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Abstract

Let X = GM be a factorization of a group into a subgroup G and a
subsemigroup M with identity and a left inverse property. A bialgebra
H = kM �� k(G) with basis m⊗δg where m ∈ M and g ∈ G is called a
left Hopf algebra if there is a one-sided antipode map S such that S(m⊗
δg) = (m � g)L ⊗ δ(m�g)−1 . In this paper, we show that the quantum
double D(kM �� k(G)) can be generated by H = kM �� k(G) and
its dual H∗ = k(M) �� kG with specific cross relations. Moreover, an
interesting example for these left Hopf algebras is introduced.
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1 Introduction

If we talk about non-commutative and non-cocommutative Hopf algebras
we should mention the bicrossproducts that are associated to a factorization
of groups. These bicrossproduct Hopf algebras can be applied in the quan-
tum mechanics, geometry and the interrelation between them (see [9]). Many
authors discussed and analyzed these algebras and their dual (see [1], [2] and
[4]).

For a finite-dimensional Hopf algebra H , the quantum double is a Hopf
algebra double-crossproduct D(H) = H∗op �� H . More precisely, it is a
Hopf algebra factorising into H∗op and H and given via a double-semidirect
product by mutual coadjoint actions of these two factors on each other. This

1This research was supported by the Deanship of Scientific Research, King Abdulaziz
University, Jeddah, Project No. 484/ 130 /1431.
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formulation is from [8] which is based on the work of Drinfeld [5].

Beggs et al. [3] computed the quantum double for the bicrossproduct Hopf
algebras associated to a factorization of a finite group into two subgroups.

Green et al. [7] defined a left Hopf algebra to be a k-bialgebra (B, m, Δ, η, ε :
k) with a left antipode S, i.e., S ∈ Homk(B, B) and S ∗ id = ηε.

In this paper, we continue what we have started in [6] and generalize some
results of [3] using this definition of left Hopf algebras in a specific case. Explic-
itly, for a left Hopf algebra H = kM �� k(G) associated to the factorization
X = GM of a group X into a subgroup G and a subsemigroup M with identity
and left inverse property, we show that the quantum double D(kM �� k(G))
can be generated by H = kM �� k(G) and its dual H∗ = k(M) �� kG with
specific cross relations, where k(G) is the Hopf algebra of function on G and
kM is the semigroup left Hopf algebra of M .

2 Preliminaries and Definitions

In this section we present some basic concepts and definitions from [3], [6]
and [8] that will be used later.

Let X = GM be a group which factorizes into a subgroup G and a
subsemigroup with identity M . Then M acts on G through the left action
�: M × G → G and G acts on M through the right action �: M × G → M .
These actions are defined by the unique factorization

mg = (m � g)(m � g),

where m ∈ M and g ∈ G. Comparing with [3], it can be easily shown that
these actions satisfy the following equalities for all m,m

′ ∈ M and g, g
′ ∈ G :

m � e = m, (m � g) � g
′
= m � (gg

′
); e � g = e,

(mm
′
) � g = (m � (m

′ � g))(m
′ � g),

e � g = g, m � (m
′ � g) = (mm

′
) � g; m � e = e,

m � (gg
′
) = (m � g)((m � g) � g

′
).
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We can associate to this factorization a bicrossproduct bialgebra H =
kM �� k(G) with basis m ⊗ δg where m ∈ M and g ∈ G. The product,
unit, coproduct and counit are defined as follows:

(m ⊗ δg)(m
′ ⊗ δg′ ) = δg,m′

�g′ (mm
′ ⊗ δg′ ),

1H =
∑

g

e ⊗ δg ,

Δ(m ⊗ δg) =
∑

x,y∈G:xy=g

m ⊗ δx ⊗ (m � x) ⊗ δy ,

εH(m ⊗ δg) = δg,e .

If there exists a left inverse mL ∈ M for each m ∈ M , then H becomes a
left Hopf algebra and the left antipode will be given by:

S(m ⊗ δg) = (m � g)L ⊗ δ(m�g)−1 .

It can be noted that H = kM �� k(G) has the smash product algebra
structure by the induced action of M and the smash coproduct coalgebra
structure by the induced coaction of G.

For the notation H = kM �� k(G), kM is the semigroup left Hopf algebra
of the semigroup M with identity and the left inverse property. A basis of
kM is given by the elements of M, with multiplication given by the semigroup
product in M , and comultiplication given by Δm = m ⊗ m for m ∈ M. Also,
k(G) is the Hopf algebra of functions on G with basis given by δg for g ∈ G.
The product is just multiplication of functions, and the coproduct is

Δδg =
∑

x,y∈G:xy=g

δx ⊗ δy.

Moreover, a dual bicrossproduct bialgebra H∗ = k(M) �� kG can be
defined with basis δm ⊗ g where m ∈ M and g ∈ G. The product, unit,
coproduct and counit are defined as follows:

(δm ⊗ g)(δm′ ⊗ g
′
) = δm�g,m′ (δm ⊗ gg

′
),
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1H∗ =
∑
m

δm ⊗ e ,

Δ(δm ⊗ g) =
∑

a,b∈M :ab=m

(
δa ⊗ (b � g)

) ⊗ (δb ⊗ g) ,

εH∗(δm ⊗ g) = δm,e .

If there exists a left inverse mL ∈ M for each m ∈ M , then H∗ becomes a
left Hopf algebra and the left antipode will be given by:

S(δm ⊗ g) = δ(m�g)L ⊗ (m � g)−1 .

Definition 2.1 Let X = GM be a factorization of a group into a subgroup G
and a subsemigroup M with identity and a left inverse property. A bialgebra
H = kM �� k(G) with basis m ⊗ δg where m ∈ M and g ∈ G is called a left
Hopf algebra if there is a left antipode S such that

S(m ⊗ δg) = (m � g)L ⊗ δ(m�g)−1 .

Definition 2.2 Given any two groups X and Y (not necessarily subgroups of
a given group) and a group homomorphism ϕ : Y → Aut(X), the new group
X �ϕ Y (or simply X × Y ) is called the semidirect product of X and Y with
respect to ϕ with an operation * defined by

(x1, y1) ∗ (x2, y2) = (x1ϕ(y1)(x2), y1y2)

for all x1, x2 ∈ X and y1, y2 ∈ Y .

3 Example

Here we try to illustrate the concept of the generalized bicrossproduct
bialgebras and the left bicrossproduct Hopf algebras by the following example:

Example 3.1 Consider the set X =

{ (
a b
c d

)
| a, b, c, d ∈ R, ad−bc = 1

}
.

It easy to check that X is an associative group under the usual matrices multi-

plication with identity equal to the usual 2 × 2 identity matrix I =

(
1 0
0 1

)
.
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For any element A =

(
a1 b1

c1 d1

)
∈ X, the inverse is A−1 =

(
d1 −b1

−c1 a1

)
∈

X.

Now, we take a subset G of X to be G =

{ (
u −v
v u

)
| u, v ∈ R, u2+v2 =

1

}
. One can check that G is a subgroup of X. Indeed if U =

(
u1 −v1

v1 u1

)
and V =

(
u2 −v2

v2 u2

)
are elements in G, then

U · V =

(
u1 −v1

v1 u1

)
·
(

u2 −v2

v2 u2

)
=

(
u1u2 − v1v2 −u1v2 − v1u2

u2v1 + u1v2 −v1v2 + u1u2

)
=

(
u1u2 − v1v2 −(v1u2 + u1v2)
v1u2 + u1v2 u1u2 − v1v2

)
,

with u2
1 + v2

1 = 1 and u2
2 + v2

2 = 1. To verify that U · V is in G, we calculate

(u1u2 − v1v2)
2 + (v1u2 + u1v2)

2 = u2
1u

2
2 + v2

1v
2
2 + v2

1u
2
2 + u2

1v
2
2

= u2
1(u

2
2 + v2

2) + v2
1(u

2
2 + v2

2)

= (u2
1 + v2

1)(u
2
2 + v2

2) = 1 · 1 = 1.

So, G is closed under the usual matrices multiplication. Next, for an element

Ú =

(
ú −v́
v́ ú

)
∈ G the inverse element is Ú−1 = 1

ú2+v́2

(
ú v́
−v́ ú

)
=(

ú v́
−v́ ú

)
∈ G.

Now, we take the subset M of X to be M =

{ (
1 0
t 1

)
| t ∈ R, t ≥ 0

}
.

We show that M is a semigroup of X with identity. Let S =

(
1 0
t1 1

)
and

T =

(
1 0
t2 1

)
be elements of M . Then

S · T =

(
1 0
t1 1

)
·
(

1 0
t2 1

)
=

(
1 0

t1 + t2 1

)
,

with t1 ≥ 0 and t2 ≥ 0 that implies t1 + t2 ≥ 0. Hence, S ·T ∈ M . The identity

matrix I =

(
1 0
0 1

)
is in M . However, M does not have an inverse element

for each Ś ∈ M . So M is not a subgroup of X.
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Next, if we take U =

(
u1 −v1

v1 u1

)
∈ G and S =

(
1 0
t1 1

)
∈ M , then

U · S =

(
u1 −v1

v1 u1

)
·
(

1 0
t1 1

)
=

(
u1 − v1t1 −v1

v1 + u1t1 u1

)
∈ X ,

where u1
2 +v1

2 = 1, t1 > 0 and u1, v1, t1 ∈ R. It is clear that G ·M ⊆ X. Now
we can forget our original group X and put X́ = G · M . It can be noted that
X́ is just a subset of X and not necessarily a subgroup. So we can construct a
generalized bicrossproduct bialgebra form G and M to be H = RM �� R(G).
If, somehow, we can define a left antipode S on the generalized bicrossproduct
bialgebra H = RM �� R(G), then the left bicrossproduct Hopf algebra is
obtained.

4 The Quantum Double

For a finite-dimensional left Hopf algebra H , the quantum double is a left
Hopf algebra double-crossproduct D(H) = H∗op �� H . More precisely, it is a
left Hopf algebra factorising into H∗op and H and given via a double-semidirect
product by mutual coadjoint actions of these two factors on each other. This
formulation is based on the work of Majid [8] which is itself based on the work
of Drinfeld [5]. More specifically, it is built on H∗ ⊗ H as a linear space with
product

(ĥ∗ ⊗ h)(h̃∗ ⊗ h′) = Σ〈Sh̃∗
(1), h(1)〉h̃∗

(2)ĥ
∗ ⊗ h(2)h

′〈h̃∗
(3), h(3)〉 (1)

ĥ∗, h̃∗ ∈ H∗, h, h′ ∈ H.

The formulas for tensor product unit, counit, coproduct, and antipode are
given by:

1D(H) = 1H∗ ⊗ 1H ,

εD(H) = εH∗ ⊗ εH ,

ΔD(H) = (id ⊗ τ ⊗ id) ◦ (Δ ◦ Δ),

SD(H)(ĥ
∗ ⊗ h) = (1 ⊗ Sh)(S−1ĥ∗ ⊗ 1),

where τ(ĥ∗ ⊗ h) = h ⊗ ĥ∗. The Hopf algebra structure takes the double cross
product from the formula

(ĥ∗ ⊗ h)(h̃∗ ⊗ h′) =
∑

(h(1) � h̃∗
(1))ĥ

∗ ⊗ (h(2) � h̃∗
(2))h

′. (2)
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The required mutual coadjiont actions are defined by

h � ĥ∗ =
∑

ĥ∗
(2)〈h,

(
Sĥ∗

(1)

)
ĥ∗

(3)〉, (3)

h � ĥ∗ =
∑

h(2)〈ĥ∗,
(
Sh(1)

)
h(3)〉, (4)

where ĥ∗ ∈ H∗ and h ∈ H .

It can be noted that in all these formulas, the expressions are given in
terms of the Hopf algebras H and H∗. Also, for h ∈ H and ĥ∗ ∈ H∗, we have
〈S(h), S(ĥ∗)〉 = 〈h, ĥ∗〉.

Proposition 4.1 Let H = kM �� k(G) be a left Hopf algebra associated to a
factorization of a group X = GM into a subgroup G and a subsemigroup M
with identity and a left inverse property. Then the formula for the action of
H = kM �� k(G) on its dual H∗ = k(M) �� kG is given by

(m1 ⊗ δg1) � (δm ⊗ g) = δg,(m�g)g1

(
δm′

1mm′
1

L ⊗ m′
1 � g

)
,

where m,m1 ∈ M , g, g1 ∈ G, m1 ⊗ δg1 ∈ H, δm ⊗ g ∈ H∗ and m′
1 = m1 �

(m � g)−1.

Proof. Let ĥ∗ = δm ⊗ g ∈ H∗ and h = m1 ⊗ δg1 , we calculate

(Δ ⊗ id)Δ(δm ⊗ g) = (Δ ⊗ id)
∑

a,b∈M :ab=m

(
δa ⊗ (b � g)

)
⊗

(
δb ⊗ g

)
=

∑
a,b∈M :ab=m

Δ
(
δa ⊗ (b � g)

)
⊗ id(δb ⊗ g)

=
∑

a,b∈M :ab=m

( ∑
c,d∈M :cd=a

(
δc ⊗ (d � (b � g))

)⊗ (
δd ⊗ (b � g)

)) ⊗ (δb ⊗ g)

=
∑

c,d,b∈M :cdb=m

(
δc ⊗ ((db) � g)

) ⊗ (
δd ⊗ (b � g)

) ⊗ (δb ⊗ g).

This yields

ĥ∗
(1) = δc ⊗ (db � g),

ĥ∗
(2) = δd ⊗ (b � g),

ĥ∗
(3) = δb ⊗ g.
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Now, if we substitute these values into equation (3) we get h�ĥ∗ =
∑

ĥ∗
(2)〈h, (Sĥ∗

(1))ĥ
∗
(3)〉,

or equivalently

(m1 ⊗ δg1) � (δm ⊗ g) =
∑

cdb=m

(δd ⊗ (b � g))〈m1 ⊗ δg1 , S(δc ⊗ (db � g))(δb ⊗ g)〉

=
∑

cdb=m

(δd ⊗ (b � g))
〈
m1 ⊗ δg1,

(
δ(c�(db�g))L ⊗ (c � (db � g))−1

)
(δb ⊗ g)

〉
=

∑
cdb=m

(δd ⊗ (b � g))
〈
m1 ⊗ δg1,

(
δcL�(m�g) ⊗ (m � g)−1

)
(δb ⊗ g)

〉

=
∑

cdb=m

(δd ⊗ (b � g))
〈
m1 ⊗ δg1, δ(cL�(m�g))�(m�g)−1 ,b

(
δcL�(m�g) ⊗ (m � g)−1g

)〉
=

∑
cdb=m

(δd ⊗ (b � g))
〈
m1 ⊗ δg1, δcL,b

(
δcL�(m�g) ⊗ (m � g)−1g

)〉
=

∑
cdb=m

(δd ⊗ (b � g)) δcL,b

〈
m1 ⊗ δg1 ,

(
δcL�(m�g) ⊗ (m � g)−1g

)〉
=

∑
cdb=m

(δd ⊗ (b � g)) δcL,b δm1,cL�(m�g) δg1,(m�g)−1g.

To have a non-trivial answer we must have cL = b. So we get

(m1 ⊗ δg1) � (δm ⊗ g) = δg1,(m�g)−1g

∑
cdcL=m

(δd ⊗ (cL � g))δm1,cL�(m�g). (5)

To obtain the desired action we solve for c which is fixed by the delta function
inside the summation. We should have m1 = cL � (m � g), or equivalently

m1 � (m � g)−1 = cL � (m � g) � (m � g)−1,

which implies
m1 � (m � g)−1 = cL = m′

1.

Also, we have cdcL = m which can recalculated to be d = cLmc = m′
1mm

′L
1 .

Therefore, equation (5) can be rewritten as

(m1 ⊗ δg1) � (δm ⊗ g) = δg1,(m�g)−1g(δd ⊗ (cL � g)

= δg1,(m�g)−1g(δm′
1mm

′L
1
⊗ (m′

1 � g))

= δg,(m�g)g1

(
δm′

1mm′
1

L ⊗ m′
1 � g

)
,

as required. �

Proposition 4.2 Let H = kM �� k(G) be a left Hopf algebra associated to a
factorization of a group X = GM into a subgroup G and a subsemigroup M
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with identity and a left inverse property. Then the formula for the action of
H∗ = k(M) �� kG on its dual H = kM �� k(G) is given by

(m1 ⊗ δg1) � (δm ⊗ g) = δm�g,m
′L
1 (m1�g1)

(
m′

1 ⊗ δ(m�g)g1g−1

)
,

where m,m1 ∈ M , g, g1 ∈ G, m1 ⊗ δg1 ∈ H, δm ⊗ g ∈ H∗ and m′
1 =

m1 � (m � g)−1.

Proof. Let ĥ∗ = δm⊗g ∈ H∗ and h = m1⊗δg1 ∈ H , we calculate (Δ⊗id)Δ(h)
as follows:

(Δ ⊗ id)Δ(h) = (Δ ⊗ id)Δ(m1 ⊗ δg1)

= (Δ ⊗ id)
( ∑

x,y∈G:xy=g1

(m1 ⊗ δx) ⊗ ((m1 � x) ⊗ δy)
)

=
∑

x,y∈G:xy=g1

Δ(m1 ⊗ δx) ⊗ id
(
(m1 � x) ⊗ δy

)
=

∑
x,y∈G:xy=g1

( ∑
w,z∈G:wz=x

(m1 ⊗ δw) ⊗ (m1 � w) ⊗ δz

)
⊗ (m1 � x) ⊗ δy

=
∑

wzy=g1

(m1 ⊗ δw) ⊗ (
(m1 � w) ⊗ δz

) ⊗ (
(m1 � wz) ⊗ δy

)
.

From the last equation we get the following summands:

h(1) = m1 ⊗ δw,

h(2) = (m1 � w) ⊗ δz,

h(3) = (m1 � wz) ⊗ δy.

Now, if we substitute these values into equation (4) we get h�ĥ∗ =
∑

h(2)〈(Sh(1))h(3), ĥ
∗〉,



1834 M. M. Al-Shomrani

or equivalently

(m1 ⊗ δg1) � (δm ⊗ g) =
∑

wzy=g1

((m1 � w) ⊗ δz)〈S(m1 ⊗ δw)(m1 � wz ⊗ δy), δm ⊗ g〉

=
∑

wzy=g1

((m1 � w) ⊗ δz)
〈(

(m1 � w)L ⊗ δ(m1�w)−1

)
(
(m1 � wz) ⊗ δy

)
, δm ⊗ g

〉
=

∑
wzy=g1

((m1 � w) ⊗ δz)
〈
δ(m1�w)−1,(m1�wz)�y

(
(m1 � w)L(m1 � wz) ⊗ δy

)
, δm ⊗ g

〉
=

∑
wzy=g1

((m1 � w) ⊗ δz)δ(m1�w)−1,(m1�wz)�y〈
(m1 � w)L(m1 � wz) ⊗ δy, δm ⊗ g

〉
=

∑
wzy=g1

((m1 � w) ⊗ δz)δ(m1�w)−1,(m1�wz)�yδ(m1�w)L(m1�wz),mδy,g.

(6)

To have a non-trivial answer we must have y = g. Consequently, we have
wzg = g1 which implies wz = g1g

−1. Hence, the last form of equation (6) can
be rewritten as

(m1 ⊗ δg1) � (δm ⊗ g) =
∑

wz=g1g−1

((m1 � w) ⊗ δz)δ(m1�w)−1,(m1�g1g−1)�gδ(m1�w)L(m1�g1g−1),m.

(7)

Next we solve these equations for w and z. We need the following calculations
for the double-crossproduct groups:

(m1 � w) � w−1 = (m1 � (ww−1))(m1 � w)−1

= (m1 � e)(m1 � w)−1

= e(m1 � w)−1

= (m1 � w)−1.

(8)

Next,

mL
1 � (m1 � w) = ((mL

1 m1) � w)(m1 � w)L

= (e � w)(m1 � w)L

= e(m1 � w)L = (m1 � w)L.

(9)
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Now, by the Kronecker map we have: (m1 � w)−1 = (m1 � g1g
−1) � g and

m = (m1 � w)L(m1 � g1g
−1). Using equation (8), we get (m1 � w) � w−1 =

(m1 � g1g
−1) � g, or equivalently

w−1 = (m1 � w)L � ((m1 � g1g
−1) � g)

= (m1 � w)L(m1 � g1g
−1) � g

= m � g.

Thus
w = (m � g)−1,

wz = g1g
−1 ⇒ z = w−1g1g

−1 = (m � g)g1g
−1,

and
m1 � w = m1 � (m � g)−1 = m′

1.

The second delta function in the summation of equation (7) can be simplified
noting that

(m1 � w)L(m1 � g1g
−1) = m

′L
1 (m1 � g1) � g−1.

Therefore,

(m1 ⊗ δg1) � (δm ⊗ g) =
∑

wz=g1g−1

(
(m1 � w) ⊗ δz

)
δ(m1�w)−1,(m1�g1g−1)�gδ(m1�w)L(m1�g1g−1),m

=
∑

wz=g1g−1

(
m′

1 ⊗ δ(m�g)g1g−1

)
δ(m1�w)−1,(m1�g1g−1)�gδm

′L
1 (m1�g1)�g−1,m

or equivalently

(m1 ⊗ δg1) � (δm ⊗ g) = m′
1 ⊗ δ(m�g)g1g−1δm�g,m

′L
1 (m1�g1)

= δm�g,m
′L
1 (m1�g1)

(
m′

1 ⊗ δ(m�g)g1g−1

)
,

as required. �

Theorem 4.3 Let H = kM �� k(G) be a left Hopf algebra associated to a
factorization of a group X = GM into a subgroup G and a subsemigroup M
with identity and a left inverse property. Then the quantum double D(kM �
� k(G)) is generated by H = kM �� k(G) and H∗ = k(M) �� kG with cross
relations defined by the product

(1⊗m1⊗δg1)(δm⊗g⊗1) = δm′
1m(m1�g1g−1)L⊗(m1�g1g

−1)�g⊗m′
1⊗δ(m�g)g1g−1,

where m,m1 ∈ M , g, g1 ∈ G and m′
1 = m1 � (m � g)−1.
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Proof. Let h = m1 ⊗ δg1 ∈ H and ĥ∗ = δm ⊗ g ∈ H∗. We want to find out

(1⊗h)(ĥ∗⊗1) using equation (2). To do so, we need the following calculations:

Δ(m1 ⊗ δg1) =
∑

x,y∈G:xy=g1

m1 ⊗ δx ⊗ (m1 � x) ⊗ δy,

and

Δ(δm ⊗ g) =
∑

w,z∈M :wz=m

δw ⊗ (z � g) ⊗ δz ⊗ g.

These yield h(1) = m1 ⊗ δx , h(2) = (m1 � x) ⊗ δy , ĥ∗
(1) = δw ⊗ (z �

g) and ĥ∗
(2) = δz ⊗ g. Applying proposition 4.1, we obtain

h(1) � ĥ∗
(1) = (m1 ⊗ δx) � (δw ⊗ (z � g))

= δz�g,(w�(z�g))x

(
δm′

1wm
′L
1
⊗ m′

1 � (z � g)
)

= δz�g,(wz�g)x(δm′
1wm

′L
1
⊗ (m′

1z � g))

= δz�g,(m�g)x(δm′
1wm

′L
1
⊗ (m′

1z � g)),

where m′
1 = m1 � (w � (z � g))−1 = m1 � ((wz) � g))−1 = m1 � (m � g)−1,

since wz = m. Next, applying proposition 4.2 gives

h(2) � ĥ∗
(2) =

(
(m1 � x) ⊗ δy

)
� (δz ⊗ g)

= (m1 � x) � (z � g)−1 ⊗ δ(z�g)yg−1δ(m1�x)�y,(m1�x)(z�g)

= (m1 � x) � (z � g)−1 ⊗ δ(z�g)yg−1δ(m1�xy),(m1�x)(z�g)

= (m1 � x) � (z � g)−1 ⊗ δ(z�g)yg−1δ(m1�g1),(m1�x)(z�g)

= δm1�g1,(m1�x)(z�g)

(
(m1 � x) � (z � g)−1

) ⊗ δ(z�g)yg−1

= δm1�g1,(m1�x)(z�g) m′′
1 ⊗ δ(z�g)yg−1 ,

where m′′
1 = (m1 � x) � (z � g)−1. Now, formula (2) and these calculations

give

(1 ⊗ m1 ⊗ δg1)(δm ⊗ g ⊗ 1) =
∑

(h(1) � h̃∗
(1))1 ⊗ (h(2) � h̃∗

(2))1

=
∑

xy=g1,wz=m

δz�g,(m�g)xδm1�g1,(m1�x)(z�g)(
δm′

1wm
′L
1
⊗ (m′

1z � g) ⊗ m′′
1 ⊗ δ(z�g)yg−1

)
.

(10)

The delta functions in equation (10) imply that z�g = (m�g)x and m1�g1 =
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(m1 � x)(z � g). To simplify equation (10), we calculate the following:

m′
1z � g = (m′

1 � (z � g))(z � g)

=
((

m1 � (m � g)−1
)

� (z � g)
)
(z � g)

=
(
m1 � (m � g)−1(z � g)

)
(z � g)

=
(
m1 � (m � g)−1(m � g)x

)
(z � g)

= (m1 � x)(z � g) = m1 � g1,

or equivalently,

m′
1z = (m1 � g1) � g−1 = m1 � g1g

−1. (11)

Also, as z � g = (m � g)x and xy = g1, we have

(z � g)y = (m � g)xy = (m � g)g1, (12)

and

m′′
1 = (m1 � x) � (z � g)−1 = m1 � x(z � g)−1 = m1 � (m � g)−1 = m′

1.
(13)

Finally, as wz = m, we have m′
1wm

′L
1 = m′

1m(m1�g1g
−1)L. Substituting these

values in the right hand side of equation (10) gives

(1 ⊗ m1 ⊗ δg1)(δm ⊗ g ⊗ 1) = δm′
1m(m1�gg−1

1 )L ⊗ (m1 � g1g
−1) � g ⊗ m′

1 ⊗ δ(m�g)g1g−1 ,

as required. �
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