On Operator Inequalities Involving Numerical Radius and Operator Norm¹

Kallol Paul and Santanu Bag

Department of Mathematics, Jadavpur University Kolkata 700032, India kalloldada@yahoo.co.in

Abstract. We prove operator inequalities involving numerical radius and norm of a bounded linear operator acting on a Hilbert space H.

Mathematics Subject Classification: Primary 47A63, Secondary 47A12

1. Introduction

Suppose T be a bounded linear operator on a complex Hilbert space H with inner product (,) and norm $\| \|$. Let W(T), $\sigma(T)$ denote respectively the numerical range, spectrum of T and w(T), $r_{\sigma}(T)$ denote respectively the numerical radius, spectral radius of T, i.e.,

$$W(T) = \{(Tx, x) : ||x|| = 1\} \text{ and } w(T) = \sup\{|\lambda| : \lambda \in W(T)\}.$$

It is easy to see that w(T) is a norm on B(H), the Banach algebra of all bounded linear operators on H. Also w(T) is equivalent to the usual operator norm ||T|| on B(H) as

$$\frac{\|T\|}{2} \le w(T) \le \|T\| \dots (i)$$

Kittaneh [3] substantially improved on the second inequality to prove that if T is a bounded linear operator on a complex Hilbert space H then

$$w(T) \le \frac{1}{2} ||T|| + \frac{1}{2} ||T^2||^{\frac{1}{2}} \dots (ii)$$

Clearly $\frac{1}{2}||T|| + \frac{1}{2}||T^2||^{\frac{1}{2}} \le ||T||$ so that inequality (ii) is sharper than the second inequality of (i). The significant part in inequality (ii) is the contribution made by the second factor involving $||T^2||$. Some easy examples mentioned

¹The research of first author is partially supported by PURSE-DST, Govt. of India and research of second author is supported by CSIR, India.

below illustrate the fact that one can not compare w(T) with $||T^2||^{\frac{1}{2}}$. If T is a 2×2 nilpotent matrix with index 2 then one may get $w(T) = \frac{1}{2}$ and $||T^2|| = 0$ whereas if T is a 3×3 nilpotent matrix with index 3 then one may get $w(T) = \frac{1}{\sqrt{2}}$ and $||T^2|| = 1$. U.Haagerup and P.De La Harpe [2] estimated the numerical radius of a nilpotent operator on a Hilbert space and proved that

$$w(T) \le ||T|| \cos \frac{\pi}{n+1}$$
, where $T^n = 0$ for some $n \ge 2$,

the equality holds when T is the n-dimensional shift on the space C^n . Let $T = U \mid T \mid$ be the polar decomposition of T, then the Aluthge [1] transform \tilde{T} of T is defined as $\tilde{T} = \mid T \mid^{\frac{1}{2}} U \mid T \mid^{\frac{1}{2}}$. Using the inequality (ii) of Kittaneh, T.Yamazaki [5] obtained an inequality concerning operator norm ||T||, numerical radius w(T) and Aluthge transform \tilde{T} of T as follows

$$w(T) \le \frac{1}{2} ||T|| + \frac{1}{2} w(\tilde{T}).$$

Letting $\tilde{T}_0 = T$ and $\tilde{T}_n = \tilde{\tilde{T}}_{n-1}$ for natural number n, Yamazaki also proved that

$$w(T) \le \sum_{n=1}^{\infty} \frac{1}{2^n} \|\tilde{T}_{n-1}\|.$$

Recently in [4] we proved the following theorem using Archimedean Property

Theorem 1. Let T be a bounded linear operator on a complex Hilbert space H. Then either there exists some $n_0 \in N$ such that

(1)
$$w(T) \le \frac{1}{2} \|T\| + \frac{1}{2^2} \|T^2\|^{\frac{1}{2}} + \dots + \frac{1}{2^{n_0}} \|T^{2^{n_0-1}}\|^{\frac{1}{2^{n_0-1}}}$$

or for all $n \in N$

(2)
$$\frac{1}{2} \|T\| + \frac{1}{2^2} \|T^2\|^{\frac{1}{2}} + \ldots + \frac{1}{2^n} \|T^{2^{n-1}}\|^{\frac{1}{2^{n-1}}} < w(T).$$

2. Main results

Using the Archimedean property we here first prove two operator inequalities either of which has to be true.

Theorem 2.1. Let T be a bounded linear operator on a complex Hilbert space H. Then either there exists some $n_1 \in N$ such that

(3)
$$||T|| \le w(T) + \frac{1}{2^2} ||T^2||^{\frac{1}{2}} + \dots + \frac{1}{2^{n_1}} ||T^{2^{n_1-1}}||^{\frac{1}{2^{n_1-1}}}$$
or for all $n \in N$

(4)
$$w(T) + \frac{1}{2^{2}} \|T^{2}\|^{\frac{1}{2}} + \ldots + \frac{1}{2^{n}} \|T^{2^{n-1}}\|^{\frac{1}{2^{n-1}}} < \|T\|$$

Proof. We know that $\frac{\|T\|}{2} \le w(T) \le \|T\|$. We first note that if $w(T) = \|T\|$ then it satisfies the inequality (3).

If ||T|| > w(T) then by Archimedean property there exists $n \in N$ such that

$$n(||T|| - w(T)) > \frac{1}{2^2} ||T^2||^{\frac{1}{2}}.$$

So

$$||T|| > w(T) + \frac{1}{2^2 n} ||T^2||^{\frac{1}{2}}.$$

Let $S = \{n \in N : ||T|| > w(T) + \frac{1}{2^2 n} ||T^2||^{\frac{1}{2}} \}$. Then $S \neq \phi$ and so S has a least element $k_1 \in N$. If $k_1 \neq 1$ then

$$w(T) + \frac{1}{2^2 k_1} ||T^2||^{\frac{1}{2}} < ||T|| \le w(T) + \frac{1}{2^2 (k_1 - 1)} ||T^2||^{\frac{1}{2}}$$

or if $k_1 = 1$ then we get

$$||T|| > w(T) + \frac{1}{2^2} ||T^2||^{\frac{1}{2}}.$$

In both cases i.e., for $k_1 > 1$ and $k_1 = 1$ we have $||T|| > w(T) + \frac{1}{2^2 k_1} ||T^2||^{\frac{1}{2}}$. Again by Archimedean property there exists $n \in N$ such that

$$n(\|T\| - w(T) - \frac{1}{2^2 k_1} \|T^2\|^{\frac{1}{2}}) > \frac{1}{2^3} \|T^{2^2}\|^{\frac{1}{2^2}}.$$

As before we can find a least element $k_2 \in N$ such that if $k_2 \neq 1$ then

$$w(T) + \frac{1}{2^{2}k_{1}} \|T^{2}\|^{\frac{1}{2}} + \frac{1}{2^{3}k_{2}} \|T^{2^{2}}\|^{\frac{1}{2^{2}}} < \|T\| \le w(T) + \frac{1}{2^{2}k_{1}} \|T^{2}\|^{\frac{1}{2}} + \frac{1}{2^{3}(k_{2} - 1)} \|T^{2^{2}}\|^{\frac{1}{2^{2}}}$$

or if $k_2 = 1$ then

$$||T|| > w(T) + \frac{1}{2^2 k_1} ||T^2||^{\frac{1}{2}} + \frac{1}{2^3} ||T^{2^2}||^{\frac{1}{2^2}}.$$

Proceeding in this way we get a sequence of natural numbers $\{k_n\}$ such that either of the following two cases arise

Case 1. $k_n \neq 1$ for some n. In this case

$$w(T) + \frac{1}{2^{2}k_{1}} \|T^{2}\|^{\frac{1}{2}} + \ldots + \frac{1}{2^{n}k_{n-1}} \|T^{2^{n-1}}\|^{\frac{1}{2^{n-1}}} + \frac{1}{2^{n+1}k_{n}} \|T^{2^{n}}\|^{\frac{1}{2^{n}}} < \|T\|$$

and

$$||T|| \le w(T) + \frac{1}{2^2 k_1} ||T^2||^{\frac{1}{2}} + \ldots + \frac{1}{2^n k_{n-1}} ||T^{2^{n-1}}||^{\frac{1}{2^{n-1}}} + \frac{1}{2^{n+1} (k_n - 1)} ||T^{2^n}||^{\frac{1}{2^n}}.$$

This is a new operator inequality involving both lower and upper bounds of numerical radius.

Case 2. $k_n = 1 \ \forall n \in \mathbb{N}$. In this case for all $n \in \mathbb{N}$

$$w(T) + \frac{1}{2^2} \|T^2\|^{\frac{1}{2}} + \ldots + \frac{1}{2^n} \|T^{2^{n-1}}\|^{\frac{1}{2^{n-1}}} < \|T\|^{\frac{1}{2^{n-1}}}$$

This is a new operator inequality involving upper bound of the numerical radius.

If Case 1 holds we get the existence of $n_1 \in N$ such that

$$||T|| \le w(T) + \frac{1}{2^2} ||T^2||^{\frac{1}{2}} + \ldots + \frac{1}{2^{n_1}} ||T^{2^{n_1-1}}||^{\frac{1}{2^{n_1-1}}}$$

and if Case 2 holds then we get $\forall n \in N$

$$w(T) + \frac{1}{2^2} \|T^2\|^{\frac{1}{2}} + \ldots + \frac{1}{2^n} \|T^{2^{n-1}}\|^{\frac{1}{2^{n-1}}} < \|T\|.$$

This completes the proof.

Remark 2.2. In the proof of theorem if $k_1 = 2$ then

$$w(T) + \frac{1}{2^2 2} \|T^2\|^{\frac{1}{2}} < \|T\| \le w(T) + \frac{1}{2^2} \|T^2\|^{\frac{1}{2}} < w(T) + \frac{1}{2} \|T^2\|^{\frac{1}{2}}$$

so that

$$\frac{1}{2^2 \cdot 2} \|T^2\|^{\frac{1}{2}} < \|T\| - w(T) \le \frac{1}{2^2} \|T^2\|^{\frac{1}{2}}$$

If $k_1 = 1, k_2 = 2$ then

$$w(T) + \frac{1}{2^2} \|T^2\|^{\frac{1}{2}} + \frac{1}{2^3 \cdot 2} \|T^{2^2}\|^{\frac{1}{2^2}} < \|T\| \le w(T) + \frac{1}{2^2} \|T^2\|^{\frac{1}{2}} + \frac{1}{2^3} \|T^{2^2}\|^{\frac{1}{2^2}}$$

so that

$$\frac{5}{16} \|T^{2^2}\|^{\frac{1}{2^2}} < \|T\| - w(T) \le \frac{3}{8} \|T^2\|^{\frac{1}{2}}.$$

Remark 2.3. From Theorem 1 and Theorem 2.1 we conclude that for any bounded linear operator T

- (*) either the inequality (1) or (2) holds and
- (**) either the inequality (3) or (4) holds.

We now prove the following theorem

Theorem 2.4. Suppose T be a bounded linear operator on a complex Hilbert space H. Then one of the following four alternatives is true

$$||T|| < c||T^2||^{1/2}$$
, for some constant $c \in [1, 2)$

$$w(T) < \frac{3}{4}||T||, \ w(T) > \frac{3}{4}||T||, \ r_{\sigma}(T) \le \frac{1}{2}||T||,$$

Proof. We have from Theorem 1, either there exists $n_0 \in N$ such that

(1)
$$w(T) \le \frac{1}{2} ||T|| + \frac{1}{2^2} ||T^2||^{\frac{1}{2}} + \dots + \frac{1}{2^{n_0}} ||T^{2^{n_0-1}}||^{\frac{1}{2^{n_0-1}}}$$

or
$$\forall n \in N$$
 (2)
$$\frac{1}{2} ||T|| + \frac{1}{2^2} ||T^2||^{\frac{1}{2}} + \dots + \frac{1}{2^n} ||T^{2^{n-1}}||^{\frac{1}{2^{n-1}}} < w(T).$$

We also have from Theorem 2.1, either there exists $n_1 \in N$ such that

(3)
$$||T|| \le w(T) + \frac{1}{2^2} ||T^2||^{\frac{1}{2}} + \dots + \frac{1}{2^{n_1}} ||T^{2^{n_1-1}}||^{\frac{1}{2^{n_1-1}}}$$
or $\forall n \in N$ (4)
$$w(T) + \frac{1}{2^2} ||T^2||^{\frac{1}{2}} + \dots + \frac{1}{2^n} ||T^{2^{n-1}}||^{\frac{1}{2^{n-1}}} < ||T||.$$

Now we investigate the following four options.

Case 1. When (1) and (3) holds.

Without loss of generality we assume that $n_0 \leq n_1$. Then we get

$$w(T) + ||T|| \leq \frac{1}{2}||T|| + w(T) + 2\left[\frac{1}{2^{2}}||T^{2}||^{\frac{1}{2}} + \dots + \frac{1}{2^{n_{0}}}||T^{2^{n_{0}-1}}||^{\frac{1}{2^{n_{0}-1}}}\right]$$

$$+ \frac{1}{2^{n_{0}+1}}||T^{2^{n_{0}}}||^{\frac{1}{2^{n_{0}}}} + \dots + \frac{1}{2^{n_{1}}}||T^{2^{n_{1}-1}}||^{\frac{1}{2^{n_{1}-1}}}$$

$$\Rightarrow ||T|| \leq ||T^{2}||^{\frac{1}{2}} + \frac{1}{2}||T^{2^{2}}||^{\frac{1}{2^{2}}} + \dots + \frac{1}{2^{n_{0}-2}}||T^{2^{n_{0}-1}}||^{\frac{1}{2^{n_{0}-1}}}$$

$$+ \frac{1}{2^{n_{0}}}||T^{2^{n_{0}}}||^{\frac{1}{2^{n_{0}}}} + \dots + \frac{1}{2^{n_{1}-1}}||T^{2^{n_{1}-1}}||^{\frac{1}{2^{n_{1}-1}}}$$

$$\Rightarrow ||T|| \leq [(1 - \frac{1}{2^{n_{1}-1}}) + (1 - \frac{1}{2^{n_{0}-1}})]||T^{2}||^{1/2}$$

Thus we get $||T|| \leq [(1 - \frac{1}{2^{n_1-1}}) + (1 - \frac{1}{2^{n_0-1}})]||T^2||^{1/2}$ where $n_1, n_0 \in N$ and $n_1 \geq 2, n_0 \geq 2$. Hence we conclude

$$||T|| \le c||T^2||^{1/2}$$
 for some constant $c \in [1, 2)$.

If $n_1 = n_0 = 2$ then $||T|| \le ||T^2||^{1/2}$ and so $||T|| = ||T^2||^{1/2}$ as we know $||T^2||^{1/2} \le ||T||$.

Case 2. When (1) and (4) holds.

As (4) holds for all $n \in N$ so it holds for n_0 and adding (1) and (4) we get

$$w(T) + w(T) + \frac{1}{2^{2}} \|T^{2}\|^{\frac{1}{2}} + \dots + \frac{1}{2^{n_{0}}} \|T^{2^{n_{0}-1}}\|^{\frac{1}{2^{n_{0}-1}}}$$

$$< \frac{1}{2} \|T\| + \frac{1}{2^{2}} \|T^{2}\|^{\frac{1}{2}} + \dots + \frac{1}{2^{n_{0}}} \|T^{2^{n_{0}-1}}\|^{\frac{1}{2^{n_{0}-1}}} + \|T\|$$

$$\Rightarrow w(T) < \frac{3}{4} \|T\|.$$

Case 3. When (2) and (3) holds.

As (2) holds for all $n \in N$ so it holds for n_1 and adding (2) and (3) we get

$$\frac{1}{2}\|T\| + \frac{1}{2^{2}}\|T^{2}\|^{\frac{1}{2}} + \ldots + \frac{1}{2^{n}}\|T^{2^{n-1}}\|^{\frac{1}{2^{n-1}}} + \|T\|
< w(T) + w(T) + \frac{1}{2^{2}}\|T^{2}\|^{\frac{1}{2}} + \ldots + \frac{1}{2^{n_{1}}}\|T^{2^{n_{1}-1}}\|^{\frac{1}{2^{n_{1}-1}}}
\Rightarrow w(T) > \frac{3}{4}\|T\|.$$

Case 4. When (2) and (4) holds.

Adding (2) and (4) we get for all $n \in N$

$$\frac{1}{2}||T|| + w(T) + 2\left[\frac{1}{2^{2}}||T^{2}||^{\frac{1}{2}} + \dots + \frac{1}{2^{n}}||T^{2^{n-1}}||^{\frac{1}{2^{n-1}}}\right] < w(T) + ||T||$$

$$\Rightarrow \frac{1}{2}||T^{2}||^{\frac{1}{2}} + \dots + \frac{1}{2^{n-1}}||T^{2^{n-1}}||^{\frac{1}{2^{n-1}}} < \frac{1}{2}||T||.$$

1704

Thus

$$(1 - \frac{1}{2^n}) \|T^{2^n}\|^{\frac{1}{2^n}} < \frac{1}{2} \|T\| \text{ for all } n \in \mathbb{N}.$$

Taking limit as $n \longrightarrow \infty$ we get $r_{\sigma}(T) \leq \frac{1}{2} ||T||$. This completes the proof.

Corollary 2.5. Let T be a bounded linear operator on H. Then one of the following four inequalities holds.

$$\begin{split} \|T\| < \|T^2\|^{1/2} + c\|T^{2^2}\|^{\frac{1}{2^2}}, \ for \ some \ c \in [0,1) \\ or \ \frac{1}{2}\|T\| \leq w(T) < \frac{3}{4}\|T\| \ or \ \frac{3}{4}\|T\| < w(T) \leq \|T\| \ or \ r_{\sigma}(T) \leq \frac{1}{2}\|T\|. \end{split}$$

Proof. As in the last theorem we have from Case 1,

$$||T|| \leq ||T^{2}||^{\frac{1}{2}} + \frac{1}{2}||T^{2^{2}}||^{\frac{1}{2^{2}}} + \dots + \frac{1}{2^{n_{0}-2}}||T^{2^{n_{0}-1}}||^{\frac{1}{2^{n_{0}-1}}} + \frac{1}{2^{n_{0}}}||T^{2^{n_{0}}}||^{\frac{1}{2^{n_{0}}}} + \dots + \frac{1}{2^{n_{1}-1}}||T^{2^{n_{1}-1}}||^{\frac{1}{2^{n_{1}-1}}}$$

$$\Rightarrow ||T|| \leq ||T^{2}||^{\frac{1}{2}} + [1 - (\frac{1}{2^{n_{1}-1}} + \frac{1}{2^{n_{0}-1}})]||T^{2^{2}}||^{1/2^{2}}$$

where $n_1, n_0 \in N$ and $n_1 \geq 2, n_0 \geq 2$. Thus

$$||T|| < ||T^2||^{1/2} + c||T^{2^2}||^{\frac{1}{2^2}}$$
, for some $c \in [0, 1)$.

Remaining inequalities follow from the other three cases of the last theorem.

References

- 1. Aluthge A., Some generalized theorems on p-hyponormal operators, Integral Equations Operator Theory, 24 (1996), 497501.
- Haggerup, U. and Pierre De la Harpe, The numerical radius of a Nilpotent operator on a Hilbert Space, Proceedings of the American Mathematical Society, 115 No. 2 (1992) 371-379.
- 3. Kittaneh F., A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Mathematica, 158 No. 1 (2003) 11-17.
- 4. Paul, K., A conjecture on upper bound of the Numerical Radius of a bounded linear operator, Accepted, International Journal of Mathematical Analysis, 2012.
- 5. Yamazaki, T., On upper and lower bounds of the numerical radius and an equality condition, Studia Mathematica, 178 No. 1 (2007) 83-89.

Received: January, 2012