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Abstract

In this paper, we show a parabolic version of the Ogawa type in-
equality in Sobolev spaces. Our inequality provides an estimate of the
L∞ norm of a function in terms of its parabolic BMO norm, with the
aid of the square root of the logarithmic dependency of a higher or-
der Sobolev norm. The proof is mainly based on the Littlewood-Paley
decomposition and a characterization of parabolic BMO spaces.
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1 Introduction and main results

In order to study the long-time existence of a certain class of singular parabolic

problems, Ibrahim and Monneau [9] made use of a parabolic logarithmic Sobolev

inequality. They proved that for f ∈W 2m,m
2 (Rn+1), m,n ∈ N

∗ and 2m > n+2
2

,

the following estimate takes place (with log+ x = max(log x, 0)):

‖f‖L∞(�n+1) ≤ C(1 + ‖f‖BMOa(�n+1)(1 + log+ ‖f‖W 2m,m
2 (�n+1))), (1.1.1)
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for some constant C = C(m,n) > 0. Here BMOa stands for the anisotropic

Bounded Mean Oscillation space with the parabolic anisotropy a = (1, . . . , 1, 2) ∈
R

n+1 (see Definition 2.1), while W 2m,m
2 stands for the parabolic Sobolev space

(see Definition 2.2). The above estimate, after also being proved on a bounded

domain

ΩT = (0, 1)n × (0, T ) ⊆ R
n+1, (1.1.2)

was successfully applied in order to obtain some a priori bounds on the gra-

dient of the solution of particular parabolic equations leading eventually to

the long-time existence (see [9, Proposition 3.7] or [8, Theorem 1.3]). The

bounded version of (1.1.1) (see [9, Theorem 1.2]) reads: if f ∈ W 2m,m
2 (ΩT )

with 2m > n+2
2

, then:

‖f‖L∞(ΩT ) ≤ C(1 + ‖f‖BMO
a
(ΩT )(1 + log+ ‖f‖W 2m,m

2 (ΩT ))), (1.1.3)

where C = C(m,n, T ) > 0 is a positive constant, and

‖f‖BMO
a
(ΩT ) = ‖f‖BMOa(ΩT ) + ‖f‖L1(ΩT ). (1.1.4)

Indeed, the fact that inequality (1.1.1) does not hold on ΩT with a positive

constant C∗ = C∗(m,n, T ) can be easily understood by applying this inequality

to the function f = (C∗+ε) ∈W 2m,m
2 (ΩT ) with ε > 0. In this case ‖f‖L∞(ΩT ) =

C∗ + ε, ‖f‖BMOa(ΩT ) = 0, and hence a contradiction. However, working on

R
n+1, the same function f could not be used since f ∈/W 2m,m

2 (Rn+1). Let us

indicate that both inequalities (1.1.1) and (1.1.3) still hold for vector-valued

functions f = (f1, . . . , fn, fn+1) ∈ (W 2m,m
2 (Rn+1))n+1 with 2m > n+2

2
and the

natural change in norm.

The elliptic version of (1.1.1) was showed by Kozono and Taniuchi in [12].

Indeed, they have showed that for f ∈ W s
p (Rn), 1 < p < ∞, the following

estimate holds:

‖f‖L∞(�n) ≤ C(1 + ‖f‖BMO(�n)(1 + log+ ‖f‖W s
p (�n))), sp > n, (1.1.5)

for some C = C(n, p, s) > 0. HereBMO is the usual elliptic/isotropic bounded

mean oscillation space (defined via Euclidean balls). The main advantage

of (1.1.5) is that it was successfully applied in order to extend the blow-up

criterion of solutions to the Euler equations originally given by Beale, Kato

and Majda in [1]. This blow-up criterion was then refined by Kozono, Ogawa

and Taniuchi [11], and by Ogawa [13], showing weaker regularity criterion.
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The proof of inequality (1.1.1) is based on the analysis in anisotropic

Lizorkin-Triebel, Besov, Sobolev andBMOa spaces. This is made via Littlewood-

Paley decomposition and various Sobolev embeddings. In fact, some of the

technical arguments were inspired by Ogawa [13] in his proof of the sharp ver-

sion of (1.1.5) that reads: if g ∈ L2(Rn) and f := ∇g ∈ W 1
q (Rn) ∩ L2(Rn) for

n < q, then there exists a constant C = C(q) > 0 such that:

‖f‖L∞(�n) ≤ C(q)

(
1 + ‖f‖BMO(�n)

(
log+(‖f‖W 1

q (�n) + ‖g‖L∞(�n))
)1/2

)
.

(1.1.6)

It is worth mentioning that the original type of the logarithmic Sobolev in-

equalities (1.1.5) and (1.1.6) was found in Brézis and Gallouët [3]. The Brézis-

Gallouët-Wainger inequality states that the L∞ norm of a function can be es-

timated by the W
n/p
p norm with the partial aid of the W s

r norm with s > n/r

and 1 ≤ r ≤ ∞. Precisely,

‖f‖L∞(�n) ≤ C
(
(1 + log(1 + ‖f‖W s

r (�n)))
)p−1

p

(1.1.7)

holds for all f ∈W
n/p
p (Rn)∩W s

r (Rn) with the normalization ‖f‖
W

n/p
p (�n)

= 1.

Originally, Brézis and Gallouët [3] obtained (1.1.7) for the case n = p = r =

s = 2, where they applied their inequality in order to prove global existence of

solutions to the nonlinear Schrödinger equation. Later on, Brézis and Wainger

[4] obtained (1.1.7) for the general case, and remarked that the power p−1
p

in

(1.1.7) is optimal in the sense that one can not replace it by any smaller power.

However, it seems that little is known about the sharp constant in (1.1.7).

Coming back to inequalities (1.1.1), (1.1.5) and (1.1.6), the natural ques-

tion that arises is the following: why does the inequality (1.1.1) seems to

be the parabolic extension of (1.1.5) although the proof is inspired (as men-

tioned above) from that of (1.1.6) given by Ogawa [13]? The answer to this

question is partially contained in [9, Remark 2.14] where the authors pointed

out that the well-known relation between elliptic/isotropic Lizorkin-Triebel

and BMO spaces (see [13, Proposition 2.3]) will not be used in the proof

of (1.1.1) even though it seems to be valid (without giving a proof) in the

parabolic/anisotropic framework. The relation is the following:

Ḟ 0,a
∞,2 	 BMOa, (1.1.8)

where Ḟ 0,a
∞,2 is the homogeneous parabolic Lizorkin-Triebel space (see Defini-

tion 2.3).
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In this paper, we show a parabolic version of the logarithmic Sobolev in-

equality (1.1.6) basically using the equivalence (1.1.8) that is shown to be true

(see Lemma 3.1). This answers the question raised above. Our study takes

place on the whole space R
n+1 and on the bounded domain ΩT . A comparison

(in some special cases) of our inequality with (1.1.1) is also discussed.

Before stating our main results, we define some terminology. A generic ele-

ment in R
n+1 will be denoted by z = (x, t) ∈ R

n+1 where x = (x1, . . . , xn) ∈ R
n

is the spatial variable, and t ∈ R is the time variable. For a given function g,

the notation ∂ig stands for the partial derivative with respect to the spatial

variable: ∂ig = ∂xi
g := ∂g

∂xi
, i = 1, ..., n. In this case ∂n+1g = ∂tg := ∂g

∂t
. We

also denote ∂s
xg, s ∈ N, any derivative with respect to x of order s. Moreover,

we denote the space-time gradient by ∇g := (∂1g, . . . , ∂ng, ∂n+1g). Finally, we

denote ‖f‖X := max(‖f1‖X , . . . , ‖fn‖X , ‖fn+1‖X) for any vector-valued func-

tion f = (f1, . . . , fn, fn+1) ∈ Xn+1 where X is any Banach space. Throughout

this paper and for the sake of simplicity, we will drop the superscript n + 1

from Xn+1. Following the above notations, our first theorem reads:

Theorem 1.1 (Parabolic Ogawa inequality on R
n+1). Let m,n ∈ N

∗ with

2m > n+2
2

. Then there exists a constant C = C(m,n) > 0 such that for any

function g ∈ L2(Rn+1) with f = (f1, . . . , fn, fn+1) = ∇g ∈ W 2m,m
2 (Rn+1), we

have:

‖f‖L∞(�n+1) ≤ C

(
1 + ‖f‖BMOa(�n+1)

(
log+(‖f‖W 2m,m

2 (�n+1) + ‖g‖L∞(�n+1))
)1/2

)
.

(1.1.9)

Remark 1.2 Inequalities (1.1.1) and (1.1.9) have the same order of the higher

regular term. As a consequence, inequality (1.1.9) can also be applied in order

to establish the long-time existence of solutions of the parabolic problems studied

in [8, 9].

Our next theorem concerns a similar type inequality of (1.1.9), but with func-

tions g and f defined over ΩT (given by (1.1.2)). Before stating this result,

we first remark that in the case of functions f = ∇g defined on a bounded

domain, we formally have (by Poincaré inequality):

‖g‖L∞ ≤ C‖f‖L∞,

where C > 0 is a constant depending on the measure of the domain. Moreover,

since

‖f‖L∞ ≤ C1‖f‖Cγ,γ/2 ≤ C2‖f‖W 2m,m
2

with C1, C2 > 0,
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the above two estimates imply that the term ‖g‖L∞ should be dropped from

inequality (1.1.9) when dealing with functions defined over bounded domains.

Indeed, we have:

Theorem 1.3 (Parabolic Ogawa inequality on a bounded domain). Let f ∈
W 2m,m

2 (ΩT ) with 2m > n+2
2

. Then there exists a constant C = C(m,n, T ) > 0

such that:

‖f‖L∞(ΩT ) ≤ C

(
1 + ‖f‖BMO

a
(ΩT )

(
log+ ‖f‖W 2m,m

2 (ΩT )

)1/2
)
, (1.1.10)

where the norm ‖ · ‖BMO
a
(ΩT ) is given by (1.1.4).

Remark 1.4 Inequality (1.1.10) is sharper than (1.1.3) by the simple obser-

vation that x1/2 ≤ 1 + x for x ≥ 0. In other words, inequality (1.1.10) implies

(1.1.3) with the same positive constant C = C(m,n).

In the same spirit of Remark 1.4, our last theorem gives a comparison between

inequality (1.1.1) and (1.1.9) for a certain class of functions g, and for particular

space dimensions.

Theorem 1.5 (Comparison between parabolic logarithmic inequalities). Let

n = 1, 2, 3 and m ∈ N
∗ satisfying 2m > n+2

2
. There exists a constant

C = C(m,n) > 0 such that for the class of functions g ∈ L2(Rn+1) with

‖g‖L2(�n+1) ≤ 1, and f = ∇g ∈W 2m,m
2 (Rn+1), we have:(

log+(‖f‖W 2m,m
2 (�n+1) + ‖g‖L∞(�n+1))

)1/2 ≤ C(1 + log+ ‖f‖W 2m,m
2 (�n+1)),

(1.1.11)

and hence inequality (1.1.9) implies (1.1.1) for possibly a different positive

constant C.

1.1 Organization of the paper

This paper is organized as follows. In Section 2, we present some definitions

and the main tools used in our analysis. This includes parabolic Littlewood-

Paley decomposition and various Sobolev embeddings. Section 3 is devoted

to the proof of Theorem 1.1 (estimate on the entire space R
n+1) using mainly

the equivalence (1.1.8) that we also show in Lemma 3.1. In Section 4, we give

the proof of Theorem 1.3 (estimate on the bounded domain ΩT ). Finally, in

Section 5, we give the proof of Theorem 1.5.
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2 Preliminaries and basic tools

In this section, we define the fundamental function spaces used in this paper.

We also recall some important embeddings.

2.1 Parabolic BMOa and Sobolev spaces

Each coordinate xi, i = 1, ..., n is given the weight 1, while the time coordinate t

is given the weight 2. The vector a = (a1, . . . , an, an+1) = (1, . . . , 1, 2) ∈ R
n+1

is called the (n + 1)-dimensional parabolic anisotropy. For this given a, the

action of μ ∈ [0,∞) on z = (x, t) is given by μaz = (μx1, . . . , μxn, μ
2t). For

μ > 0 and s ∈ R we set μsaz = (μs)az. In particular, μ−az = (μ−1)az and

2−jaz = (2−j)az, j ∈ Z. For z ∈ R
n+1, z �= 0, let |z|a be the unique positive

number μ such that:

x2
1

μ2
+ · · · + x2

n

μ2
+
t2

μ4
= 1

and let |z|a = 0 for z = 0. The map | · |a is called the parabolic distance

function which is C∞. In the case where a = (1, . . . , 1) ∈ R
n+1, we get the

usual Euclidean distance ‖z‖ = (x2
1 + · · · + x2

n + t2)1/2. Denoting O ⊆ R
n+1,

any open subset of R
n+1, we are ready to give the definition of the first two

parabolic spaces used in our analysis.

Definition 2.1 (Parabolic bounded mean oscillation spaces). A function f ∈
L1

loc(O) (defined up to an additive constant) is said to be of parabolic bounded

mean oscillation, f ∈ BMOa(O), if we have:

‖f‖BMOa(O) = sup
Q⊆O

inf
c∈�

(
1

|Q|
∫
Q
|f − c|

)
< +∞, (2.2.1)

where Q denotes (for z0 ∈ O and r > 0) an arbitrary parabolic cube:

Q = Qr(z0) = {z ∈ R
n+1; |z − z0|a < r}.

Definition 2.2 (Parabolic Sobolev spaces). Let m ∈ N. We define the parabolic

Sobolev space W 2m,m
2 (O) as follows:

W 2m,m
2 (O) = {f ∈ L2(O); ∂r

t ∂
s
xf ∈ L2(O), ∀r, s ∈ N such that 2r + s ≤ 2m},

with ‖f‖W 2m,m
2 (O) =

∑2m
j=0

∑
2r+s=j ‖∂r

t ∂
s
xf‖L2(O).
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2.2 Parabolic Lizorkin-Triebel and Besov spaces

Along with the above parabolic distance | · |a, the Littlewood-Paley decompo-

sition is now recalled. Let θ ∈ C∞
0 (Rn+1) be any cut-off function satisfying:

θ(z) = 1 if |z|a ≤ 1

θ(z) = 0 if |z|a ≥ 2. (2.2.2)

Let ψ(z) = θ(z)− θ(2az). We now construct a smooth (compactly supported)

parabolic dyadic partition of unity (ψj)j∈� by letting

ψj(z) = ψ(2−jaz), j ∈ Z, (2.2.3)

satisfying
∑

j∈�ψj(z) = 1 for z �= 0. Define ϕj, j ∈ Z, as the inverse Fourier

transform of ψj , i.e. ϕ̂j = ψj where we let

ϕ := ϕ0. (2.2.4)

It is worth noticing that ϕj satisfies:

ϕj(z) = 2(n+2)jϕ(2jaz), j ∈ Z and z ∈ R
n+1. (2.2.5)

The above Littlewood-Paley decomposition asserts that any tempered distri-

bution f ∈ S ′(Rn+1) can be decomposed as:

f =
∑
j∈�

ϕj ∗ f with the convergence in S ′/P (modulo polynomials).

Here S(Rn+1) is the usual Schwartz class of rapidly decreasing functions and

S ′(Rn+1) is its corresponding dual, represents the space of tempered distribu-

tions. We now define parabolic Lizorkin-Triebel spaces.

Definition 2.3 (Parabolic homogeneous Lizorkin-Triebel spaces). Given a

smoothness parameter s ∈ R, an integrability exponent 1 ≤ p < ∞, and a

summability exponent 1 ≤ q ≤ ∞ (1 ≤ q < ∞ if p = ∞). Let ϕj be given

by (2.2.5), we define the parabolic homogeneous Lizorkin-Triebel space Ḟ s,a
p,q as

the space of all functions f ∈ S ′(Rn+1) with finite quasi-norms

‖f‖Ḟ s,a
p,q (�n+1) =

∥∥∥∥∥∥
(∑

j∈�
2sqj |ϕj ∗ f |q

)1/q
∥∥∥∥∥∥

Lp(�n+1)

<∞,

and the natural modification for q = ∞.
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As a convention, for s ∈ R, and 1 ≤ q <∞, we denote

‖f+‖Ḟ s,a∞,q(�n+1) =
∥∥∥(∑

j≥1

2sqj |ϕj ∗ f |q)1/q
∥∥∥

L∞(�n+1)
(2.2.6)

and

‖f−‖Ḟ s,a∞,q(�n+1) =
∥∥∥(∑

j≤−1

2sqj|ϕj ∗ f |q)1/q
∥∥∥

L∞(�n+1)
. (2.2.7)

The space Ḟ 0,a
p,2 can be identified with the parabolic Hardy space Hp,a(Rn+1),

1 ≤ p < ∞, having the following square function characterization stated in-

formally as:

Hp,a(Rn+1) =
{
f ∈ S ′(Rn+1); (

∑
j∈�

|ϕj ∗ f |2)1/2 ∈ Lp
}
. (2.2.8)

This identification between the above two spaces is the following:

Theorem 2.4 (Identification between Hp,a and Ḟ 0,a
p,2 ). (See Bownik [2].) For

all 1 ≤ p <∞, we have Ḟ 0,a
p,2 (Rn+1) 	 Hp,a(Rn+1).

Another useful space throughout our analysis is the parabolic inhomogeneous

Besov space. The main difference in defining this space is the choice of the

parabolic dyadic partition of unity that is now altered. Indeed, we take (ψj)j≥0

satisfying:

ψj := ψj defined by (2.2.3) if j ≥ 1

ψj := θ defined by (2.2.2) if j = 0. (2.2.9)

Again, it is clear that
∑

j≥0 ψj(z) = 1, but now for all z ∈ R
n+1, and in exactly

the same way as above, we can rewrite the Littlewood-Paley decomposition

with

ϕ̂j = ψj , j ≥ 0, ψj is given by (2.2.9). (2.2.10)

We then arrive to the following definition:

Definition 2.5 (Parabolic inhomogeneous Besov spaces). Given a smoothness

parameter s ∈ R, an integrability exponent 1 ≤ p ≤ ∞, and a summability

exponent 1 ≤ q ≤ ∞, we define the parabolic inhomogeneous Besov space Bs,a
p,q

as the space of all functions u ∈ S ′(Rn+1) with finite quasi-norms

‖u‖Bs,a
p,q

=

(∑
j≥0

2sqj‖ϕj ∗ u‖q
Lp(�n+1)

)1/q

<∞, ϕj is given by (2.2.10)
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and the natural modification for q = ∞, i.e.

‖u‖Bs,a
p,∞ = sup

j≥0
2sj‖ϕj ∗ u‖Lp(�n+1), ϕj is given by (2.2.10). (2.2.11)

For a detailed study of anisotropic Lizorkin-Triebel and Besov spaces, we refer

the reader to Triebel [16].

2.3 Embeddings of parabolic Besov and Sobolev spaces

We present two embedding results from Johnsen and Sickel [10], and Stöckert

[14].

Theorem 2.6 (Embeddings of Besov spaces).(See Johnsen and Sickel [10].)

Let s, t ∈ R, s > t, and 1 ≤ p, r ≤ ∞ satisfy: s− n+2
p

= t− n+2
r

. Then for any

1 ≤ q ≤ ∞ we have the following continuous embedding:

Bs,a
p,q (R

n+1) ↪→ Bt,a
r,q(R

n+1). (2.2.12)

Proposition 2.7 (Sobolev embeddings in Besov spaces).(See Stöckert [14].)

Let m ∈ N, then we have:

W 2m,m
2 (Rn+1) ↪→ B2m,a

2,∞ (Rn+1). (2.2.13)

3 Proof of Theorem 1.1

In this section we give the proof of Theorem 1.1. We start by showing the

equivalence (1.1.8) whose isotropic version can be found in Triebel [15], and

Frazier and Jawerth [6].

Lemma 3.1 (Equivalence between Ḟ 0,a
∞,2 and BMOa). We have Ḟ 0,a

∞,2(R
n+1) 	

BMOa(Rn+1). Precisely, there exists a constant C > 0 such that:

C−1‖f‖Ḟ 0,a
∞,2

≤ ‖f‖BMOa ≤ C‖f‖Ḟ 0,a
∞,2
. (3.3.1)

Proof. See [7, Lemma 3.2, page 6]. �

A basic estimate is now shown in the following lemma.

Lemma 3.2 (Logarithmic estimate in parabolic Lizorkin-Triebel spaces). Let

γ > 0 be a positive real number. Then, for f ∈ Ḟ 0,a
∞,1 with ‖f+‖Ḟ γ,a

∞,2(�
n+1) and
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‖f−‖Ḟ−γ,a
∞,2 (�n+1) are both finite, there exists a constant C = C(n, γ) > 0 such

that:

‖f‖Ḟ 0,a
∞,1

≤ C

(
1 + ‖f‖Ḟ 0,a

∞,2

(
log+(‖f+‖Ḟ γ,a

∞,2
+ ‖f−‖Ḟ−γ,a

∞,2
)
)1/2

)
. (3.3.2)

Proof. We first indicate that the constant C = C(n, γ) > 0 may vary from

line to line in the proof which is divided into two steps.

Step 1 (First estimate on ‖f‖Ḟ 0,a
∞,1

). Let N ∈ N. We compute

‖f‖Ḟ 0,a
∞,1

≤
∥∥∥ ∑

j<−N

2γj2−γj|ϕj ∗ f |
∥∥∥

L∞
+
∥∥∥ ∑

|j|≤N

|ϕj ∗ f |
∥∥∥

L∞
+
∥∥∥∑

j>N

2−γj2γj|ϕj ∗ f |
∥∥∥

L∞

≤ Cγ2
−γN

∥∥∥( ∑
j<−N

2−2γj|ϕj ∗ f |2
)1/2∥∥∥

L∞
+ (2N + 1)1/2

∥∥∥( ∑
|j|≤N

|ϕj ∗ f |2
)1/2∥∥∥

L∞

+Cγ2
−γN

∥∥∥(∑
j>N

22γj|ϕj ∗ f |2
)1/2∥∥∥

L∞

≤ Cγ2
−γN‖f−‖Ḟ−γ,a

∞,2
+ C(2N + 1)1/2‖f‖Ḟ 0,a

∞,2
+ Cγ2

−γN‖f+‖Ḟ γ,a
∞,2
,

with Cγ =
(

1
22γ−1

)1/2
. As a conclusion we may write

‖f‖Ḟ 0,a
∞,1

≤ C
(
(2N + 1)1/2‖f‖Ḟ 0,a

∞,2
+ 2−γN(‖f+‖Ḟ γ,a

∞,2
+ ‖f−‖Ḟ−γ,a

∞,2
)
)
. (3.3.3)

Step 2 (Optimization in N). We optimize (3.3.3) in N by setting:

N = 1 if ‖f+‖Ḟ γ,a
∞,2

+ ‖f−‖Ḟ−γ,a
∞,2

≤ 2γ‖f‖Ḟ 0,a
∞,2
.

Then it is easy to check (using (3.3.3)) that

‖f‖Ḟ 0,a
∞,1

≤ C‖f‖Ḟ 0,a
∞,2

⎛⎝1 +

(
log+

‖f+‖Ḟ γ,a
∞,2

+ ‖f−‖Ḟ−γ,a
∞,2

‖f‖Ḟ 0,a
∞,2

)1/2
⎞⎠ . (3.3.4)

In the case where ‖f+‖Ḟ γ,a
∞,2

+ ‖f−‖Ḟ−γ,a
∞,2

> 2γ‖f‖Ḟ 0,a
∞,2

, we take 1 ≤ β < 2γ such

that

N = N(β) = log+
2γ

(
β
‖f+‖Ḟ γ,a

∞,2
+ ‖f−‖Ḟ−γ,a

∞,2

‖f‖Ḟ 0,a
∞,2

)
− 1

2
∈ N.

In fact this is valid since the function N(β) varies continuously from N(1) to

N(2γ) = 1 + N(1) on the interval [1, 2γ]. Using (3.3.3) with the above choice
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of N , we obtain:

‖f‖Ḟ 0,a
∞,1

≤ C

⎡⎣21/2

(
log+

2γ

(
β
‖f+‖Ḟ γ,a

∞,2
+ ‖f−‖Ḟ−γ,a

∞,2

‖f‖Ḟ 0,a
∞,2

))1/2

‖f‖Ḟ γ,a
∞,2

+
2γ/2

β
‖f‖Ḟ γ,a

∞,2

⎤⎦
≤ C

⎡⎣ 2

(γ log 2)1/2

(
log+

(‖f+‖Ḟ γ,a
∞,2

+ ‖f−‖Ḟ−γ,a
∞,2

‖f‖Ḟ 0,a
∞,2

))1/2

‖f‖Ḟ γ,a
∞,2

+
2γ/2

β
‖f‖Ḟ γ,a

∞,2

⎤⎦ ,
where for the second line we have used the fact that

log+ β < log+
‖f+‖Ḟ γ,a

∞,2
+ ‖f−‖Ḟ−γ,a

∞,2

‖f‖Ḟ 0,a
∞,2

.

The above computations again imply (3.3.4). By using the inequality:

x
(
log
(
e+

y

x

))1/2

≤ C(1 + x(log(e + y))1/2) for 0 < x ≤ 1,

x
(
log
(
e+

y

x

))1/2

≤ Cx(log(e + y))1/2 for x > 1, (3.3.5)

in (3.3.4), we directly arrive to our result. �

We now present the proof of our first main result.

Proof of Theorem 1.1. First let us mention that the constant C = C(m,n) >

0 appearing in the following proof may vary from line to line. We will show

inequality (1.1.9) in the scalar-valued version, i.e. by considering f = fi = ∂ig

for some fixed i = 1, . . . , n + 1. The vector-valued version can then be easily

deduced. The proof requires estimating all the terms of inequality (3.3.2). We

start with the obvious estimate (see (3.3.1)):

‖f‖Ḟ 0,a
∞,2

≤ C‖f‖BMOa. (3.3.6)

The remaining terms will be estimated in the following three steps.

Step 1 (An upper bound on ‖f+‖Ḟ γ,a
∞,2

). Set η = 2m− n+2
2
> 0. Choose γ such

that:

0 < γ < η.
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We compute (see (2.2.6)):

‖f+‖Ḟ γ,a
∞,2

=

∥∥∥∥∥∥
(∑

j≥1

22γj|ϕj ∗ f |2
)1/2

∥∥∥∥∥∥
L∞

≤ C sup
j≥1

2ηj‖ϕj ∗ f‖L∞ (3.3.7)

with C =
(∑

j≥1 22(γ−η)j
)1/2

< +∞. Note that the sequence of functions

(ϕj)j≥1 given in (3.3.7) can be identified with those given in (2.2.11). Hence

we may write

sup
j≥1

2ηj‖ϕj ∗ f‖L∞ ≤ sup
j≥0

2ηj‖ϕj ∗ f‖L∞, ϕj is given by (2.2.10),

and then (using (3.3.7)) we obtain:

‖f+‖Ḟ γ,a
∞,2

≤ C‖f‖Bη,a∞,∞. (3.3.8)

Using (2.2.12) with s = 2m, p = 2, q = ∞, t = η and r = ∞, we deduce that:

B2m,a
2,∞ ↪→ Bη,a

∞,∞.

Therefore, by (2.2.13), we get

W 2m,m
2 ↪→ B2m,a

2,∞ ↪→ Bη,a
∞,∞

which, together with (3.3.8), give:

‖f+‖Ḟ γ,a
∞,2

≤ C‖f‖W 2m,m
2

. (3.3.9)

Step 2 (An upper bound on ‖f−‖Ḟ−γ,a
∞,2

). In this step, we will use the fact

that ∂ig = fi (for which we keep denoting it by f , i.e. f = fi) for some

i = 1, . . . , n+ 1, with g ∈ L∞(Rn+1). For z ∈ R
n+1, define

Φ(z) = (∂iϕ)(z), ϕ is given by (2.2.4), (3.3.10)

and

Φj(z) = 2(n+2)jΦ(2jaz) for all j ≤ −1. (3.3.11)

Using (2.2.5) we obtain:

(∂iϕj)(z) = 2jΦj(z) if i = 1, . . . , n
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(∂iϕj)(z) = 22jΦj(z) if i = n+ 1. (3.3.12)

We now compute (see (2.2.7), (3.3.11) and (3.3.12)):

‖f−‖Ḟ−γ,a
∞,2

=

∥∥∥∥∥∥
(∑

j≤−1

2−2γj|ϕj ∗ f |2
)1/2

∥∥∥∥∥∥
L∞

(3.3.13)

≤ C sup
j≤−1

‖Φj ∗ g‖L∞, (3.3.14)

where the constant C is given by:

C2 =
∑
j≤−1

22j(1−γ) if i = 1, . . . , n

C2 =
∑
j≤−1

22j(2−γ) if i = n+ 1,

which is finite 0 < C < +∞ under the choice

0 < γ < 1.

In order to terminate the proof, it suffices to show that

‖Φj ∗ g‖L∞ ≤ C‖g‖L∞,

which can be deduced, by translation and dilation invariance, from the follow-

ing estimate:

|(Φ ∗ g)(0)| ≤ C‖g‖L∞. (3.3.15)

Indeed, define the positive radial decreasing function h(r) = h(‖z‖) as follows:

h(r) = sup
‖z‖≥r

|Φ(z)|.

From (3.3.10), we remark that the function Φ is the inverse Fourier transform

of a compactly supported function. Hence, we have:

h(0) = ‖Φ‖L∞ < +∞, (3.3.16)

and the asymptotic behavior

h(r) ≤ C

rn+2
for all r ≥ 1. (3.3.17)
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We compute (taking Sn
r as the n-dimensional sphere of radius r):

|(Φ ∗ g)(0)| ≤
∫
�n+1

|Φ(−z)||g(z)|dz

≤
∫ ∞

0

(∫
Sn

r

|Φ(−z)||g(z)|dσ(z)

)
dr

≤ C

(∫ ∞

0

rnh(r)dr

)
‖g‖L∞. (3.3.18)

Using (3.3.16) and (3.3.17) we deduce that:∫ ∞

0

rnh(r)dr =

∫ 1

0

rnh(r)dr +

∫ ∞

1

rnh(r)dr

≤ C

(∫ 1

0

h(0)dr +

∫ ∞

1

rn

rn+2
dr

)
≤ C(‖Φ‖L∞ + 1)

which, together with (3.3.18), directly implies (3.3.15). As a conclusion, we

obtain (see (3.3.13)):

‖f−‖Ḟ−γ,a
∞,2

≤ C‖g‖L∞. (3.3.19)

Step 3 (A lower bound on ‖f‖Ḟ 0,a
∞,1

and conclusion). Remarking that

‖f‖L∞ =
∥∥∥∑

j∈�
ϕj ∗ f

∥∥∥
L∞

≤ ‖f‖Ḟ 0,a
∞,1

when f̂(0) = 0, the estimates (3.3.2), (3.3.6), (3.3.9) and (3.3.19) lead directly

to the proof. �

4 Proof of Theorem 1.3

For the sake of simplicity, we only give the proof in the framework of one

spatial dimensions x = x1. The extension to the multi spatial dimensions can

be easily deduced and will be made clear later in this section. Again, the

constant C > 0 that will appear in the following proof may vary from line to

line but will only depend on m and T

Proof of Theorem 1.3. We first remark that the function f can be extended

by continuity to the boundary ∂ΩT of ΩT . Following the same notations of

Ibrahim and Monneau [9], we take f̃ as the extension of f over

Ω̃T = (−1, 2) × (−T, 2T )
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given by:

f̃(x, t) =
2m−1∑
j=0

cjf(−λjx, t) for − 1 < x < 0, 0 ≤ t ≤ T (4.4.1)

f̃(x, t) =
2m−1∑
j=0

cjf(1 + λj(1 − x), t) for 1 < x < 2, 0 ≤ t ≤ T,

with λj = 1
2j and

f̃(x, t) =

2m−1∑
j=0

cj(−λj)
k = 1 for k = 0, . . . , 2m− 1.

For the extension with respect to the time variable t, we use the same extension

(4.4.1) summing up only to m−1. The above extension (4.4.1) has been made

in order to have (see for instance Evans [5]) f̃ ∈W 2m,m
2 (Ω̃T ) and

‖f̃‖W 2m,m
2 (�ΩT ) ≤ C‖f‖W 2m,m

2 (ΩT ). (4.4.2)

Now let Z1 ⊆ Z2 be two subsets of Ω̃T defined by:

Z1 = {(x, t); −1/4 < x < 5/4 and − T/4 < t < 5T/4}

and

Z2 = {(x, t); −3/4 < x < 7/4 and − 3T/4 < t < 7T/4}.
We take the cut-off function Ψ ∈ C∞

0 (R2), 0 ≤ Ψ ≤ 1 satisfying:

Ψ(x, t) = 1 for (x, t) ∈ Z1 (4.4.3)

Ψ(x, t) = 0 for (x, t) ∈ R
2 \ Z2.

From (4.4.2), we easily deduce that Ψf̃ ∈ W 2m,m
2 (R2) and

‖Ψf̃‖W 2m,m
2 (�2) ≤ C‖f‖W 2m,m

2 (ΩT ). (4.4.4)

Hence we can apply the scalar-valued version of inequality (1.1.9) (see Re-

mark ??) with i = 1, i.e. ∂1g = f ; the new function (for which we give the

same notation) f = Ψf̃ ∈W 2m,m
2 (R2) and g ∈ L∞(R2) given by

g(x, t) =

∫ x

0

Ψ(y, t)f̃(y, t)dy.
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Since Ψf̃ is of compact support, and (again by the extension (4.4.1)) ‖f̃‖L∞(�ΩT ) ≤
C‖f‖W 2m,m

2 (ΩT ), we deduce that

‖g‖L∞(�2) ≤ C‖f̃‖L∞(�ΩT ) ≤ C‖f‖W 2m,m
2 (ΩT ). (4.4.5)

Collecting the above arguments (namely (4.4.4) and (4.4.5)) together with the

fact that (see Ibrahim and Monneau [9])

‖Ψf̃‖BMOa(�2) ≤ C‖f‖BMO
a
(ΩT ),

inequality (1.1.9) gives:

‖f‖L∞(ΩT ) ≤ ‖Ψf̃‖L∞(�2) ≤ C

(
1 + ‖Ψf̃‖BMOa(�2)

(
log+(‖Ψf̃‖W 2m,m

2 (�2) + ‖g‖L∞(�2))
)1/2

)
≤ C

(
1 + ‖f‖BMO

a
(ΩT )

(
log+ ‖f‖W 2m,m

2 (ΩT )

)1/2
)
.

Notice that in the first line of the above inequalities we have used that Ψ = 1

in ΩT . �

Remark 4.1 The inequality (1.1.9) used in the previous proof could have also

been used for i = 2. In this case we simply take g(x, t) =
∫ t

0
Ψ(x, s)f̃(x, s)ds.

Remark 4.2 In the case of multi spatial dimensions xi, i = 1, . . . , n, we si-

multaneously apply the extension (4.4.1) to each spatial coordinate while fixing

all the other coordinates including time t. However, the extension with respect

to t is kept unchanged.

5 Comparison between parabolic logarithmic

inequalities

In this section we give the proof of Theorem 1.5. Throughout all this section,

we only consider isotropic function spaces, i.e. a = (1, . . . , 1) ∈ R
n+1. We

only deal with the parabolic function space W 2m,m
2 . As usual, the constant

C = C(m,n) > 0 may differ from line to line. First of all, we remark that

estimate (1.1.11) turns out to be true (using the trivial identity x1/2 ≤ 1 + x)

if A := ‖g‖L∞ ≤ C for ‖f‖W 2m,m
2

≤ 1, or if B := ‖g‖L∞/‖f‖W 2m,m
2

≤ C for

‖f‖W 2m,m
2

≥ 1. This will be proved in the forthcoming arguments. We start

with the following lemmas:
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Lemma 5.1 Let n = 1, 2, 3, s = n+1
2

, and m ∈ N
∗ satisfying 2m > n+2

2
. For

any g ∈ L2(Rn+1) with f = ∇g ∈W 2m,m
2 (Rn+1), we have g ∈ Ḣs(Rn+1) and

‖g‖Ḣs ≤ ‖f‖W 2m,m
2

. (5.5.1)

The norm in the homogeneous Sobolev space Ḣs is given by ‖f‖2
Ḣs =

∫
�n+1 ‖ξ‖2s|f̂(ξ)|2dξ

where ‖ · ‖ is the usual Euclidean distance.

Proof. Follows directly since 1 ≤ s ≤ m, using the definition of the norm in

Ḣs. �

Lemma 5.2 Under the same hypothesis of Theorem 1.5, we have:

‖g‖L∞ ≤ C

⎡⎣1 + ‖f‖W 2m,m
2

(
log

(
e+

‖f‖W 2m,m
2

+ ‖g‖L∞

‖f‖W 2m,m
2

))1/2
⎤⎦ . (5.5.2)

Proof. We consider the isotropic (a = (1, . . . , 1)) homogeneous dyadic parti-

tion of unity (ψj)j∈� with
∑

j∈�ψj = 1 and ϕ̂j = ψj . Fix some 0 < γ < 1, and

take an arbitrary N ∈ N
∗. We write:

‖g‖L∞ ≤
∑
j≤0

‖ϕj ∗ g‖L∞ +
N∑

j=1

‖ϕj ∗ g‖L∞ +
∑
j>N

‖ϕj ∗ g‖L∞. (5.5.3)

We estimate the right-hand side of (5.5.3). Benstein’s inequality gives:

‖ϕj ∗ g‖L∞ ≤ C2(n+1
2 )j‖ϕj ∗ g‖L2. (5.5.4)

We let s = n+1
2

. Using (5.5.4), we compute:∑
j≤0

‖ϕj ∗ g‖L∞ ≤ C
∑
j≤0

2sj‖ϕj ∗ g‖L2 ≤ C

1 − 2−s
‖g‖L2. (5.5.5)

Again, using (5.5.4), we obtain:

N∑
j=1

‖ϕj ∗ g‖L∞ ≤ C

N∑
j=1

2sj‖ϕj ∗ g‖L2 ≤ CN1/2‖g‖Ḃs
2,2
,

which, together with the fact that Ḃs
2,2 	 Ḣs, and estimate (5.5.1) of Lemma 5.1,

yield:

N∑
j=1

‖ϕj ∗ g‖L∞ ≤ CN1/2‖f‖W 2m,m
2

. (5.5.6)
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The last term of the right-hand side of (5.5.3) can be estimated as follows:∑
j>N

‖ϕj ∗ g‖L∞ =
∑
j>N

2−jγ(2jγ‖ϕj ∗ g‖L∞) ≤ 2−γN

(
2−γ

1 − 2−γ

)
‖g‖Ḃγ∞,∞ .

(5.5.7)

We know that Ḃγ
∞,∞ 	 Ċγ; the homogeneous Hölder space whose semi-norm

can be estimated as follows:

‖g‖Ċγ = sup
z1 
=z2

|g(z1) − g(z2)|
‖z1 − z2‖γ

≤ ‖f‖W 2m,m
2

+ ‖g‖L∞.

This, together with (5.5.7) yield:∑
j>N

‖ϕj ∗ g‖L∞ ≤ C2−γN(‖f‖W 2m,m
2

+ ‖g‖L∞). (5.5.8)

Combining (5.5.3), (5.5.5), (5.5.6) and (5.5.8), we finally get:

‖g‖L∞ ≤ C
(
1 +N1/2‖f‖W 2m,m

2
+ 2−γN(‖f‖W 2m,m

2
+ ‖g‖L∞)

)
.

By optimizing (as in Step 2 of Lemma 3.2) in N the above inequality, the proof

easily follows. �

We are now ready to give the proof of Theorem 1.5.

Proof of Theorem 1.5. As it was already mentioned in the beginning of this

section, the proof relies on considering two cases.

Case 1 (‖f‖W 2m,m
2

≤ 1). Let A := ‖g‖L∞. Using inequalities (3.3.5) and

(5.5.2), we obtain:

A ≤ C[1 + (log(e + 1 + A))1/2],

which directly implies that A ≤ C, and hence (1.1.11) is obtained.

Case 2 (‖f‖W 2m,m
2

≥ 1). Dividing inequality (5.5.2) by ‖f‖W 2m,m
2

, we obtain:

‖g‖L∞

‖f‖W 2m,m
2

≤ C

⎡⎣1 +

(
log

(
e+ 1 +

‖g‖L∞

‖f‖W 2m,m
2

))1/2
⎤⎦ .

Letting B := ‖g‖L∞/‖f‖W 2m,m
2

, we can easily see that B satisfies (as the term

A in Case 1):

B ≤ C[1 + (log(e + 1 +B))1/2],

which shows that B ≤ C, and the proof is done. �
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