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1. Introduction

Suppose T be a bounded linear operator on a complex Hilbert space H with
inner product ( , ) and norm ‖ ‖. Let W(T), σ(T ) denote respectively the
numerical range, spectrum of T and w(T ), rσ(T ) denote respectively the nu-
merical radius, spectral radius of T, i.e.,

W (T ) = {(Tx, x) : ‖x‖ = 1} and w(T ) = sup{| λ | : λ ∈ W (T )}.
It is easy to see that w(T ) is a norm on B(H), the Banach algebra of all
bounded linear operators on H. Also w(T ) is equivalent to the usual operator
norm ‖T‖ on B(H) as

‖T‖
2

≤ w(T ) ≤ ‖T‖ . . . (i)

Kittaneh [3] substantially improved on the second inequality to prove that if
T is a bounded linear operator on a complex Hilbert space H then

w(T ) ≤ 1

2
‖T‖ +

1

2
‖T 2‖ 1

2 . . . (ii)

Clearly 1
2
‖T‖+ 1

2
‖T 2‖ 1

2 ≤ ‖T‖ so that inequality (ii) is sharper than the second
inequality of (i). The significant part in inequality (ii) is the contribution
made by the second factor involving ‖T 2‖. Some easy examples mentioned
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below illustrate the fact that one can not compare w(T ) with ‖T 2‖ 1
2 . If T

is a 2 × 2 nilpotent matrix with index 2 then one may get w(T ) = 1
2

and
‖T 2‖ = 0 whereas if T is a 3 × 3 nilpotent matrix with index 3 then one may
get w(T ) = 1√

2
and ‖T 2‖ = 1. U.Haagerup and P.De La Harpe [2] estimated

the numerical radius of a nilpotent operator on a Hilbert space and proved
that

w(T ) ≤ ‖T‖ cos
π

n + 1
, where T n = 0 for some n ≥ 2,

the equality holds when T is the n-dimensional shift on the space Cn.
Let T = U | T | be the polar decomposition of T, then the Aluthge [1]

transform T̃ of T is defined as T̃ =| T | 12 U | T | 12 . Using the inequality (ii)
of Kittaneh, T.Yamazaki [5] obtained an inequality concerning operator norm

‖T‖, numerical radius w(T ) and Aluthge transform T̃ of T as follows

w(T ) ≤ 1

2
‖T‖ +

1

2
w(T̃ ).

Letting T̃0 = T and T̃n = ˜̃T n−1 for natural number n, Yamazaki also proved
that

w(T ) ≤
∞∑

n=1

1

2n
‖T̃n−1‖.

Recently in [4] we proved the following theorem using Archimedean Property

Theorem 1. Let T be a bounded linear operator on a complex Hilbert space
H. Then either there exists some n0 ∈ N such that

w(T ) ≤ 1

2
‖T‖ +

1

22
‖T 2‖ 1

2 + . . . +
1

2n0
‖T 2n0−1‖ 1

2n0−1(1)

or for all n ∈ N

1

2
‖T‖ +

1

22
‖T 2‖ 1

2 + . . . +
1

2n
‖T 2n−1‖ 1

2n−1 < w(T ).(2)

2. Main results

Using the Archimedean property we here first prove two operator inequalities
either of which has to be true.

Theorem 2.1. Let T be a bounded linear operator on a complex Hilbert space
H. Then either there exists some n1 ∈ N such that

‖T‖ ≤ w(T ) +
1

22
‖T 2‖ 1

2 + . . . +
1

2n1
‖T 2n1−1‖ 1

2n1−1(3)

or for all n ∈ N

w(T ) +
1

22
‖T 2‖ 1

2 + . . . +
1

2n
‖T 2n−1‖ 1

2n−1 < ‖T‖(4)
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Proof. We know that ‖T‖
2

≤ w(T ) ≤ ‖T‖. We first note that if w(T ) = ‖T‖
then it satisfies the inequality (3).
If ‖T‖ > w(T ) then by Archimedean property there exists n ∈ N such that

n(‖T‖ − w(T )) >
1

22
‖T 2‖ 1

2 .

So

‖T‖ > w(T ) +
1

22n
‖T 2‖ 1

2 .

Let S = {n ∈ N : ‖T‖ > w(T ) + 1
22n

‖T 2‖ 1
2}. Then S �= φ and so S has a least

element k1 ∈ N . If k1 �= 1 then

w(T ) +
1

22k1
‖T 2‖ 1

2 < ‖T‖ ≤ w(T ) +
1

22(k1 − 1)
‖T 2‖ 1

2

or if k1 = 1 then we get

‖T‖ > w(T ) +
1

22
‖T 2‖ 1

2 .

In both cases i.e., for k1 > 1 and k1 = 1 we have ‖T‖ > w(T ) + 1
22k1

‖T 2‖ 1
2 .

Again by Archimedean property there exists n ∈ N such that

n(‖T‖ − w(T ) − 1

22k1
‖T 2‖ 1

2 ) >
1

23
‖T 22‖ 1

22 .

As before we can find a least element k2 ∈ N such that if k2 �= 1 then

w(T ) +
1

22k1
‖T 2‖ 1

2 +
1

23k2
‖T 22‖ 1

22 < ‖T‖ ≤ w(T ) +
1

22k1
‖T 2‖ 1

2 +
1

23(k2 − 1)
‖T 22‖ 1

22

or if k2 = 1 then

‖T‖ > w(T ) +
1

22k1
‖T 2‖ 1

2 +
1

23
‖T 22‖ 1

22 .

Proceeding in this way we get a sequence of natural numbers {kn} such that
either of the following two cases arise
Case 1. kn �= 1 for some n. In this case

w(T ) +
1

22k1
‖T 2‖ 1

2 + . . . +
1

2nkn−1
‖T 2n−1‖ 1

2n−1 +
1

2n+1kn
‖T 2n‖ 1

2n < ‖T‖

and

‖T‖ ≤ w(T ) +
1

22k1

‖T 2‖ 1
2 + . . . +

1

2nkn−1

‖T 2n−1‖ 1
2n−1 +

1

2n+1(kn − 1)
‖T 2n‖ 1

2n .

This is a new operator inequality involving both lower and upper bounds of
numerical radius.
Case 2. kn = 1 ∀n ∈ N. In this case for all n ∈ N

w(T ) +
1

22
‖T 2‖ 1

2 + . . . +
1

2n
‖T 2n−1‖ 1

2n−1 < ‖T‖.
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This is a new operator inequality involving upper bound of the numerical
radius.
If Case 1 holds we get the existence of n1 ∈ N such that

‖T‖ ≤ w(T ) +
1

22
‖T 2‖ 1

2 + . . . +
1

2n1
‖T 2n1−1‖ 1

2n1−1

and if Case 2 holds then we get ∀n ∈ N

w(T ) +
1

22
‖T 2‖ 1

2 + . . . +
1

2n
‖T 2n−1‖ 1

2n−1 < ‖T‖.
This completes the proof.

Remark 2.2. In the proof of theorem if k1 = 2 then

w(T ) +
1

22.2
‖T 2‖ 1

2 < ‖T‖ ≤ w(T ) +
1

22
‖T 2‖ 1

2 < w(T ) +
1

2
‖T 2‖ 1

2

so that

1

22.2
‖T 2‖ 1

2 < ‖T‖ − w(T ) ≤ 1

22
‖T 2‖ 1

2

If k1 = 1, k2 = 2 then

w(T ) +
1

22
‖T 2‖ 1

2 +
1

23.2
‖T 22‖ 1

22 < ‖T‖ ≤ w(T ) +
1

22
‖T 2‖ 1

2 +
1

23
‖T 22‖ 1

22

so that

5

16
‖T 22‖ 1

22 < ‖T‖ − w(T ) ≤ 3

8
‖T 2‖ 1

2 .

Remark 2.3. From Theorem 1 and Theorem 2.1 we conclude that for any
bounded linear operator T
(*) either the inequality (1) or (2) holds and
(**) either the inequality (3) or (4) holds.

We now prove the following theorem

Theorem 2.4. Suppose T be a bounded linear operator on a complex Hilbert
space H. Then one of the following four alternatives is true

‖T‖ < c‖T 2‖1/2, for some constant c ∈ [1, 2)

w(T ) <
3

4
‖T‖, w(T ) >

3

4
‖T‖, rσ(T ) ≤ 1

2
‖T‖,

Proof. We have from Theorem 1, either there exists n0 ∈ N such that

(1) w(T ) ≤ 1
2
‖T‖ + 1

22‖T 2‖ 1
2 + . . . + 1

2n0
‖T 2n0−1‖ 1

2n0−1

or ∀n ∈ N (2) 1
2
‖T‖ + 1

22‖T 2‖ 1
2 + . . . + 1

2n‖T 2n−1‖ 1
2n−1 < w(T ).
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We also have from Theorem 2.1, either there exists n1 ∈ N such that

(3) ‖T‖ ≤ w(T ) + 1
22‖T 2‖ 1

2 + . . . + 1
2n1

‖T 2n1−1‖ 1

2n1−1

or ∀n ∈ N (4) w(T ) + 1
22‖T 2‖ 1

2 + . . . + 1
2n‖T 2n−1‖ 1

2n−1 < ‖T‖.
Now we investigate the following four options.
Case 1. When (1) and (3) holds.
Without loss of generality we assume that n0 ≤ n1. Then we get

w(T ) + ‖T‖ ≤ 1

2
‖T‖ + w(T ) + 2[

1

22
‖T 2‖ 1

2 + . . . +
1

2n0
‖T 2n0−1‖ 1

2n0−1 ]

+
1

2n0+1
‖T 2n0‖ 1

2n0 + . . . +
1

2n1
‖T 2n1−1‖ 1

2n1−1

⇒ ‖T‖ ≤ ‖T 2‖ 1
2 +

1

2
‖T 22‖ 1

22 + . . . +
1

2n0−2
‖T 2n0−1‖ 1

2n0−1

+
1

2n0
‖T 2n0‖ 1

2n0 + . . . +
1

2n1−1
‖T 2n1−1‖ 1

2n1−1

⇒ ‖T‖ ≤ [(1 − 1

2n1−1
) + (1 − 1

2n0−1
)]‖T 2‖1/2

Thus we get ‖T‖ ≤ [(1 − 1
2n1−1 ) + (1 − 1

2n0−1 )]‖T 2‖1/2 where n1, n0 ∈ N and
n1 ≥ 2, n0 ≥ 2. Hence we conclude

‖T‖ ≤ c‖T 2‖1/2 for some constant c ∈ [1, 2).

If n1 = n0 = 2 then ‖T‖ ≤ ‖T 2‖1/2 and so ‖T‖ = ‖T 2‖1/2 as we know
‖T 2‖1/2 ≤ ‖T‖.
Case 2. When (1) and (4) holds.
As (4) holds for all n ∈ N so it holds for n0 and adding (1) and (4) we get

w(T ) + w(T ) + 1
22‖T 2‖ 1

2 + . . . + 1
2n0

‖T 2n0−1‖ 1

2n0−1

< 1
2
‖T‖ + 1

22‖T 2‖ 1
2 + . . . + 1

2n0
‖T 2n0−1‖ 1

2n0−1 + ‖T‖
⇒ w(T ) < 3

4
‖T‖.

Case 3. When (2) and (3) holds.
As (2) holds for all n ∈ N so it holds for n1 and adding (2) and (3) we get

1
2
‖T‖ + 1

22‖T 2‖ 1
2 + . . . + 1

2n‖T 2n−1‖ 1
2n−1 + ‖T‖

< w(T ) + w(T ) + 1
22‖T 2‖ 1

2 + . . . + 1
2n1

‖T 2n1−1‖ 1

2n1−1

⇒ w(T ) > 3
4
‖T‖.

Case 4. When (2) and (4) holds.
Adding (2) and (4) we get for all n ∈ N

1
2
‖T‖ + w(T ) + 2[ 1

22‖T 2‖ 1
2 + . . . + 1

2n‖T 2n−1‖ 1
2n−1 ] < w(T ) + ‖T‖

⇒ 1
2
‖T 2‖ 1

2 + . . . + 1
2n−1 ‖T 2n−1‖ 1

2n−1 < 1
2
‖T‖.



1704 K. Paul and S. Bag

Thus

(1 − 1

2n
)‖T 2n‖ 1

2n <
1

2
‖T‖ for all n ∈ N.

Taking limit as n −→ ∞ we get rσ(T ) ≤ 1
2
‖T‖.

This completes the proof.

Corollary 2.5. Let T be a bounded linear operator on H. Then one of the
following four inequalities holds.

‖T‖ < ‖T 2‖1/2 + c‖T 22‖ 1
22 , for some c ∈ [0, 1)

or
1

2
‖T‖ ≤ w(T ) <

3

4
‖T‖ or

3

4
‖T‖ < w(T ) ≤ ‖T‖ or rσ(T ) ≤ 1

2
‖T‖.

Proof. As in the last theorem we have from Case 1,

‖T‖ ≤ ‖T 2‖ 1
2 +

1

2
‖T 22‖ 1

22 + . . . +
1

2n0−2
‖T 2n0−1‖ 1

2n0−1

+
1

2n0
‖T 2n0‖ 1

2n0 + . . . +
1

2n1−1
‖T 2n1−1‖ 1

2n1−1

⇒ ‖T‖ ≤ ‖T 2‖ 1
2 + [1 − (

1

2n1−1
+

1

2n0−1
)]‖T 22‖1/22

where n1, n0 ∈ N and n1 ≥ 2, n0 ≥ 2. Thus

‖T‖ < ‖T 2‖1/2 + c‖T 22‖ 1
22 , for some c ∈ [0, 1).

Remaining inequalities follow from the other three cases of the last theorem.
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