On Left Bicrossproduct Hopf Algebras¹

M. M. Al-Shomrani

Department of Mathematics King Abdulaziz University, Jeddah P.O. Box 80223, Jeddah 21589, Saudi Arabia malshomrani@hotmail.com

Abstract

Let X = GM be a factorization of a group into a subgroup G and a subsemigroup M with identity and a left inverse property. A bialgebra $H = kM \bowtie k(G)$ with basis $m \otimes \delta_g$ where $m \in M$ and $g \in G$ is called a left Hopf algebra if there is a one-sided antipode map S such that $S(m \otimes \delta_g) = (m \lhd g)^L \otimes \delta_{(m \rhd g)^{-1}}$. In this paper, we show that the quantum double $D(kM \bowtie k(G))$ can be generated by $H = kM \bowtie k(G)$ and its dual $H^* = k(M) \bowtie kG$ with specific cross relations. Moreover, an interesting example for these left Hopf algebras is introduced.

Mathematics Subject Classification: 18D10; 16W30

Keywords: Bicrossproduct, left Hopf algebra, factorization of finite groups

1 Introduction

If we talk about non-commutative and non-cocommutative Hopf algebras we should mention the bicrossproducts that are associated to a factorization of groups. These bicrossproduct Hopf algebras can be applied in the quantum mechanics, geometry and the interrelation between them (see [9]). Many authors discussed and analyzed these algebras and their dual (see [1], [2] and [4]).

For a finite-dimensional Hopf algebra H, the quantum double is a Hopf algebra double-crossproduct $D(H) = H^{*op} \bowtie H$. More precisely, it is a Hopf algebra factorising into H^{*op} and H and given via a double-semidirect product by mutual coadjoint actions of these two factors on each other. This

¹This research was supported by the Deanship of Scientific Research, King Abdulaziz University, Jeddah, Project No. 484/130/1431.

formulation is from [8] which is based on the work of Drinfeld [5].

Beggs et al. [3] computed the quantum double for the bicrossproduct Hopf algebras associated to a factorization of a finite group into two subgroups.

Green et al. [7] defined a left Hopf algebra to be a k-bialgebra $(B, m, \Delta, \eta, \epsilon : k)$ with a left antipode S, i.e., $S \in Hom_k(B, B)$ and $S * id = \eta \epsilon$.

In this paper, we continue what we have started in [6] and generalize some results of [3] using this definition of left Hopf algebras in a specific case. Explicitly, for a left Hopf algebra $H = kM \bowtie k(G)$ associated to the factorization X = GM of a group X into a subgroup G and a subsemigroup M with identity and left inverse property, we show that the quantum double $D(kM \bowtie k(G))$ can be generated by $H = kM \bowtie k(G)$ and its dual $H^* = k(M) \bowtie kG$ with specific cross relations, where k(G) is the Hopf algebra of function on G and kM is the semigroup left Hopf algebra of M.

2 Preliminaries and Definitions

In this section we present some basic concepts and definitions from [3], [6] and [8] that will be used later.

Let X = GM be a group which factorizes into a subgroup G and a subsemigroup with identity M. Then M acts on G through the left action $\triangleright: M \times G \to G$ and G acts on M through the right action $\triangleleft: M \times G \to M$. These actions are defined by the unique factorization

$$mg = (m \rhd g)(m \lhd g),$$

where $m \in M$ and $g \in G$. Comparing with [3], it can be easily shown that these actions satisfy the following equalities for all $m, m' \in M$ and $g, g' \in G$:

$$m \triangleleft e = m, (m \triangleleft g) \triangleleft g' = m \triangleleft (gg'); e \triangleleft g = e,$$

$$(mm') \lhd g = (m \lhd (m' \rhd g))(m' \lhd g),$$

$$e \triangleright g = g, m \triangleright (m' \triangleright g) = (mm') \triangleright g; m \triangleright e = e,$$

$$m \rhd (gg') = (m \rhd g)((m \lhd g) \rhd g').$$

We can associate to this factorization a bicrossproduct bialgebra $H = kM \bowtie k(G)$ with basis $m \otimes \delta_g$ where $m \in M$ and $g \in G$. The product, unit, coproduct and counit are defined as follows:

$$(m \otimes \delta_{g})(m^{'} \otimes \delta_{q^{'}}) = \delta_{q,m^{'} \rhd q^{'}}(mm^{'} \otimes \delta_{q^{'}}),$$

$$1_H = \sum_{q} e \otimes \delta_g \,,$$

$$\Delta(m \otimes \delta_g) = \sum_{x,y \in G: xy = g} m \otimes \delta_x \otimes (m \triangleleft x) \otimes \delta_y,$$

$$\epsilon_H(m \otimes \delta_a) = \delta_{a,e}$$
.

If there exists a left inverse $m^L \in M$ for each $m \in M$, then H becomes a left Hopf algebra and the left antipode will be given by:

$$S(m \otimes \delta_g) = (m \triangleleft g)^L \otimes \delta_{(m \triangleright g)^{-1}}.$$

It can be noted that $H = kM \bowtie k(G)$ has the smash product algebra structure by the induced action of M and the smash coproduct coalgebra structure by the induced coaction of G.

For the notation $H = kM \bowtie k(G)$, kM is the semigroup left Hopf algebra of the semigroup M with identity and the left inverse property. A basis of kM is given by the elements of M, with multiplication given by the semigroup product in M, and comultiplication given by $\Delta m = m \otimes m$ for $m \in M$. Also, k(G) is the Hopf algebra of functions on G with basis given by δ_g for $g \in G$. The product is just multiplication of functions, and the coproduct is

$$\Delta \delta_g = \sum_{x,y \in G: xy = g} \delta_x \otimes \delta_y.$$

Moreover, a dual bicrossproduct bialgebra $H^* = k(M) \bowtie kG$ can be defined with basis $\delta_m \otimes g$ where $m \in M$ and $g \in G$. The product, unit, coproduct and counit are defined as follows:

$$(\delta_m \otimes g)(\delta_{m'} \otimes g') = \delta_{m \leq q, m'}(\delta_m \otimes gg'),$$

$$1_{H^*} = \sum_m \delta_m \otimes e \,,$$

$$\Delta(\delta_m \otimes g) = \sum_{a,b \in M: ab = m} (\delta_a \otimes (b \triangleright g)) \otimes (\delta_b \otimes g),$$

$$\epsilon_{H^*}(\delta_m \otimes g) = \delta_{m,e}$$
.

If there exists a left inverse $m^L \in M$ for each $m \in M$, then H^* becomes a left Hopf algebra and the left antipode will be given by:

$$S(\delta_m \otimes g) = \delta_{(m \triangleleft g)^L} \otimes (m \triangleright g)^{-1}.$$

Definition 2.1 Let X = GM be a factorization of a group into a subgroup G and a subsemigroup M with identity and a left inverse property. A bialgebra $H = kM \bowtie k(G)$ with basis $m \otimes \delta_g$ where $m \in M$ and $g \in G$ is called a left Hopf algebra if there is a left antipode S such that

$$S(m \otimes \delta_g) = (m \triangleleft g)^L \otimes \delta_{(m \triangleright g)^{-1}}.$$

Definition 2.2 Given any two groups X and Y (not necessarily subgroups of a given group) and a group homomorphism $\varphi: Y \to Aut(X)$, the new group $X \rtimes_{\varphi} Y$ (or simply $X \times Y$) is called the semidirect product of X and Y with respect to φ with an operation * defined by

$$(x_1, y_1) * (x_2, y_2) = (x_1 \varphi(y_1)(x_2), y_1 y_2)$$

for all $x_1, x_2 \in X$ and $y_1, y_2 \in Y$.

3 Example

Here we try to illustrate the concept of the generalized bicrossproduct bialgebras and the left bicrossproduct Hopf algebras by the following example:

Example 3.1 Consider the set $X = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a,b,c,d \in \mathbb{R}, ad-bc = 1 \right\}$. It easy to check that X is an associative group under the usual matrices multiplication with identity equal to the usual 2×2 identity matrix $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

For any element $A = \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} \in X$, the inverse is $A^{-1} = \begin{pmatrix} d_1 & -b_1 \\ -c_1 & a_1 \end{pmatrix} \in X$.

Now, we take a subset G of X to be $G = \left\{ \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\ v & u \end{array} \right) \mid u,v \in \mathbb{R}, u^2 + v^2 = \left(\begin{array}{cc} u & -v \\$

1 \right\}. One can check that G is a subgroup of X. Indeed if $U = \begin{pmatrix} u_1 & -v_1 \\ v_1 & u_1 \end{pmatrix}$

and $V = \begin{pmatrix} u_2 & -v_2 \\ v_2 & u_2 \end{pmatrix}$ are elements in G, then

$$U \cdot V = \begin{pmatrix} u_1 & -v_1 \\ v_1 & u_1 \end{pmatrix} \cdot \begin{pmatrix} u_2 & -v_2 \\ v_2 & u_2 \end{pmatrix}$$

$$= \begin{pmatrix} u_1 u_2 - v_1 v_2 & -u_1 v_2 - v_1 u_2 \\ u_2 v_1 + u_1 v_2 & -v_1 v_2 + u_1 u_2 \end{pmatrix}$$

$$= \begin{pmatrix} u_1 u_2 - v_1 v_2 & -(v_1 u_2 + u_1 v_2) \\ v_1 u_2 + u_1 v_2 & u_1 u_2 - v_1 v_2 \end{pmatrix},$$

with $u_1^2 + v_1^2 = 1$ and $u_2^2 + v_2^2 = 1$. To verify that $U \cdot V$ is in G, we calculate

$$(u_1u_2 - v_1v_2)^2 + (v_1u_2 + u_1v_2)^2 = u_1^2u_2^2 + v_1^2v_2^2 + v_1^2u_2^2 + u_1^2v_2^2$$

$$= u_1^2(u_2^2 + v_2^2) + v_1^2(u_2^2 + v_2^2)$$

$$= (u_1^2 + v_1^2)(u_2^2 + v_2^2) = 1 \cdot 1 = 1.$$

So, G is closed under the usual matrices multiplication. Next, for an element $\dot{U} = \begin{pmatrix} \dot{u} & -\dot{v} \\ \dot{v} & \dot{u} \end{pmatrix} \in G \text{ the inverse element is } \dot{U}^{-1} = \frac{1}{\dot{u}^2 + \dot{v}^2} \begin{pmatrix} \dot{u} & \dot{v} \\ -\dot{v} & \dot{u} \end{pmatrix} = \begin{pmatrix} \dot{u} & \dot{v} \\ -\dot{v} & \dot{u} \end{pmatrix} \in G.$

Now, we take the subset M of X to be $M = \left\{ \begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix} \mid t \in \mathbb{R}, t \geq 0 \right\}$.

We show that M is a semigroup of X with identity. Let $S = \begin{pmatrix} 1 & 0 \\ t_1 & 1 \end{pmatrix}$ and

 $T = \begin{pmatrix} 1 & 0 \\ t_2 & 1 \end{pmatrix}$ be elements of M. Then

$$S \cdot T = \begin{pmatrix} 1 & 0 \\ t_1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ t_2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ t_1 + t_2 & 1 \end{pmatrix},$$

with $t_1 \geq 0$ and $t_2 \geq 0$ that implies $t_1 + t_2 \geq 0$. Hence, $S \cdot T \in M$. The identity matrix $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is in M. However, M does not have an inverse element for each $\acute{S} \in M$. So M is not a subgroup of X.

Next, if we take
$$U = \begin{pmatrix} u_1 & -v_1 \\ v_1 & u_1 \end{pmatrix} \in G$$
 and $S = \begin{pmatrix} 1 & 0 \\ t_1 & 1 \end{pmatrix} \in M$, then
$$U \cdot S = \begin{pmatrix} u_1 & -v_1 \\ v_1 & u_1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ t_1 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} u_1 - v_1t_1 & -v_1 \\ v_1 + u_1t_1 & u_1 \end{pmatrix} \in X$$
,

where $u_1^2 + v_1^2 = 1$, $t_1 > 0$ and $u_1, v_1, t_1 \in \mathbb{R}$. It is clear that $G \cdot M \subseteq X$. Now we can forget our original group X and put $\acute{X} = G \cdot M$. It can be noted that \acute{X} is just a subset of X and not necessarily a subgroup. So we can construct a generalized bicrossproduct bialgebra form G and M to be $H = \mathbb{R}M \bowtie \mathbb{R}(G)$. If, somehow, we can define a left antipode S on the generalized bicrossproduct bialgebra $H = \mathbb{R}M \bowtie \mathbb{R}(G)$, then the left bicrossproduct Hopf algebra is obtained.

4 The Quantum Double

For a finite-dimensional left Hopf algebra H, the quantum double is a left Hopf algebra double-crossproduct $D(H)=H^{*op}\bowtie H$. More precisely, it is a left Hopf algebra factorising into H^{*op} and H and given via a double-semidirect product by mutual coadjoint actions of these two factors on each other. This formulation is based on the work of Majid [8] which is itself based on the work of Drinfeld [5]. More specifically, it is built on $H^*\otimes H$ as a linear space with product

$$(\widehat{h}^* \otimes h)(\widetilde{h}^* \otimes h') = \Sigma \langle S\widetilde{h}_{(1)}^*, h_{(1)} \rangle \widetilde{h}_{(2)}^* \widehat{h}^* \otimes h_{(2)} h' \langle \widetilde{h}_{(3)}^*, h_{(3)} \rangle$$

$$(1)$$

$$\widehat{h}^*, \widetilde{h}^* \in H^*, h, h' \in H.$$

The formulas for tensor product unit, counit, coproduct, and antipode are given by:

$$1_{D(H)} = 1_{H^*} \otimes 1_H,$$

$$\epsilon_{D(H)} = \epsilon_{H^*} \otimes \epsilon_H,$$

$$\Delta_{D(H)} = (id \otimes \tau \otimes id) \circ (\Delta \circ \Delta),$$

$$S_{D(H)}(\widehat{h}^* \otimes h) = (1 \otimes Sh)(S^{-1}\widehat{h}^* \otimes 1),$$

where $\tau(\hat{h}^* \otimes h) = h \otimes \hat{h}^*$. The Hopf algebra structure takes the double cross product from the formula

$$(\widehat{h}^* \otimes h)(\widetilde{h}^* \otimes h') = \sum (h_{(1)} \rhd \widetilde{h}_{(1)}^*) \widehat{h}^* \otimes (h_{(2)} \lhd \widetilde{h}_{(2)}^*) h'. \tag{2}$$

The required mutual coadjiont actions are defined by

$$h \triangleright \widehat{h}^* = \sum \widehat{h}_{(2)}^* \langle h, (\widehat{S}\widehat{h}_{(1)}^*) \widehat{h}_{(3)}^* \rangle, \tag{3}$$

$$h \triangleleft \widehat{h}^* = \sum h_{(2)} \langle \widehat{h}^*, (Sh_{(1)}) h_{(3)} \rangle, \tag{4}$$

where $\hat{h}^* \in H^*$ and $h \in H$.

It can be noted that in all these formulas, the expressions are given in terms of the Hopf algebras H and H^* . Also, for $h \in H$ and $\widehat{h}^* \in H^*$, we have $\langle S(h), S(\widehat{h}^*) \rangle = \langle h, \widehat{h}^* \rangle$.

Proposition 4.1 Let $H = kM \bowtie k(G)$ be a left Hopf algebra associated to a factorization of a group X = GM into a subgroup G and a subsemigroup M with identity and a left inverse property. Then the formula for the action of $H = kM \bowtie k(G)$ on its dual $H^* = k(M) \bowtie kG$ is given by

$$(m_1 \otimes \delta_{g_1}) \rhd (\delta_m \otimes g) = \delta_{g,(m \rhd g)g_1} (\delta_{m'_1 m m'_1} \otimes m'_1 \rhd g),$$

where $m, m_1 \in M$, $g, g_1 \in G$, $m_1 \otimes \delta_{g_1} \in H$, $\delta_m \otimes g \in H^*$ and $m'_1 = m_1 \triangleleft (m \triangleright g)^{-1}$.

Proof. Let $\hat{h}^* = \delta_m \otimes g \in H^*$ and $h = m_1 \otimes \delta_{g_1}$, we calculate

$$(\Delta \otimes id)\Delta(\delta_{m} \otimes g) = (\Delta \otimes id) \sum_{a,b \in M:ab=m} \left(\delta_{a} \otimes (b \rhd g)\right) \otimes \left(\delta_{b} \otimes g\right)$$

$$= \sum_{a,b \in M:ab=m} \Delta\left(\delta_{a} \otimes (b \rhd g)\right) \otimes id(\delta_{b} \otimes g)$$

$$= \sum_{a,b \in M:ab=m} \left(\sum_{c,d \in M:cd=a} \left(\delta_{c} \otimes (d \rhd (b \rhd g))\right) \otimes \left(\delta_{d} \otimes (b \rhd g)\right)\right) \otimes (\delta_{b} \otimes g)$$

$$= \sum_{c,d,b \in M:cdb=m} \left(\delta_{c} \otimes ((db) \rhd g)\right) \otimes \left(\delta_{d} \otimes (b \rhd g)\right) \otimes (\delta_{b} \otimes g).$$

This yields

$$\widehat{h}_{(1)}^* = \delta_c \otimes (db \rhd g),$$

$$\widehat{h}_{(2)}^* = \delta_d \otimes (b \rhd g),$$

$$\widehat{h}_{(3)}^* = \delta_b \otimes g.$$

Now, if we substitute these values into equation (3) we get $h \triangleright \hat{h}^* = \sum \hat{h}_{(2)}^* \langle h, (S\hat{h}_{(1)}^*) \hat{h}_{(3)}^* \rangle$, or equivalently

$$(m_{1} \otimes \delta_{g_{1}}) \rhd (\delta_{m} \otimes g) = \sum_{cdb=m} (\delta_{d} \otimes (b \rhd g)) \langle m_{1} \otimes \delta_{g_{1}}, S(\delta_{c} \otimes (db \rhd g))(\delta_{b} \otimes g) \rangle$$

$$= \sum_{cdb=m} (\delta_{d} \otimes (b \rhd g)) \langle m_{1} \otimes \delta_{g_{1}}, \left(\delta_{(c \lhd (db \rhd g))^{L}} \otimes (c \rhd (db \rhd g))^{-1} \right) (\delta_{b} \otimes g) \rangle$$

$$= \sum_{cdb=m} (\delta_{d} \otimes (b \rhd g)) \langle m_{1} \otimes \delta_{g_{1}}, \left(\delta_{c^{L} \lhd (m \rhd g)} \otimes (m \rhd g)^{-1} \right) (\delta_{b} \otimes g) \rangle$$

$$= \sum_{cdb=m} (\delta_{d} \otimes (b \rhd g)) \langle m_{1} \otimes \delta_{g_{1}}, \delta_{(c^{L} \lhd (m \rhd g)) \lhd (m \rhd g)^{-1}, b} \left(\delta_{c^{L} \lhd (m \rhd g)} \otimes (m \rhd g)^{-1} g \right) \rangle$$

$$= \sum_{cdb=m} (\delta_{d} \otimes (b \rhd g)) \langle m_{1} \otimes \delta_{g_{1}}, \delta_{c^{L}, b} \left(\delta_{c^{L} \lhd (m \rhd g)} \otimes (m \rhd g)^{-1} g \right) \rangle$$

$$= \sum_{cdb=m} (\delta_{d} \otimes (b \rhd g)) \delta_{c^{L}, b} \langle m_{1} \otimes \delta_{g_{1}}, \left(\delta_{c^{L} \lhd (m \rhd g)} \otimes (m \rhd g)^{-1} g \right) \rangle$$

$$= \sum_{cdb=m} (\delta_{d} \otimes (b \rhd g)) \delta_{c^{L}, b} \delta_{m_{1}, c^{L} \lhd (m \rhd g)} \delta_{g_{1}, (m \rhd g)^{-1} g}.$$

To have a non-trivial answer we must have $c^L = b$. So we get

$$(m_1 \otimes \delta_{g_1}) \rhd (\delta_m \otimes g) = \delta_{g_1, (m \rhd g)^{-1}g} \sum_{cdc^L = m} (\delta_d \otimes (c^L \rhd g)) \delta_{m_1, c^L \lhd (m \rhd g)}.$$
 (5)

To obtain the desired action we solve for c which is fixed by the delta function inside the summation. We should have $m_1 = c^L \triangleleft (m \triangleright g)$, or equivalently

$$m_1 \lhd (m \rhd g)^{-1} = c^L \lhd (m \rhd g) \lhd (m \rhd g)^{-1},$$

which implies

$$m_1 \lhd (m \rhd g)^{-1} = c^L = m_1'.$$

Also, we have $cdc^L = m$ which can recalculated to be $d = c^L mc = m'_1 m m'_1^L$. Therefore, equation (5) can be rewritten as

$$(m_1 \otimes \delta_{g_1}) \rhd (\delta_m \otimes g) = \delta_{g_1,(m \rhd g)^{-1}g}(\delta_d \otimes (c^L \rhd g))$$

$$= \delta_{g_1,(m \rhd g)^{-1}g}(\delta_{m'_1 m m'_1 L} \otimes (m'_1 \rhd g))$$

$$= \delta_{g,(m \rhd g)g_1}(\delta_{m'_1 m m'_1 L} \otimes m'_1 \rhd g),$$

as required. \square

Proposition 4.2 Let $H = kM \bowtie k(G)$ be a left Hopf algebra associated to a factorization of a group X = GM into a subgroup G and a subsemigroup M

with identity and a left inverse property. Then the formula for the action of $H^* = k(M) \bowtie kG$ on its dual $H = kM \bowtie k(G)$ is given by

$$(m_1 \otimes \delta_{g_1}) \lhd (\delta_m \otimes g) = \delta_{m \lhd g, m_1'^L(m_1 \lhd g_1)} (m_1' \otimes \delta_{(m \rhd g)g_1g^{-1}}),$$

where $m, m_1 \in M$, $g, g_1 \in G$, $m_1 \otimes \delta_{g_1} \in H$, $\delta_m \otimes g \in H^*$ and $m'_1 = m_1 \triangleleft (m \triangleright g)^{-1}$.

Proof. Let $\hat{h}^* = \delta_m \otimes g \in H^*$ and $h = m_1 \otimes \delta_{g_1} \in H$, we calculate $(\Delta \otimes id)\Delta(h)$ as follows:

$$(\Delta \otimes id)\Delta(h) = (\Delta \otimes id)\Delta(m_1 \otimes \delta_{g_1})$$

$$= (\Delta \otimes id)\Big(\sum_{x,y \in G: xy = g_1} (m_1 \otimes \delta_x) \otimes ((m_1 \triangleleft x) \otimes \delta_y)\Big)$$

$$= \sum_{x,y \in G: xy = g_1} \Delta(m_1 \otimes \delta_x) \otimes id\Big((m_1 \triangleleft x) \otimes \delta_y\Big)$$

$$= \sum_{x,y \in G: xy = g_1} \Big(\sum_{w,z \in G: wz = x} (m_1 \otimes \delta_w) \otimes (m_1 \triangleleft w) \otimes \delta_z\Big) \otimes (m_1 \triangleleft x) \otimes \delta_y$$

$$= \sum_{wzy = g_1} (m_1 \otimes \delta_w) \otimes \Big((m_1 \triangleleft w) \otimes \delta_z\Big) \otimes \Big((m_1 \triangleleft wz) \otimes \delta_y\Big).$$

From the last equation we get the following summands:

$$h_{(1)} = m_1 \otimes \delta_w,$$

$$h_{(2)} = (m_1 \lhd w) \otimes \delta_z,$$

$$h_{(3)} = (m_1 \lhd wz) \otimes \delta_y.$$

Now, if we substitute these values into equation (4) we get $h \triangleleft \widehat{h}^* = \sum h_{(2)} \langle (Sh_{(1)})h_{(3)}, \widehat{h}^* \rangle$,

or equivalently

$$(m_{1} \otimes \delta_{g_{1}}) \triangleleft (\delta_{m} \otimes g) = \sum_{wzy=g_{1}} ((m_{1} \triangleleft w) \otimes \delta_{z}) \langle S(m_{1} \otimes \delta_{w})(m_{1} \triangleleft wz \otimes \delta_{y}), \delta_{m} \otimes g \rangle$$

$$= \sum_{wzy=g_{1}} ((m_{1} \triangleleft w) \otimes \delta_{z}) \langle ((m_{1} \triangleleft w)^{L} \otimes \delta_{(m_{1} \triangleright w)^{-1}}) \rangle$$

$$((m_{1} \triangleleft wz) \otimes \delta_{y}), \delta_{m} \otimes g \rangle$$

$$= \sum_{wzy=g_{1}} ((m_{1} \triangleleft w) \otimes \delta_{z}) \langle \delta_{(m_{1} \triangleright w)^{-1}, (m_{1} \triangleleft wz) \triangleright y} \rangle$$

$$((m_{1} \triangleleft w)^{L} (m_{1} \triangleleft wz) \otimes \delta_{y}), \delta_{m} \otimes g \rangle$$

$$= \sum_{wzy=g_{1}} ((m_{1} \triangleleft w) \otimes \delta_{z}) \delta_{(m_{1} \triangleright w)^{-1}, (m_{1} \triangleleft wz) \triangleright y} \rangle$$

$$\langle (m_{1} \triangleleft w)^{L} (m_{1} \triangleleft wz) \otimes \delta_{y}, \delta_{m} \otimes g \rangle$$

$$= \sum_{wzy=g_{1}} ((m_{1} \triangleleft w) \otimes \delta_{z}) \delta_{(m_{1} \triangleright w)^{-1}, (m_{1} \triangleleft wz) \triangleright y} \delta_{(m_{1} \triangleleft w)^{L} (m_{1} \triangleleft wz), m} \delta_{y,g}.$$

$$(6)$$

To have a non-trivial answer we must have y = g. Consequently, we have $wzg = g_1$ which implies $wz = g_1g^{-1}$. Hence, the last form of equation (6) can be rewritten as

$$(m_1 \otimes \delta_{g_1}) \lhd (\delta_m \otimes g) = \sum_{wz=g_1g^{-1}} ((m_1 \lhd w) \otimes \delta_z) \delta_{(m_1 \rhd w)^{-1}, (m_1 \lhd g_1g^{-1}) \rhd g} \delta_{(m_1 \lhd w)^L (m_1 \lhd g_1g^{-1}), m}.$$

$$(7)$$

Next we solve these equations for w and z. We need the following calculations for the double-crossproduct groups:

$$(m_{1} \triangleleft w) \triangleright w^{-1} = (m_{1} \triangleright (ww^{-1}))(m_{1} \triangleright w)^{-1}$$

$$= (m_{1} \triangleright e)(m_{1} \triangleright w)^{-1}$$

$$= e(m_{1} \triangleright w)^{-1}$$

$$= (m_{1} \triangleright w)^{-1}.$$
(8)

Next,

$$m_1^L \lhd (m_1 \rhd w) = ((m_1^L m_1) \lhd w)(m_1 \lhd w)^L$$

= $(e \lhd w)(m_1 \lhd w)^L$
= $e(m_1 \lhd w)^L = (m_1 \lhd w)^L$. (9)

Now, by the Kronecker map we have: $(m_1 \triangleright w)^{-1} = (m_1 \triangleleft g_1 g^{-1}) \triangleright g$ and $m = (m_1 \triangleleft w)^L (m_1 \triangleleft g_1 g^{-1})$. Using equation (8), we get $(m_1 \triangleleft w) \triangleright w^{-1} = (m_1 \triangleleft g_1 g^{-1}) \triangleright g$, or equivalently

$$w^{-1} = (m_1 \triangleleft w)^L \triangleright ((m_1 \triangleleft g_1 g^{-1}) \triangleright g)$$

= $(m_1 \triangleleft w)^L (m_1 \triangleleft g_1 g^{-1}) \triangleright g$
= $m \triangleright g$.

Thus

$$w = (m \rhd g)^{-1},$$

 $wz = g_1 g^{-1} \Rightarrow z = w^{-1} g_1 g^{-1} = (m \rhd g) g_1 g^{-1},$

and

$$m_1 \triangleleft w = m_1 \triangleleft (m \triangleright g)^{-1} = m'_1.$$

The second delta function in the summation of equation (7) can be simplified noting that

$$(m_1 \triangleleft w)^L(m_1 \triangleleft g_1g^{-1}) = m_1^{'L}(m_1 \triangleleft g_1) \triangleleft g^{-1}.$$

Therefore,

$$(m_{1} \otimes \delta_{g_{1}}) \lhd (\delta_{m} \otimes g) = \sum_{wz=g_{1}g^{-1}} ((m_{1} \lhd w) \otimes \delta_{z}) \delta_{(m_{1} \rhd w)^{-1},(m_{1} \lhd g_{1}g^{-1}) \rhd g} \delta_{(m_{1} \lhd w)^{L}(m_{1} \lhd g_{1}g^{-1}),m}$$

$$= \sum_{wz=g_{1}g^{-1}} (m'_{1} \otimes \delta_{(m \rhd g)g_{1}g^{-1}}) \delta_{(m_{1} \rhd w)^{-1},(m_{1} \lhd g_{1}g^{-1}) \rhd g} \delta_{m'_{1}L(m_{1} \lhd g_{1}) \lhd g^{-1},m}$$

or equivalently

$$(m_1 \otimes \delta_{g_1}) \lhd (\delta_m \otimes g) = m_1' \otimes \delta_{(m \rhd g)g_1g^{-1}} \delta_{m \lhd g, m_1'^L(m_1 \lhd g_1)}$$
$$= \delta_{m \lhd g, m_1'^L(m_1 \lhd g_1)} (m_1' \otimes \delta_{(m \rhd g)g_1g^{-1}}),$$

as required. \square

Theorem 4.3 Let $H = kM \bowtie k(G)$ be a left Hopf algebra associated to a factorization of a group X = GM into a subgroup G and a subsemigroup M with identity and a left inverse property. Then the quantum double $D(kM \bowtie k(G))$ is generated by $H = kM \bowtie k(G)$ and $H^* = k(M) \bowtie kG$ with cross relations defined by the product

$$(1 \otimes m_1 \otimes \delta_{g_1})(\delta_m \otimes g \otimes 1) = \delta_{m'_1 m(m_1 \triangleleft g_1 g^{-1})^L} \otimes (m_1 \triangleleft g_1 g^{-1}) \triangleright g \otimes m'_1 \otimes \delta_{(m \triangleright g)g_1 g^{-1}},$$
where $m, m_1 \in M$, $g, g_1 \in G$ and $m'_1 = m_1 \triangleleft (m \triangleright g)^{-1}$.

Proof. Let $h = m_1 \otimes \delta_{g_1} \in H$ and $\widehat{h}^* = \delta_m \otimes g \in H^*$. We want to find out $(1 \otimes h)(\widehat{h}^* \otimes 1)$ using equation (2). To do so, we need the following calculations:

$$\Delta(m_1 \otimes \delta_{g_1}) = \sum_{x,y \in G: xy = g_1} m_1 \otimes \delta_x \otimes (m_1 \triangleleft x) \otimes \delta_y,$$

and

$$\Delta(\delta_m \otimes g) = \sum_{w.z \in M: wz = m} \delta_w \otimes (z \rhd g) \otimes \delta_z \otimes g.$$

These yield $h_{(1)} = m_1 \otimes \delta_x$, $h_{(2)} = (m_1 \triangleleft x) \otimes \delta_y$, $\widehat{h}_{(1)}^* = \delta_w \otimes (z \triangleright g)$ and $\widehat{h}_{(2)}^* = \delta_z \otimes g$. Applying proposition 4.1, we obtain

$$h_{(1)} \rhd \widehat{h}_{(1)}^* = (m_1 \otimes \delta_x) \rhd (\delta_w \otimes (z \rhd g))$$

$$= \delta_{z \rhd g, (w \rhd (z \rhd g))x} (\delta_{m'_1 w m'_1 L} \otimes m'_1 \rhd (z \rhd g))$$

$$= \delta_{z \rhd g, (w z \rhd g)x} (\delta_{m'_1 w m'_1 L} \otimes (m'_1 z \rhd g))$$

$$= \delta_{z \rhd g, (m \rhd g)x} (\delta_{m'_1 w m'_1 L} \otimes (m'_1 z \rhd g)),$$

where $m_1' = m_1 \triangleleft (w \triangleright (z \triangleright g))^{-1} = m_1 \triangleleft ((wz) \triangleright g))^{-1} = m_1 \triangleleft (m \triangleright g)^{-1}$, since wz = m. Next, applying proposition 4.2 gives

$$h_{(2)} \triangleleft \widehat{h}_{(2)}^* = ((m_1 \triangleleft x) \otimes \delta_y) \triangleleft (\delta_z \otimes g)$$

$$= (m_1 \triangleleft x) \triangleleft (z \triangleright g)^{-1} \otimes \delta_{(z \triangleright g)yg^{-1}} \delta_{(m_1 \triangleleft x) \triangleleft y, (m_1 \triangleleft x)(z \triangleleft g)}$$

$$= (m_1 \triangleleft x) \triangleleft (z \triangleright g)^{-1} \otimes \delta_{(z \triangleright g)yg^{-1}} \delta_{(m_1 \triangleleft xy), (m_1 \triangleleft x)(z \triangleleft g)}$$

$$= (m_1 \triangleleft x) \triangleleft (z \triangleright g)^{-1} \otimes \delta_{(z \triangleright g)yg^{-1}} \delta_{(m_1 \triangleleft g_1), (m_1 \triangleleft x)(z \triangleleft g)}$$

$$= \delta_{m_1 \triangleleft g_1, (m_1 \triangleleft x)(z \triangleleft g)} ((m_1 \triangleleft x) \triangleleft (z \triangleright g)^{-1}) \otimes \delta_{(z \triangleright g)yg^{-1}}$$

$$= \delta_{m_1 \triangleleft g_1, (m_1 \triangleleft x)(z \triangleleft g)} m_1'' \otimes \delta_{(z \triangleright g)yg^{-1}},$$

where $m_1'' = (m_1 \triangleleft x) \triangleleft (z \triangleright g)^{-1}$. Now, formula (2) and these calculations give

$$(1 \otimes m_{1} \otimes \delta_{g_{1}})(\delta_{m} \otimes g \otimes 1) = \sum_{xy=g_{1},wz=m} (h_{(1)} \triangleright \widetilde{h}_{(1)}^{*}) 1 \otimes (h_{(2)} \triangleleft \widetilde{h}_{(2)}^{*}) 1$$

$$= \sum_{xy=g_{1},wz=m} \delta_{z\triangleright g,(m\triangleright g)x} \delta_{m_{1}\triangleleft g_{1},(m_{1}\triangleleft x)(z\triangleleft g)}$$

$$(\delta_{m'_{1}wm'_{1}^{L}} \otimes (m'_{1}z\triangleright g) \otimes m''_{1} \otimes \delta_{(z\triangleright g)yg^{-1}}).$$

$$(10)$$

The delta functions in equation (10) imply that $z \triangleright g = (m \triangleright g)x$ and $m_1 \triangleleft g_1 =$

 $(m_1 \triangleleft x)(z \triangleleft g)$. To simplify equation (10), we calculate the following:

$$m_1'z \triangleleft g = (m_1' \triangleleft (z \triangleright g))(z \triangleleft g)$$

$$= \Big(\Big(m_1 \triangleleft (m \triangleright g)^{-1} \Big) \triangleleft (z \triangleright g) \Big)(z \triangleleft g)$$

$$= \Big(m_1 \triangleleft (m \triangleright g)^{-1}(z \triangleright g) \Big)(z \triangleleft g)$$

$$= \Big(m_1 \triangleleft (m \triangleright g)^{-1}(m \triangleright g)x \Big)(z \triangleleft g)$$

$$= \Big(m_1 \triangleleft x \Big)(z \triangleleft g) = m_1 \triangleleft g_1,$$

or equivalently,

$$m_1'z = (m_1 \triangleleft g_1) \triangleleft g^{-1} = m_1 \triangleleft g_1g^{-1}.$$
 (11)

Also, as $z \triangleright g = (m \triangleright g)x$ and $xy = g_1$, we have

$$(z \triangleright g)y = (m \triangleright g)xy = (m \triangleright g)g_1, \tag{12}$$

and

$$m_1'' = (m_1 \triangleleft x) \triangleleft (z \triangleright g)^{-1} = m_1 \triangleleft x(z \triangleright g)^{-1} = m_1 \triangleleft (m \triangleright g)^{-1} = m_1'.$$
(13)

Finally, as wz = m, we have $m_1'wm_1'^L = m_1'm(m_1 \triangleleft g_1g^{-1})^L$. Substituting these values in the right hand side of equation (10) gives

$$(1 \otimes m_1 \otimes \delta_{g_1})(\delta_m \otimes g \otimes 1) = \delta_{m'_1 m(m_1 \triangleleft gg_1^{-1})^L} \otimes (m_1 \triangleleft g_1 g^{-1}) \rhd g \otimes m'_1 \otimes \delta_{(m \rhd g)g_1 g^{-1}},$$
as required. \square

ACKNOWLEDGMENT

This research was supported by the Deanship of Scientific Research, King Abdulaziz University, Jeddah, Project No. 484/130/1431. The author would like to thank the Deanship of Scientific Research, King Abdulaziz University, for their financial support. Also, I would like to express my deep sense of gratitude to Professor E. J. Taft for some comments about the left antipode via e-mails.

References

[1] M. M. Al-Shomrani and E. J. Beggs, Making nontrivially associated modular categories from finite groups. Int. J. Math. and Math. Science, 2004 (42) (2004), 2231-2264.

[2] M. M. Al-Shomrani, Algebras and their dual in rigid tensor categories, Int. Math. Forum, 1 (9-12)(2006) 525 - 550.

- [3] E. J. Beggs, J. D. Gould and S. Majid, Finite group factorizations and braiding. J. Algebra, 181 (1) (1996) 112 151.
- [4] E. J. Beggs and S. Majid, Quasitriangular and differential structures on bicrossproduct Hopf algebras. J. Algebra, 219 (2) (1996) 682 727.
- [5] V. G. Drinfeld, Quantum groups. Proc. ICM, Amer. Math. Soc., Providence, RI, (1987) 798 820.
- [6] H. A. SHOAIB AND M. M. AL-SHOMRANI, Left Hopf Algebras and Self Duality, International Mathematical Forum, 4 (48) (2009), 2377-2389.
- [7] J. A. GREEN, W. D. NICHOLS AND E. J. TAFT, Left Hopf algebras. J. Algebra, 65 (2) (1980) 399 - 411.
- [8] S. Majid, Physics for algebraists: Non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction. J. Algebra, 130 (1990) 17 64.
- [9] S. Majid, The quantum double as quantum mechanics. J. Geom. Phys., 13 (1994) 169 202.

Receiced: February, 2012