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Abstract

In this paper, the notions of (R,S)-modules and left multiplication
(R,S)-modules are introduced. We also define and investigate fully
prime (R,S)-submodules and jointly prime (R,S)-submodules. Char-
acterizations of fully prime (R,S)-submodules and jointly prime (R,S)-
submodules are obtained. Moreover, jointly prime (R,S)-submodules
of left multiplication (R,S)-modules are classified in terms of products
of (R,S)-submodules.
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1 (R, S)-Modules

Throughout this paper, let R and S be rings and M an abelian group. Bimod-
ules over rings are well-known structures. Namely, if M is a left R-module and
a right S-module and M satisfies the property r(ms) = (rm)s for all r ∈ R,
m ∈ M and s ∈ S, then M can be regarded as a bimodule over R and S. For
the basic properties of bimodules over rings the reader may refer to [2] and [4].
In this section, we introduce (R, S)-modules as a generalization of bimodules.
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Definition 1.1. Let R and S be rings and M an abelian group under ad-
dition. We say that M is an (R, S)-module if there is a function · · :
R × M × S → M satisfying the following properties: for all r, r1, r2 ∈ R,
m,n ∈ M and s, s1, s2 ∈ S,

(i) r · (m + n) · s = r · m · s + r · n · s
(ii) (r1 + r2) · m · s = r1 · m · s + r2 · m · s
(iii) r · m · (s1 + s2) = r · m · s1 + r · m · s2

(iv) r1 · (r2 · m · s1) · s2 = (r1r2) · m · (s1s2).

We usually abbreviate r ·m · s by rms. We may also say that M is an (R, S)-
module under + and · · .

An (R, S)-submodule of an (R, S)-module M is a subgroup N of M such
that rns ∈ N for all r ∈ R, n ∈ N and s ∈ S.

It is obvious that a ring R is an (R, R)-module via the usual multiplication
on the ring R. Moreover, any ideals of R are (R, R)-submodules. However, an
(R, R)-submodule of the (R, R)-module R need not be an ideal of the ring R.

Example 1.2. Let SU4(R) be the ring of all 4 × 4 strictly upper triangu-
lar matrices over the ring R. Then SU4(R) is an (SU4(R), SU4(R))-module.
Furthermore, let

N =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

0 0 x 0
0 0 0 y
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ | x, y ∈ R

⎫⎪⎪⎬
⎪⎪⎭

.

Then N is an (SU4(R), SU4(R))-submodule of SU4(R) since SU4(R)NSU4(R) =
0. We can see that N is not an ideal of the ring SU4(R) because it is not a
left (also not a right) ideal of SU4(R) as follows:

SU4(R)N = NSU4(R) =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

0 0 0 x
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ | x ∈ R

⎫⎪⎪⎬
⎪⎪⎭

�⊆ N.

Note that if R is a ring with identity, then ideals of the ring R and (R, R)-
submodules of the (R, R)-module R are identical.

It is easy to check that a bimodule over R and S is also an (R, S)-module.
The following example shows (R, S)-modules are a true generalization of bi-
modules.
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Example 1.3. Let A be a ring. Then

R =

{[
x y
0 0

]
| x, y ∈ A

}
and S =

{[
x 0
y 0

]
| x, y ∈ A

}

are noncommutative rings without identity under the usual matrix addition and
multiplication. Furthermore, let

M1 =

{[
x 0
y z

]
| x, y, z ∈ A

}
and M2 =

{[
x y
0 z

]
| x, y, z ∈ A

}
.

Then M1 and M2 are (R, S)-modules under the usual matrix addition and
multiplication. It is easy to check that M1 is a right S-module but not a left
R-module. Similarly, M2 is a left R-module but not a right S-module. Hence
M1 and M2 are not bimodules.

If R and S satisfy certain conditions then any (R, S)-module can be re-
garded as a bimodule. Recall that an element α ∈ R is called a central
idempotent if α2 = α and αx = xα for all x ∈ R.

Proposition 1.4. Let M be an (R, S)-module. If the rings R and S have
central idempotents, then there are left R-module and right S-module structures
on M such that r(ms) = (rm)s for all r ∈ R, m ∈ M and s ∈ S, i.e., M is a
bimodule over the rings R and S.

Proof. For each central idempotents α of R and β of S, define ·α : M×S → M
by ·α(m, s) = αms for all m ∈ M and s ∈ S, and ·β : R×M → M by ·β(r, m) =
rmβ for all m ∈ M and r ∈ S. The rest of the proof is straighforward.

Let M be an (R, S)-module. For any nonempty subsets X, Y and Z of
R, M and S, respectively, we define the following sets:

XY Z = {
∑
finite

xiyizi | xi ∈ X, yi ∈ Y and zi ∈ Z for all i},

〈Y 〉 =
⋂

{ K | K is an (R, S)-submodule of M containing Y } .

Clearly 〈Y 〉 is an (R, S)-submodule of M for any subset Y of M .

Proposition 1.5. Let M be an (R, S)-module, X1, X2 be nonempty subsets
of R, Y a nonempty subset of M and Z1, Z2 nonempty subsets of S. Then
X1(X2Y Z1)Z2 = (X1X2)Y (Z1Z2).

Proof. This is straightforward.

For the rest of this paper, let R and S be rings and M an (R, S)-module.
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2 Fully and jointly prime submodules

Recall that a proper submodule N of a unital left R-module M is called prime
if for each r ∈ R and m ∈ M , rm ∈ N implies rM ⊆ N or m ∈ N . Prime
submodules have been studied in many papers; see, for examples, [1], [3] and
[5]. There are several possible ways to extend the definition of prime R-module
to (R, S)-modules, none of which is clearly better than the others. Therefore
in this paper we will introduce two such extensions, which we call fully prime
and jointly prime (R, S)-modules, and study some of their properties. The
current section will define and characterize fully prime and jointly prime (R, S)-
modules.

The following proposition is a major tool for characterizing fully prime and
jointly prime (R, S)-modules. Its proof is simple and is therefore omitted.

Proposition 2.1. Let N be an (R, S)-submodule of M and X and Y nonempty
subsets of R and S, respectively. If M satisfies a ∈ RaS for all a ∈ M , then
the following properties hold.

(i) (a) If (RX)MS ⊆ N , then XMS ⊆ N .

(b) XMS ⊆ (XR)MS.

(ii) (a) If RM(Y S) ⊆ N , then RMY ⊆ N .

(b) RMY ⊆ RM(SY ).

(iii) W ⊆ RWS for all subsets W of M . Moreover, equality holds if W is an
(R, S)-submodule of M .

We would like to point out that parts (i)(b) and (ii)(b) of Proposition 2.1 are
also valid if the condition “a ∈ RaS for all a ∈ M” is replaced by “RMS = M”.

Now, we give the definition of fully prime (R, S)-submodules.

Definition 2.2. A proper (R, S)-submodule P of M is called fully prime
if for each left ideal I of R, right ideal J of S and (R, S)-submodule N of M ,

INJ ⊆ P implies IMS ⊆ P or N ⊆ P or RMJ ⊆ P.

The condition a ∈ RaS for all a ∈ M is crucial for proving the following
characterization of fully prime (R, S)-submodules.

Theorem 2.3. Let M be an (R, S)-module satisfying the property that a ∈ RaS
for all a ∈ M and let P be a proper (R, S)-submodule of M . Then the following
statements are equivalent.

(i) P is fully prime.

(ii) For all right ideals I of R, m ∈ M and left ideals J of S,
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ImJ ⊆ P implies IMS ⊆ P or m ∈ P or RMJ ⊆ P .

(iii) For all right ideals I of R, (R, S)-submodules N of M and left ideals J
of S,

INJ ⊆ P implies IMS ⊆ P or N ⊆ P or RMJ ⊆ P .

(iv) For all left ideals I of R, m ∈ M and right ideals J of S,

(IR)m(SJ) ⊆ P implies IMS ⊆ P or m ∈ P or RMJ ⊆ P .

(v) For all a ∈ R, m ∈ M and b ∈ S,

(aR)m(Sb) ⊆ P implies aMS ⊆ P or m ∈ P or RMb ⊆ P .

Proof. (i) → (ii) Assume (i). Let I be a right ideal of R, m ∈ M and J a left
ideal of S such that ImJ ⊆ P . Then (RI)(RmS)(JS) ⊆ P . By (i), we have
(RI)MS ⊆ P or RmS ⊆ P or RM(JS) ⊆ P . It follows from Proposition 2.1
that IMS ⊆ P or m ∈ P or RMJ ⊆ P .

(ii) → (iii) Assume (ii). Let I be a right ideal of R, J a left ideal of S
and N an (R, S)-submodule of M such that INJ ⊆ P . Suppose that N �⊆ P
and RMJ �⊆ P . Let n ∈ N \ P . Then InJ ⊆ INJ ⊆ P so that IMS ⊆ P
from (ii).

(iii) → (iv) Assume (iii). Let I be a left ideal of R, m ∈ M and J a
right ideal of S such that (IR)m(SJ) ⊆ P . Then (IR)(RmS)(SJ) ⊆ P . We
obtain from (iii) that (IR)MS ⊆ P or RmS ⊆ P or RM(SJ) ⊆ P . By
Proposition 2.1, we have IMS ⊆ P or m ∈ P or RMJ ⊆ P .

(iv) → (i) Assume (iv). Let I be a left ideal of R, J a right ideal of S
and N an (R, S)-submodule of M such that INJ ⊆ P . Suppose that N � P
and RMJ � P . Let n ∈ N \ P . Then (IR)n(SJ) ⊆ P . By (iv), we have
IMS ⊆ P .

(ii) → (v) This is obtained from (ii) and Proposition 2.1.
(v) → (iii) Assume (v). Let I be a right ideal of R, J a left ideal of S

and N an (R, S)-submodule of M such that INJ ⊆ P . Suppose that N � P
and RMJ � P . Let n ∈ N \ P and b ∈ J with RMb � P . To show that
IMS ⊆ P , let a ∈ I. Then (aR)n(Sb) ⊆ P . By (v), we have aMS ⊆ P . This
implies that IMS ⊆ P .

If the condition a ∈ RaS for all a ∈ M is replaced by RMS = M , then
one-sided ideals of R and S can be replaced by ideals of R and S, respectively,
in order to verify fully prime (R, S)-submodules.
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Theorem 2.4. Let M be an (R, S)-module satisfying RMS = M and P
a proper (R, S)-submodule of M . Then P is fully prime if and only if for all
ideals I of R, ideals J of S and (R, S)-submodules N of M , INJ ⊆ P implies
IMS ⊆ P or N ⊆ P or RMJ ⊆ P .

Proof. The direction ⇒ follows from the definition.
For ⇐, let I be a left ideal of R, J a right ideal of S and N an (R, S)-

submodule of M such that INJ ⊆ P . Then (IR)N(SJ) ⊆ P . Since IR
is an ideal of R and SJ is an ideal of S, we have (IR)MS ⊆ P or N ⊆
P or RM(SJ) ⊆ P . If (IR)MS ⊆ P , then IMS = I(RMS)S = (IR)M(SS) ⊆
(IR)MS ⊆ P . Similarly, if RM(SJ) ⊆ P , then RMJ ⊆ P . This shows that
IMS ⊆ P or N ⊆ P or RMJ ⊆ P . Hence P is a fully prime.

At this point, we will define and study another extension of the concept of
prime R-modules: jointly prime (R, S)-submodules. It will be seen that jointly
prime (R, S)-submodules are generalizations of fully prime (R, S)-submodules.

Definition 2.5. A proper (R, S)-submodule P of M is called jointly prime
if for each left ideal I of R, right ideal J of S and (R, S)-submodule N of M ,

INJ ⊆ P implies IMJ ⊆ P or N ⊆ P.

It is clear that every fully prime (R, S)-submodule is a jointly prime (R, S)-
submodule. Moreover, if either R or S is commutative, it can be shown that
jointly prime (R, S)-submodules and fully prime (R, S)-submodules are iden-
tical.

Theorem 2.6. Let M be an (R, S)-module. If R or S is a commutative
ring, then fully prime (R, S)-submodules and jointly prime (R, S)-submodules
are the same.

Proof. It is sufficient to consider the case where R is commutative, since the
case where S is commutative is nearly identical. Thus, assume R is commuta-
tive. It suffices to show that a jointly prime (R, S)-submodule is a fully prime
(R, S)-submodule. Let P be a jointly prime (R, S)-submodule, I a left ideal of
R, N an (R, S)-submodule of M and J a right ideal of S, such that INJ ⊆ P .
Since P is jointly prime, IMJ ⊆ P or N ⊆ P . Clearly we only need to consider
the case IMJ ⊆ P . Since R is commutative, I(RMJ)S = R(IMJ)S ⊆ P .
Again, from the fact that P is jointly prime, we obtain that IMS ⊆ P or
RMJ ⊆ P . Hence P is fully prime.

Characterizations of jointly prime (R, S)-submodules are obtained in the
same manner as those of fully prime (R, S)-submodules.

Theorem 2.7. Let M be an (R, S)-module satisfying a ∈ RaS for all a ∈
M and let P be a proper (R, S)-submodule of M . The following statments are
equivalent.
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(i) P is jointly prime.

(ii) For all right ideals I of R, m ∈ M and left ideals J of S,

ImJ ⊆ P implies IMJ ⊆ P or m ∈ P .

(iii) For all right ideals I of R, (R, S)-submodules N of M and left ideals J
of S,

INJ ⊆ P implies IMJ ⊆ P or N ⊆ P .

(iv) For all left ideals I of R, m ∈ M and right ideals J of S,

(IR)m(SJ) ⊆ P implies IMJ ⊆ P or m ∈ P .

(v) For all a ∈ R, m ∈ M and b ∈ S,

(aR)m(Sb) ⊆ P implies aMb ⊆ P or m ∈ P .

Theorem 2.8. Let M be an (R, S)-module satisfying RMS = M and P a
proper (R, S)-submodule of M . Then P is jointly prime if and only if for all
ideals I of R, ideals J of S and (R, S)-submodules N of M , INJ ⊆ P implies
IMJ ⊆ P or N ⊆ P .

The following propositions show that a maximal (R, S)-submodule of an
(R, S)-module is always jointly prime, and is also fully prime if an additional
condition is satisfied.

Proposition 2.9. Every maximal (R, S)-submodule of an (R, S)-module is
a jointly prime (R, S)-submodule.

Proof. Let K be a maximal (R, S)-submodule of an (R, S)-module M . Let I
be a left ideal of R, N an (R, S)-submodule of M and J a right ideal of S such
that INJ ⊆ K and N �⊆ K. Then M = N + K. Thus IMJ = I(N + K)J =
INJ + IKJ ⊆ K. Hence K is a jointly prime (R, S)-submodule.

Next example shows that jointly prime (R, S)-submodules need not be
maximal.

Example 2.10. Let r, s ∈ Z+ \ {1}. Then Z is an (rZ, sZ)-module. More-
over, (rs)Z is a jointly prime (rZ, sZ)-submodule but not maximal.

Proposition 2.11. Let M be an (R, S)-module such that RMS = M .
Then every maximal (R, S)-submodule of M is a fully prime (R, S)-submodule.
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Proof. Let K be a maximal (R, S)-submodule of M . Then K is a jointly prime.
We prove that K is fully prime by using Theorem 2.4. Let I be an ideal of
R, N an (R, S)-submodule of M and J an ideal of S such that INJ ⊆ K.
Assume that N �⊆ K and RMJ �⊆ K. Then M = RMJ + K. Since K is
jointly prime and N �⊆ K, we have IMJ ⊆ K. Hence

IMS = I(RMJ + K)S = I(RMJ)S + IKS

= (IR)M(JS) + IKS ⊆ IMJ + IKS ⊆ K.

Therefore, K is a fully prime (R, S)-submodule.

For each (R, S)-submodule P of M , let

(P : M)R = {r ∈ R | rMS ⊆ P}.
In general (P : M)R is only an additive subgroup of R. However, if S2 = S
then it is easy to show that (P : M)R is an ideal of R.

Proposition 2.12. Let P be an (R, S)-submodule of M such that (P : M)R

is a proper ideal of R. If P is a jointly prime (R, S)-submodule of M , then
(P : M)R is a prime ideal of R.

In particular, if P is a fully prime (R, S)-submodule of M , then (P : M)R

is a prime ideal of R.

Proof. Assume that P is a jointly prime (R, S)-submodule of M . Let A and
B be ideals of R such that AB ⊆ (P : M)R. We see that A(BMS)S =
(AB)M(SS) ⊆ (AB)MS ⊆ P . Then AMS ⊆ P or BMS ⊆ P because P
is jointly prime. Hence A ⊆ (P : M)R or B ⊆ (P : M)R. This shows that
(P : M)R is a prime ideal of R.

The converse of Proposition 2.12 is invalid in general. For example, 4Z is
a (Z, 2Z)-submodule of Z. Note that (4Z : Z)�= 2Z is a prime ideal of Z but
4Z is not a jointly prime (Z, 2Z)-submodule and, of course, 4Z is not a fully
prime (Z, 2Z)-submodule.

3 Left multiplication (R, S)-modules

A unital left R-module M is called a multiplication module provided for
each submodule N of M , there exists an ideal I of R such that N = IM
(see [3]). Some characterizations of multiplication modules are given by Z. El-
Bast and P.F. Smith in [3].

Later, R. Ameri [1] defined products of submodules of a multiplication
module and used them to characterize the prime submodules of a multiplication
module.
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Our objective is to introduce and study left multiplication (R, S)-modules.
Some characterizations of left multiplication (R, S)-modules are given. More-
over, we obtain that for each (R, S)-submodule N of M , there is a unique
maximal ideal J of R such that N = JMS. This, in fact, is a quite significant
result because it allows us to define products of (R, S)-submodules.

Definition 3.1. Let R and S be rings and M an (R, S)-module. Then M
is called a left multiplication (R, S)-module provided that for each (R, S)-
submodule N of M there exists an ideal I of R such that N = IMS.

The following results are analogous to the characterization of multiplication
modules given by Z. El-Bast and P.F. Smith (compare with Proposition 1.1
in [3]).

Proposition 3.2. Let M be an (R, S)-module.

(i) If M is a left multiplication (R, S)-module, then RMS = M .

(ii) If RMS = M , then (N : M)R is an ideal of R for any (R, S)-submodules
N of M .

(iii) If M is a left multiplication (R, S)-module, then for each (R, S)-submodule
N of M , N = (N : M)RMS.

(iv) If S2 = S, then M is a left multiplication (R, S)-module if and only if
for each (R, S)-submodule N of M , N = (N : M)RMS.

Proof. (i) Assume that M is a left multiplication (R, S)-module. Since M is
an (R, S)-submodule of M , there is an ideal I of R such that M = IMS. Then
M = IMS ⊆ RMS ⊆ M , so M = RMS.

(ii) Assume that RMS = M and let N be an (R, S)-submodule of M . It
is obvious that (N : M)R �= ∅. Next, let r ∈ R and a, b ∈ (N : M)R. Then
aMS ⊆ N and bMS ⊆ N . Hence (a − b)MS ⊆ aMS + bMS ⊆ N ,

(ra)MS = (ra)(RMS)S = (raR)M(SS) = (raR)(RMS)(SS)

= (raRR)M(SSS) ⊆ (raR)M(SSS) = r(aRMSS)S = r(aMS)S ⊆ N

and

(ar)MS = (ar)(RMS)S = (arR)M(SS) ⊆ (aR)M(SS)

= a(RMS)S = aMS ⊆ N.

Therefore ar, ra ∈ (N : M)R. This implies that (N : M)R is an ideal of R.
(iii) Assume that M is a left multiplication (R, S)-module and let N be

an (R, S)-submodule of M . Then N = IMS for some ideal I of R. Clearly,
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I ⊆ (N : M)R. This implies that N = IMS ⊆ (N : M)RMS ⊆ N . Hence
N = (N : M)RMS.

(iv) Assume that S2 = S. The direction ⇒ follows from (i). The converse
holds because S2 = S implies that for any (R, S)-submodule N , (N : M)R is
an ideal of R.

We would like to emphasize that if M is a left multiplication (R, S)-module,
then M = RMS so that (N : M)R is an ideal of R for any (R, S)-submodule
N of M .

Proposition 3.3. Let M be an (R, S)-module. Then M is a left multipli-
cation (R, S)-module if and only if for each m ∈ M there exists an ideal I of
R such that 〈m〉 = IMS.

Proof. The direction ⇒ is clear. For the converse, let N be an (R, S)-submodule
of M . Note that for each n ∈ N there exists an ideal In of R such that
〈n〉 = InMS. Then I =

∑
n∈N In is an ideal of R satisfying N = IMS.

If M is a left multiplication (R, S)-module and N is an (R, S)-submodule
of M , then there may be many ideals I of R such that N = IMS; that is, I
is not uniquely determined by N . Fortunately, we can recover uniqueness by
choosing the maximal ideal J such that N = JMS. Note that if N = IMS
then I ⊆ (N : M)R, and more generally, if K is an ideal such that KMS ⊆ N
then K ⊆ (N : M)R.

Since each (R, S)-submodule of a left multiplication (R, S)-module is asso-
ciated with a well-defined ideal of R, namely (N : M)R, and we have concepts
of primality in both cases, it is natural to ask whether the primality of one
implies the primality of the other. The following result provides one answer
to that question.

Theorem 3.4. Let M be a left multiplication (R, S)-module and P an (R, S)-
submodule of M . If P is a jointly prime (R, S)-submodule of M , then (P : M)R

is a prime ideal of R.

Furthermore, if R is commutative and S2 = S, then the converse holds, i.e.,
if (P : M)R is a prime ideal of R, then P is a jointly prime (R, S)-submodule
of M .

Proof. Assume that P is a jointly prime (R, S)-submodule of M . Then the
ideal (P : M)R of R is proper because M = RMS so that (P : M)R is a prime
ideal of R by Proposition 2.12.

Conversely, assume that R is commutative, S2 = S and (P : M)R is a
prime ideal of R. Let I and J be ideals of R and S, respectively, and N an
(R, S)-submodule of M such that INJ ⊆ P . Moreover, let K and L be ideals
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of R such that N = KMS and IMJ = LMS. Then

R(INJ)S = (RI)KMS(JS)

= (RIK)M(SJS)

= (KI)RMS(JS)

= (KI)M(JS)

= (KL)M(SS)

= (KL)MS.

Thus (KL)MS ⊆ P . This implies that KL ⊆ (P : M)R. Since (P : M)R

is a prime ideal of R, K ⊆ (P : M)R or L ⊆ (P : M)R. Hence N ⊆ P or
IMJ ⊆ P . Therefore P is a jointly prime (R, S)-submodule.

Note that, if R is commutative, then jointly prime (R, S)-submodules and
fully prime (R, S)-submodules coincide. Hence we can conclude that the con-
verses of the two parts of Proposition 2.12 hold in a left multiplication (R, S)-
module where R is commutative and S2 = S.

Theorem 3.5. Let P be an (R, S)-submodule of a left multiplication (R, S)-
module M , where the ring R is commutative and S2 = S. Then the following
statements are equivalent.

(i) P is a fully prime (R, S)-submodule.

(ii) P is a jointly prime (R, S)-submodule.

(iii) (P : M)R is a prime ideal of R.

The existence of the ideals (N : M)R allows us to define the product of two
(R, S)-submodules of an arbitrary (R, S)-module.

Definition 3.6. Let N and K be (R, S)-submodules of a left multiplication
(R, S)-module M . The product of N and K, denoted by NK, is defined by

(N : M)R(K : M)RMSS.

Clearly, the product NK is an (R, S)-submodule of M and is contained in
N ∩K. In fact, products of (R, S)-submodules are independent of the choices
of ideals of R provided R is commutative.

Proposition 3.7. Let N and K be (R, S)-submodules of a left multiplica-
tion (R, S)-module M . If R is commutative, then NK = (AB)M(SS) for any
ideals A and B of R such that N = AMS and K = BMS.
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Proof. Let A and B be ideals of R such that (N : M)RMS = N = AMS and
(K : M)RMS = K = BMS. Then

NK = [(N : M)R(K : M)R]M(SS) = (N : M)R[(K : M)RMS]S

= (N : M)R[BMS]S

= [(N : M)RB]M(SS)

= [B(N : M)R]M(SS)

= B[(N : M)RMS]S

= B(AMS)S

= (BA)M(SS)

= (AB)M(SS).

This shows that NK = (AB)M(SS) for any ideals A and B of R such that
N = AMS and K = BMS.

Compare the following results with Theorem 3.16 in [1].

Proposition 3.8. Let P be a proper (R, S)-submodule of a left multiplica-
tion (R, S)-module M . If P is a jointly prime (R, S)-submodule, then for all
(R, S)-submodules U and V of M ,

UV ⊆ P implies U ⊆ P or V ⊆ P. (1)

Furthermore, if R is commutative and S2 = S, then the converse is true as well,
i.e., if P satisfies condition (1), then P is a jointly prime (R, S)-submodule.

Proof. Assume that P is a jointly prime (R, S)-submodule. Let U and V be
(R, S)-submodules of M such that UV ⊆ P . Then (U : M)R[(V : M)RMS]S ⊆
P . Since P is jointly prime, U = (U : M)RMS ⊆ P or V = (V : M)RMS ⊆ P .

Conversely, assume that R is commutative, S2 = S, and condition (1)
holds. By Theorem 3.4, it is enough to show that (P : M)R is a prime
ideal of R. Let A and B be ideals of R such that AB ⊆ (P : M)R. Then
(AMS)(BMS) ⊆ P . From condition (1) we obtain that AMS ⊆ P or
BMS ⊆ P . Hence A ⊆ (P : M)R or B ⊆ (P : M)R. Therefore, (P : M)R is a
prime ideal of R, as desired.

Corollary 3.9. Let P be a proper (R, S)-submodule of a left multiplication
(R, S)-module M . If P is a jointly prime (R, S)-submodule, then for each
a, b ∈ M ,

〈a〉〈b〉 ⊆ P implies a ∈ P or b ∈ P. (2)

Furthermore, if R is commutative and S2 = S, then the converse holds, i.e.,
if P satisfies condition (2), then P is a jointly prime (R, S)-submodule.
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Proof. If P is a jointly prime (R, S)-submodule, then the truth of condition (2)
for any a, b ∈ M follows from Proposition 3.8.

Next, assume that R is commutative, S2 = S and condition (2) holds.
Let U and V be (R, S)-submodules of M such that UV ⊆ P . Suppose that
U � P and V � P . Then there exist u ∈ U \ P and v ∈ V \ P . Note that
〈u〉〈v〉 ⊆ UV ⊆ P , and thus condition (2) yields u ∈ P or v ∈ P , which is
a contradiction. Hence U ⊆ P or V ⊆ P . Therefore P is a jointly prime
(R, S)-submodule.
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