Une Propriete Arithmetique des Suites Recurrentes Lineaires D'Ordre Trois

Oumar Fall 1 , Oumar Diankha 2 , Maurice Mignotte 3 and Mamadou Sangharé 4

Abstract. The periodicity of LRS modulo p, with p a prime integer, was enough studied and it was particularly approached by L. Cerlienco, M. Mignotte and F. Piras in [1].

O. Diankha provided in [2] results, in favour of sequences of the third degree, based on characteristic polynomial. We'll give a arithmetical interpretation of these results, which appear very simple to study the periodicity of LRS of the third degree.

Résumé. La périodicité des SRL modulo p, où p est un entier premier, a été beaucoup étudiée et elle a été abordée en particulier par L. Cerlienco, M. Mignotte et F. Piras dans [1].

O. Diankha a fourni dans [2] des résultats, pour les suites d'ordre trois, basés sur le polynôme caractéristique. Nous donnerons une interprétation arithmétique de ces résultats, qui semble être plus simple pour étudier la périodicité d'une SRL d'ordre trois.

Mots clés: Suites Récurrentes linéaires, période, modulo p, polynômes, symboles de Legendre, polynôme caractéristique

1. Préliminaires

1.2. Formules du discriminant d'un polynome.

¹Département de Mathématique et Informatique Université Cheikh Anta Diop de Dakar-Sénégal,oumarfall0401@yahoo.fr

²Département de Mathématique et Informatique Université Cheikh Anta Diop de Dakar-Sénégal,odiankha@ucad.sn

 $^{^3{\}rm D\'epartement}$ de Mathématique Université Louis Pasteur de Strasbourg-France,maurice.mignotte@math.unistra.fr

⁴Département de Mathématique et Informatique Université Cheikh Anta Diop de Dakar-Sénégal,mamsanghare@hotmail.com

1794 Oumar Fall et al

Soit $f(x) \in K[X]$ donné par

$$f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n, \quad a_0 \neq 0.$$

Par définition, le discriminant de f noté D(f) est

$$D(f) = a_0^{2n-2} \prod_{1 \le i < j \le n} (\alpha_i - \alpha_j)^2$$

si $f(x) = a_0(x - \alpha_1)(x - \alpha_2) \dots (x - \alpha_n)$ dans une extension convenable du corps K. Et on a aussi la formule,

$$D(f) = (-1)^{\frac{n(n-1)}{2}} (a_0)^{-1} R(f, f'),$$

où R(f, f') est le résultant de f et de sa dérivée f'.

On peut donner deux lemmes sur le discriminant :

Lemme 1. Si f et g sont deux polynomes unitaires? coefficients dans un corps, alors leur discriminant vérifie la formule

$$D(fg) = \pm \operatorname{Res}^{2}(f,g) \cdot D(f) \cdot D(g).$$

Preuve. On a

$$D(fg) = \pm \operatorname{Res}(fg, (fg)') = \pm \operatorname{Res}(fg, fg' + f'g)$$

$$= \pm \operatorname{Res}(f, fg' + f'g) \cdot \operatorname{Res}(g, fg' + f'g)$$

$$= \pm \operatorname{Res}(f, f'g) \cdot \operatorname{Res}(g, fg')$$

$$= \pm \operatorname{Res}(f, f') \cdot \operatorname{Res}(f, g) \cdot \operatorname{Res}(g, f)(g, g'),$$

d'oú le résultat.

Lemme 2. Si Q = (X - a)R est un polynome cubique ? coefficients dans un corps K de caractéristique différente de deux, avec R irréducitble sur K et $a \in K$, alors le discriminant Δ de Q n'est pas un carré dans le corps K.

En effet, si β et γ sont les racines de R dans une extension convenable du corps K alors

$$\Delta = (a - \beta)^2 (a - \gamma)^2 (\beta - \gamma)^2 = R^2(a)D(R)$$

et D(R) n'est pas un carré dans K (sinon R serait réductible).

Proposition 1. Soit $f(x) \in \mathbb{F}_q[x]$ un polynôme irréductible de degré d. Si α est une racine de f(x) dans \mathbb{F}_{q^d} , alors toutes les racines de f sont données par α , α^q , α^{q^2} , ..., $\alpha^{q^{d-1}}$. De plus, d est le plus petit entier positif tel que $\alpha^{q^d} = \alpha$.

Preuve. Voir [3].

1.2. Suites d'ordre deux

On considère ξ une suite vérifiant la relation: $\xi_{n+2} = a\xi_{n+1} + b\xi_n$, $n \geq 0$, où $a, b \in \mathbb{F}_p$ avec $a \neq 0$. On notera, $\Delta = D(f) = a^2 + 4b$.

Les résultats ci-desssous sont bien connus et démontrés en [1].

Proposition 2. On a

(i) $si\left(\frac{\Delta}{p}\right) = 1$, alors t_p divise p - 1; (ii) $si\ \Delta \equiv 0 \mod p$, alors t_p divise p(p - 1);

(iii) si
$$\left(\frac{\Delta}{p}\right) = -1$$
, alors t_p divise $p^2 - 1$.

Remarque : La relation (iii) peut être améliorée en

(iii)': si $\left(\frac{\Delta}{p}\right) = -1$, alors t_p divise le produit e(p+1), oú e est l'ordre de -b dans le corps \mathbb{F}_p .

Proposition 3. Pour la suite de Fibonacci définie par $F_0 = 0$, $F_1 = 1$ et $F_{n+2} = F_{n+1} + F_n$ pour $n \ge 0$, on a $\Delta = 5$ et

- $si p = 5k \pm 1$, alors t_p divise p 1;
- si $p = 5k \pm 2$, alors t_p divise 2(p+1);
- si p = 5, $alors t_p = 20$.

Remarque: En appliquant la loi de réciprocité quadratique, on voit que

$$\left(\frac{5}{p}\right) = 1 \iff \left(\frac{p}{5}\right) = 1 \iff p \equiv \pm 1 \pmod{5},$$

ce qui explique le résultat ci-dessus.

Proposition 4. Soit (T_n) une SRL de polynôme caractéristique égal? $Q(x) = x^3 - ax^2 - bx - c \in \mathbb{Z}[x]$. Si Q est irréductible, $K \neq K'$, et $T_n = \lambda \alpha^n + \mu \beta^n + \nu \gamma^n$, alors t_p divise $e(p^2 + p + 1)$, où e est l'ordre de -c dans le corps \mathbb{F}_{n^3} .

Preuve: \triangleright Puisque $Q(\alpha) = 0$, on a $\alpha^3 - a\alpha^2 - b\alpha - c = 0$. Par cons?quent

$$Q(\alpha^p) = (\alpha^p)^3 - a(\alpha^p)^2 - b\alpha^p - c$$

$$= (\alpha^3)^p - a(\alpha^2)^p - b\alpha^p - c$$

$$= (\alpha^3)^p - a^p(\alpha^2)^p - b^p\alpha^p - c^p$$

$$= (\alpha^3 - a\alpha^2 - b\alpha - c)^p = (Q(\alpha))^p = 0.$$

Donc $\alpha^p = \alpha$ ou β ou γ . Or $x^p = x \Leftrightarrow x \in K$, puisque $\alpha \notin K$, alors $\alpha^p = \beta$ ou γ . Si $\alpha^p = \beta$, alors $Q(\beta) = 0 = \beta^3 - a\beta^2 - b\beta - c$. Alors:

$$(\beta^3 - a\beta^2 - b\beta - c)^p = 0 = (\beta^p)^3 - a^p(\beta^p)^2 - b^p\beta^p - c^p$$
$$= (\beta^p)^3 - a(\beta^p)^2 - b\beta^p - c = Q(\beta^p).$$

Donc $\beta^p = \gamma = (\alpha^p)^p = \alpha^{p^2}$.

On a aussi

$$\alpha\beta\gamma = -c = \alpha\alpha^p\alpha^{p^2} = \alpha^{1+p+p^2}.$$

Soit e l'ordre de -c dans $K' = \mathbb{F}_{p^3}$. Donc $(\alpha\beta\gamma)^e = \alpha^{e(1+p+p^2)} = (-c)^e = 1$. Et puisque t_p = ordre de α , on voit que t_p divise le produit $e(1+p+p^2)$.

1796 Oumar Fall et al

Proposition 5. Pour la suite de Fibonacci d'ordre 3, si Q est irréductible et $K \neq K'$ et aussi $T_n = \lambda \alpha^n + \mu \beta^n + \nu \gamma^n$, alors t_p divise $2(p^2 + p + 1)$. **Remarque :** L'entier $2(p^2 + p + 1)$ est plus petit que $p^3 - 1$ pour $p \geq 3$, ce

qui permet d'améliorer donc la borne générale $p^3 - 1$.

p	t_p	$p^{3}-1$	$2(1+p+p^2)$
2	7	7	14
3	13	26	26
13	183	2196	366
29	871	24388	1742
31	993	29790	1986
41	1723	68920	3446
47	2257	103822	4514
71	5113	357910	10226
73	5403	389016	10806
127	16257	2048382	32514
131	17293	2248090	34586
139	19461	2685618	38922
151	1093	3442950	45906
163	8911	4330746	53466
179	32221	5735338	64442
193	37443	7189056	74886

Remarque: E. Kern et M. Mignotte ont donné, dans [5], ce résultat proche de la proposition 6 de l'étude arithmétique.

Soit $P = X^d + a_1 X^{d-1} + \cdots + a_d \in K[X] = \mathbb{Q}[X]$ un polynôme unitaire et irréductible de matrice compagnon A d'ordre k. On suppose que P se d'?compose modulo p en $\widetilde{P} = P_1^{e_1} P_2^{e_2} \cdots P_r^{e_r}$, $e_1, e_2, \ldots, e_r \geq 1$, où les $P_i \in \mathbb{F}_p[X]$ sont unitaires irréductibles et deux à deux distincts. Alors

$$\mathbb{F}_p[A] \sim \frac{\prod_{i=1}^{i=r} \mathbb{F}_p[X]}{(P_i^{e_i})}.$$

 $\widetilde{P} = P_1^{e_1} P_2^{e_2} \cdots P_r^{e_r} \Leftrightarrow (p) = P_1^{e_1} P_2^{e_2} \cdots P_r^{e_r}$ de l'idéal (p) dans le corps de rupture de P, $\frac{K[X]}{(p)}$ et le degré résiduel de P_i est f_i (résultat dû à Kummer).

Pour d = 3, on a les possibilités suivantes:

- $k \mid p-1$, alors $(p) = P_1 P_2 P_3$, avec des P_i distincts et $f_1 = f_2 = f_3 = 1$.
- $k \mid p(p-1)$ et $k \not \mid p-1$, alors $(p) = P_1^2 P_2$, avec $P_1 = P_2$ ou $P_1 \neq P_2$ et $f_1 = f_2 = 1$.
 - $k \mid p^2 1 \text{ et } k \not | p 1$, alors $(p) = P_1 P_2$, avec $f_1 = 2 \text{ et } f_2 = 1$.
 - $k \mid p^3 1 \text{ et } k \not | p 1, \text{ alors } (p) = P_1, \text{ avec } f_1 = 3.$

Nous proposons l'approche suivante:

2. Etude arithmétique

Proposition 6. Soit (T_n) une SRL d'ordre trois, de polynôme caractéristique $Q(x) = x^3 - ax^2 - bx - c \in \mathbb{Z}[x]$. Soit Δ son discriminant, et soit p un entier premier et t_p la période de la suite modulo p. Alors on a les quatre cas suivants :

- $si \Delta \equiv 0 \pmod{p}$, alors t_p divise p(p-1);
- $\operatorname{si}\left(\frac{\Delta}{p}\right) = -1$, alors t_p divise $p^2 1$;
- $si\left(\frac{\Delta}{p}\right)=1$ et Q admet au moins une racine modulo p, alors t_p divise p-1;
 - $\operatorname{si}\left(\frac{\Delta}{p}\right) = 1$, avec Q irréductible modulo p, alors t_p divise $p^3 1$.

Remarque: Cette dernière relation peut être améliorée. En effet, d'après la proposition 4, si $\left(\frac{\Delta}{p}\right) = 1$, avec Q irréductible, alors t_p divise $e(p^2 + p + 1)$.

Preuve: $\triangleright \bullet$ Le cas $\Delta \equiv 0 \pmod{p}$ est clair.

• Supposons que Q(X) = (X - a)R(X).

D'après le lemme 2, cela équivaut à :

$$\Delta = (a - \beta)^2 (a - \gamma)^2 (\beta - \gamma)^2 = R^2(a)D(R),$$

ou encore ? $\left(\frac{\Delta}{p}\right) = -1$ puisque D(R) n'est pas un carré dans K (sinon le facteur R serait réductible). Donc t_p divise $p^2 - 1$.

• Supposons que $Q(X) = (X - \alpha)(X - \beta)(X - \gamma)$ dans $\mathbb{F}_p[X]$, alors

$$\Delta = (\alpha - \beta)^2 (\alpha - \gamma)^2 (\beta - \gamma)^2 = R^2(a)D(R)$$

(avec $R(X) = (X - \beta)(X - \gamma)$), ce qui ?quivaut encore ? $\left(\frac{\Delta}{p}\right) = 1$ car R est réductible. Et donc t_p divise p - 1.

• Supposons que R est irréductible, alors

$$\Delta = (\alpha - \alpha^p)^2 (\alpha - \alpha^{p^2})^2 (\alpha^p - \alpha^{p^2})^2$$

= $(\alpha^{p+2} - \alpha^{p^2+2} + \alpha^{2p^2+1} - \alpha^{2p+1} + \alpha^{p^2+2p} - \alpha^{2p^2+p})^2$.

Posons $\gamma = \alpha^{p+2} - \alpha^{p^2+2} + \alpha^{2p^2+1} - \alpha^{2p+1} + \alpha^{p^2+2p} - \alpha^{2p^2+p}$. Alors

$$\gamma^p = \alpha^{p^2 + 2p} - \alpha^{1 + 2p} + \alpha^{2 + p} - \alpha^{2p^2 + p} + \alpha^{1 + 2p^2} - \alpha^{2 + p^2} = \gamma.$$

Donc $\gamma \in K$ et $\Delta = \gamma^2$. D'où : $\left(\frac{\Delta}{p}\right) = 1$.

Exemples : Suite de Fibonacci d'ordre 3. Il s'agit de la suite (T_n) à valeurs dans \mathbb{Z} définie par $T_0 = T_1 = 0$, $T_2 = 1$ et $T_{n+3} = T_{n+1} + T_n$ pour tout

1798 Oumar Fall et al

 $n \ge 0$. Son polynôme caractéristique est $Q(x) = x^3 - x - 1$ et son discriminant vaut $\Delta = -23$.

1) pour p = 23; $\Delta \equiv 0 \pmod{23}$ et on a $t_p = 506 = 23 \times 22$,

2)	p	5	7	11	17	19	37	43	53	61	67	79	83	ì
2)	t_{p}	24	48	120	288	8 180	1368	231	1404	930	4488	3120	2296	l
	•												,	
	p	89	97	']	.03	107	109	113	137	149	157	181	191	
	t_p	3960	313	36	536	2862	1485	4256	391	925	12324	10920	7296	

Pour chaque entier p, on a : $\left(\frac{-23}{p}\right) = -1$ et donc t_p divise $p^2 - 1$.

Pour chaque entier p, $\left(\frac{-23}{p}\right) = 1$ et Q est irréductible. Alors t_p divise $p^3 - 1$.

4)
$$\begin{bmatrix} p & 59 & 101 & 167 & 173 \\ t_p & 58 & 100 & 166 & 172 \end{bmatrix}$$

Pour chaque entier p, $\left(\frac{-23}{p}\right) = 1$ et Q est réductible. Alors t_p divise p-1.

References

- [1] L. Cerlienco, M. Mignotte, F. Piras, Suites Récurrentes linéaires. Propriétés Algébriques et Arithmétiques. L'Enseignement mathématique, t.33(1987), p.67-108. A.M.S. Classification: 10 A 35.
- [2] **O. Diankha**, Suites récurrences linéaires sur un corps fini. Théorie et Applications, Afrika Matematica, série 3, Volume 18 2007, pp.46-60.
- [3] R. Lidl, H. Niederreiter, Introduction to finite fields and their applications, Cambridge University Press 1994.
- [4] M. Mignotte, Mathematics for Computer Algebra. 1992 Springer-Verlag, New York, Inc.
- [5] E. Kern, M. Mignotte, Applications of the representation of finite fields by matrices. Theoretical Computer Science 244(2000) 263-265.

Received: November, 2011