp;gne-hyperidentity. Since Mpgigne = {00, 02, 04, 06, 07, 05, 010, 011, 013
, 015, 016, 017, 018, 019 }, let I be any triregular leftmost without loop and re-
verse arc graph variety and for any s &~ t € IdKC. We see that if s ~ t is a
trivial term equation, then s ~ t is an Mpg;gn-hyperidentity with respect to K
if and only if they have the same rightmost variables. So, we will consider the
case s ~ t is non-trivial equation. We characterize Mp;qn-hyperidentity with
respect to all triregular leftmost without loop and reverse arc graph varieties
as the following theorems:

Theorem 5.7. Let s ~ t be a non-trivial equation and let s ~ t € IdK;,
i = 0,8 Then, s =t is an Mp;gni-hyperidentity with respect to K; if and only
if 07(s] & G7[t], o13(s] & 013[t] and 617[s] = G17[t] are also identities in IC;.

Proof. Consider for og, let s ~ t is an Mp;gn-hyperidentity with respect to
Ks. We have 67[s] = 67[t], 013[s] ~ d13[t] and 617[s] = G17[t] are also identities
in IC;. Conversely, assume that s ~ ¢ is an identity in Kg and that 67[s] ~
o7[t],013[s] = 013[t] and G17[s] ~ G17[t] are also identities in Kg. We have to
prove that s ~ ¢ is closed under all graph hypersubstitutions from Mpg;gp.
If o € {00, 06,08, 010,012, 014, 016, 018}, then o is a proper hypersubstitution.
Hence d[s] =~ d[t] € IdKs. By assumption, Kg and that 67[s] = d7[t], d13[s] =
o13[t] and a17[s] & &17[t] are also identities in Ks. Hence, R(s) = L(d7[s]) =
L(o7[t]) = R(t). Since d3[s] = R(s) = R(t) = 63[t] and d4[s] = R(s)R(s) =
R(t)R(t) = 64[t], we have 5[s] = dy[t] € [dKs and 64s] ~ d4[t] € [dKs.
Since o1gon07 = 011, 0120N07 = 015, 01208011 = 019 and d1g, 012 are proper
hypersubstitution, we have that &11[s] & 611[t], d15[s] ~ F15[t] and G19[s] ~
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019[t] are identities in Kg. Hence, s ~ t is an M,;4,,-hyperidentity with respect
to Ko. The proof of Ky graph variety is similar to the proof of Ks. O

Theorem 5.8. Let s ~ t be a non-trivial equation and let s ~ t € IdK;,
t=1,11 Then, s =t is an Mpign:-hyperidentity with respect to K; if and only

Proof. Consider for Ky, let s = t is an Mg;4n-hyperidentity with respect to ;.
We have d;[s| = d7[t] € IdKC;. Conversely, assume that s ~ t is an identity in
K1 and that o;[s| = d7[t] € IdIC;. We have to prove that s ~ ¢ is closed under
all graph hypersubstitutions from Mp;gn.. If 0 € {09, 06, 05}, then o is a proper
hypersubstitution. Hence [s] ~ d[t| € IdK,. By assumption, 7[s] ~ &7[t]
is also an identity in IC;. Hence, R(s) = L(07[s]) = L(d7[t]) = R(t). Since
dals] = R(s) = R(t) = 69t] and 64[s] = R(s)R(s) = R(t)R(t) = d4[t], we have
Gals] & Go[t] € IdIC, and 64[s] = G4[t] € IdICy. Since og~ic, 010~ K, 0167~Kc, 018
and o7~c, 011~Kc, 013710, 015~ K0, 01771, 019. - We get that 6[s] ~ a[t] € 1dK,
for all o € {o10,011,013,015, 016, 017,018, 019}. Hence, s ~ t is an My.p-
hyperidentity with respect to ;. The proof of Ky; graph variety is similar to
the proof of IC;. 0

Theorem 5.9. Let s =~ t be a non-trivial equation and let s =~ t € 1dK;,
it =2,3,4,7 Then, s = t is an Mpgign:-hyperidentity with respect to K; if and
only if 67(s] =~ o7[t] € 1dK;.

Proof. Consider for Ks, let s = t is an Mg;4n-hyperidentity with respect to ;.
We have d;[s] = d7[t] € IdK;3. Conversely, assume that s ~ ¢ is an identity in
K3 and that g;[s| = g;[t] € IdK3. We have to prove that s & t is closed under
all graph hypersubstitutions from Mpggn. If 0 € {00, 06}, then o is a proper
hypersubstitution. Hence [s] = ¢[t] € IdKs. By assumption, d7[s] =~ d7[t] is
also an identity in IC3. Hence, R(s) = L(d7[s]) = L(6+[t]) = R(t). Since d5[s] =
R(s) = R(t) = 62[t] and 64[s| = R(s)R(s) = R(t)R(t) = 64][t], we have Gs[s] ~
golt] € 1dKs and 64(s] = a4[t] € 1dKs. Since og~ic,08~is010™~K5016™~ K5 018
and 07~ e, 011~ 1c, 013~ K 015~ K 017~ 019.  We get that a[s] ~ d[t] € IdK;
for all o € {05, 010,011, 013, 015, 016, 017, 018, 019} Hence, s &~ ¢ is an Mpjgns-
hyperidentity with respect to K3. The proof of other graph varieties are similar
to the proof of KCs. O

Theorem 5.10. Let s = t be a non-trivial equation and let s ~ t € [dKs.
Then, s &t is an Mpign:-hyperidentity with respect to Ks if and only if 67[s] ~
aq[t] € IdCs.

Proof. If s ~ t is an Mp,gn-hyperidentity with respect to K5, then 7[s] ~
o-[t] € IdKs. Conversely, assume that s ~ t is an identity in K5 and that
o7[s] = a¢[t] is also an identity in K5, too. We have to prove that s ~ ¢ is closed
under all graph hypersubstitutions from Mpgign:. If 0 € {09, 06,03, 010, 012},
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then o is a proper hypersubstitution. Hence, 6[s] ~ &[t] € I[dK5. By assump-
tion, d7[s] & d¢[t] is also an identity in KCs. Hence, d;[s] = R(s) = R(t) = o7[t].
Since d9[s] = R(s) = R(t) = 63[t] and d4[s] = R(s)R(s) = R(t)R(t) = 64[t],
we have 0y[s] ~ 03[t] € IdKs and 64[s| ~ 64[t] € IdKs5. Since oigonor =
011, 0120807 = 015 and 019, 012 are proper hypersubstitution, we have that
o11[s] = a11[t] and 15[s] & 15[t] are identities in k5. Since 019~ 016~K;01s
and o3~ 015~k 017~k 019-  We get that &[s] =~ o[t] € IdKs for all o €
{013,015, 016, 017, 0158, 019 }. Hence, s = t is an Mp;gn-hyperidentity with re-
spect to Ks. 0

Theorem 5.11. Let s =~ t be a non-trivial equation and let s =~ t € IdIC,.
Then, s &~ t is an Mpgign:-hyperidentity with respect to Kg if and only if 6¢[s] ~
aglt], o7[s| ~ o7t], ds[s] =~ Gs[t], do[s] = do[t] and G13]s| ~ G13[t] are also
identities i 1dKCy.

Proof. Let s ~ t is an Mpg;gn-hyperidentity with respect to K9. Then, we
have 64[s] ~ d4t], d7[s| =~ G+[t], ds[s] ~ Gs[t], Go[s] = Go[t] and &13[s] =~ F13]t]
are also identities in IdICq. Conversely, assume that s ~ ¢ is an identity
in ICg and that a4[s] ~ &g[t], a7[s] =~ a7[t], ds]s| ~ as[t], do[s| ~ dg[t] and
013[s] & d13[t] are also identities in IdKCy. We have to prove that s & t is closed
under all graph hypersubstitutions from Mpg;gne. If 0 € {00, 010,012}, then o
is a proper hypersubstitution. Hence o[s| ~ d[t] € IdKe. By assumption,
asls| = aglt], o7[s] = a+[t], ds[s] = as[t], dols] = o[t] and G13[s] ~ G13]t]
are identities in IdCo. Hence, R(s) = L(d7[s]) = L(67[t]) = R(t). Since
gals] = R(s) = R(t) = do[t] and 64[s] = R(s)R(s) = R(t)R(t) = a4[t], we
have 0y(s] ~ Go[t] € IdKg and G4[s] ~ 64[t] € [dKy. Since oigonor = o3
and d19 is a proper hypersbstitution, we have that &q1[s] ~ d11[t] € TdK.
Since O07™VKe015, O08™~Kq0165 09™~Ke017y 010™K 10018 and 011™7K10019- We get that
o[s] =~ at] € 1dKg for all o € {o15,016,017,018,010}. Hence, s ~ t is an
Mpigni-hyperidentity with respect to KCy. O

Theorem 5.12. Let s =t be a non-trivial equation and let s ~t € IdIC; 1 =
10,12. Then, s =t is an Mpign-hyperidentity with respect to K; if and only if
agls| =~ aslt], o7[s| = a7[t], o13[s] = G13[t] and 617[s] = G17[t] are identities in

ICi.

Proof. Consider for Ky, let s = ¢ is an Mg;gn-hyperidentity with respect to
Ki0. Then, we have d¢[s] ~ dg[t], o7[s] ~ o7[t], 13]s] = d13[t] and 717[s] ~
o17[t] are identities in Kyg. Conversely, assume that s ~ ¢ is an identity in
K10 and that d4[s| = G¢[t], o7[s] = d7[t], d13[s] = G13[t] and G17[s] =~ G17[t] are
also identities in KCio. We have to prove that s = ¢ is closed under all graph
hypersubstitutions from Mp;gn.. If o € {00, 05, 010, 012, 016}, then o is a proper
hypersubstitution. Hence 6[s] ~ &[t] € I1dK;o. By assumption, d4[s| ~ &¢[t],
a7[s] & a7[t], 013[s] = d13[t] and Gy7[s] & G17[t] are identities in K. Hence,
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R(s) = L(o7[s]) = L(o7[t]) = R(t). Since d5[s| = R(s) = R(t) = 63[t] and
a4ls] = R(s)R(s) = R(t)R(t) = 64[t], we have 3[s] ~ d9[t] € IdKyo and
04[5] ~ 04lt] € IdKyp. Since ojgoyor = o011 and Gyp is a proper, we have
that 611[s] &~ &11[t] is an identity in K. Since o7~ 015, T10~K,,018 and
O11~K,,019- We get that ds] =~ ¢[t] € IdKy for all o € {015, 018, 019}. Hence,

~ t is an Mpgg-hyperidentity with respect to Kig. The proof of Kjy is
similar to the proof of K. ]
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