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Abstract

In this paper, we show a parabolic version of the Ogawa type in-
equality in Sobolev spaces. Our inequality provides an estimate of the
L* norm of a function in terms of its parabolic BMO norm, with the
aid of the square root of the logarithmic dependency of a higher or-
der Sobolev norm. The proof is mainly based on the Littlewood-Paley
decomposition and a characterization of parabolic BMO spaces.
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1 Introduction and main results

In order to study the long-time existence of a certain class of singular parabolic
problems; Ibrahim and Monneau [9] made use of a parabolic logarithmic Sobolev
inequality. They proved that for f € W;™™(R"), m,n € N* and 2m > nt2
the following estimate takes place (with log* z = max(logx, 0)):

£l oo ns1y < C(L+ || fll Baroe ey (1 +log™ || fllypzmmgassy)),  (1.1.1)
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for some constant C' = C'(m,n) > 0. Here BMO® stands for the anisotropic
Bounded Mean Oscillation space with the parabolic anisotropy a = (1,...,1,2) €
R (see Definition 2.1), while ;™" stands for the parabolic Sobolev space
(see Definition 2.2). The above estimate, after also being proved on a bounded
domain

Qr = (0,1)" x (0,T) C R™, (1.1.2)

was successfully applied in order to obtain some a priori bounds on the gra-
dient of the solution of particular parabolic equations leading eventually to
the long-time existence (see [9, Proposition 3.7] or [8, Theorem 1.3]). The
bounded version of (1.1.1) (see [9, Theorem 1.2]) reads: if f € W7™™(Qy)
with 2m > ”TH, then:

1l @r) < C(L+ 1f I ar0" () (1 + 1087 1 llwzmm ) (1.1.3)

where C' = C(m,n,T) > 0 is a positive constant, and

1 f 157750 @p) = I fllBrMOs@r) + 1|22 (07)- (1.1.4)

Indeed, the fact that inequality (1.1.1) does not hold on Qr with a positive
constant C* = C*(m,n,T') can be easily understood by applying this inequality
to the function f = (C*4¢) € W™ (Qr) with e > 0. In this case || f|| L () =
C* + ¢, ||fllBMOa(ar) = 0, and hence a contradiction. However, working on
R, the same function f could not be used since f & W;"™™(R**!). Let us
indicate that both inequalities (1.1.1) and (1.1.3) still hold for vector-valued
functions f = (fi,... , fas fas1) € (W™ (R"1))"+ with 2m > 22 and the
natural change in norm.

The elliptic version of (1.1.1) was showed by Kozono and Taniuchi in [12].
Indeed, they have showed that for f € W7 (R"), 1 < p < oo, the following
estimate holds:

1l ey < CA+ I flsro@e (1 +log™ [ flwg@e)), sp>n,  (1.1.5)

for some C' = C'(n,p, s) > 0. Here BMO is the usual elliptic/isotropic bounded
mean oscillation space (defined via Euclidean balls). The main advantage
of (1.1.5) is that it was successfully applied in order to extend the blow-up
criterion of solutions to the Euler equations originally given by Beale, Kato
and Majda in [1]. This blow-up criterion was then refined by Kozono, Ogawa
and Taniuchi [11], and by Ogawa [13], showing weaker regularity criterion.
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The proof of inequality (1.1.1) is based on the analysis in anisotropic
Lizorkin-Triebel, Besov, Sobolev and BMO“ spaces. This is made via Littlewood-
Paley decomposition and various Sobolev embeddings. In fact, some of the
technical arguments were inspired by Ogawa [13] in his proof of the sharp ver-
sion of (1.1.5) that reads: if g € L*(R") and f := Vg € W (R") N L*(R") for
n < g, then there exists a constant C' = C'(q) > 0 such that:

1/2
1= < CGa) (14 lawogee (108 (1 wycen + lolimiee) ).
(1.1.6)

It is worth mentioning that the original type of the logarithmic Sobolev in-
equalities (1.1.5) and (1.1.6) was found in Brézis and Gallouét [3]. The Brézis-
Gallouét-Wainger inequality states that the L norm of a function can be es-
timated by the W,”? norm with the partial aid of the W? norm with s > n/r
and 1 < r < o0o. Precisely,

p—1

[ f] oo ®ny < C((l + log(1 + ||f“WTS(R")))) ’ (1.1.7)

holds for all f € W,;/P(R™) N W#(R") with the normalization HfHWn/p(Rn) =1
Originally, Brézis and Gallouét [3] obtained (1.1.7) for the case n = p=r=
s = 2, where they applied their inequality in order to prove global existence of
solutions to the nonlinear Schrodinger equation. Later on, Brézis and Wainger
[4] obtained (1.1.7) for the general case, and remarked that the power 21 in
(1.1.7) is optimal in the sense that one can not replace it by any smaller power.
However, it seems that little is known about the sharp constant in (1.1.7).
Coming back to inequalities (1.1.1), (1.1.5) and (1.1.6), the natural ques-
tion that arises is the following: why does the inequality (1.1.1) seems to
be the parabolic extension of (1.1.5) although the proof is inspired (as men-
tioned above) from that of (1.1.6) given by Ogawa [13]7 The answer to this
question is partially contained in [9, Remark 2.14] where the authors pointed
out that the well-known relation between elliptic/isotropic Lizorkin-Triebel
and BMO spaces (see [13, Proposition 2.3]) will not be used in the proof
of (1.1.1) even though it seems to be valid (without giving a proof) in the
parabolic/anisotropic framework. The relation is the following:
E2% ~ BMO®, (1.1.8)

00,2 —

where F.f(;g is the homogeneous parabolic Lizorkin-Triebel space (see Defini-
tion 2.3).
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In this paper, we show a parabolic version of the logarithmic Sobolev in-
equality (1.1.6) basically using the equivalence (1.1.8) that is shown to be true
(see Lemma 3.1). This answers the question raised above. Our study takes
place on the whole space R"*! and on the bounded domain Q7. A comparison
(in some special cases) of our inequality with (1.1.1) is also discussed.

Before stating our main results, we define some terminology. A generic ele-
ment in R"™ will be denoted by z = (x,t) € R"* where z = (1,... ,x,) € R"
is the spatial variable, and ¢t € R is the time variable. For a given function g,
the notation 0;¢g stands for the partial derivative with respect to the spatial
variable: 0, = 0,,9 := g—i, 1 =1,...,n. In this case 0,19 = 0,9 := %. We
also denote 03¢, s € N, any derivative with respect to x of order s. Moreover,
we denote the space-time gradient by Vg := (019, ... , 0.9, Opy19). Finally, we
denote || f|lx := max(||fillx,--- || fallx, || fasillx) for any vector-valued func-
tion f = (f1,..., fn, fny1) € X" where X is any Banach space. Throughout
this paper and for the sake of simplicity, we will drop the superscript n + 1
from X"!. Following the above notations, our first theorem reads:

Theorem 1.1 (Parabolic Ogawa inequality on R™'). Let m,n € N* with
2m > "T” Then there exists a constant C = C(m,n) > 0 such that for any

function g € L2 (R™Y) with f = (fi,..., fa, fas1) = Vg € W3™™(R™1), we
have:

1/2
|l < € (1 + I saroscany (108" (I lyzmomqansn, + gllzan)) ) -
(1.1.9)

Remark 1.2 Inequalities (1.1.1) and (1.1.9) have the same order of the higher
reqular term. As a consequence, inequality (1.1.9) can also be applied in order
to establish the long-time existence of solutions of the parabolic problems studied

in [8, 9].

Our next theorem concerns a similar type inequality of (1.1.9), but with func-
tions ¢ and f defined over {2y (given by (1.1.2)). Before stating this result,
we first remark that in the case of functions f = Vg defined on a bounded
domain, we formally have (by Poincaré inequality):

lgllzee < Cl[fllze,

where C' > 0 is a constant depending on the measure of the domain. Moreover,
since

[fllzee < Cull fllorare < Coll fllyzmm  with  Cy, G >0,
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the above two estimates imply that the term ||g||z~ should be dropped from
inequality (1.1.9) when dealing with functions defined over bounded domains.
Indeed, we have:

Theorem 1.3 (Parabolic Ogawa inequality on a bounded domain). Let f €
W ™™ (Qq) with 2m > 222 Then there exists a constant C = C(m,n,T) > 0
such that:

1/2
[fllzer) < C (1 + 1/l 770" (@) <10g+ ||fHW22’"'m(QT)) ) , (1.1.10)
where the norm || - | grr6e(q, s given by (1.1.4).

Remark 1.4 Inequality (1.1.10) is sharper than (1.1.3) by the simple obser-
vation that /2 < 1+ x for x > 0. In other words, inequality (1.1.10) implies
(1.1.3) with the same positive constant C' = C(m,n).

In the same spirit of Remark 1.4, our last theorem gives a comparison between
inequality (1.1.1) and (1.1.9) for a certain class of functions g, and for particular
space dimensions.

Theorem 1.5 (Comparison between parabolic logarithmic inequalities). Let
n = 1,2,3 and m € N* satisfying 2m > "T” There exists a constant
C = C(m,n) > 0 such that for the class of functions g € L*(R™) with

|9/l L2@nty < 1, and f = Vg € W™ (R, we have:

1/2
(long(HfHWQQm’m(R"Jrl) + HQHL“’(R"“))) < C(1+log" HfHWQQm’m(R"Jrl))a
(1.1.11)

and hence inequality (1.1.9) implies (1.1.1) for possibly a different positive
constant C'.

1.1 Organization of the paper

This paper is organized as follows. In Section 2, we present some definitions
and the main tools used in our analysis. This includes parabolic Littlewood-
Paley decomposition and various Sobolev embeddings. Section 3 is devoted
to the proof of Theorem 1.1 (estimate on the entire space R"*1) using mainly
the equivalence (1.1.8) that we also show in Lemma 3.1. In Section 4, we give
the proof of Theorem 1.3 (estimate on the bounded domain Q7). Finally, in
Section 5, we give the proof of Theorem 1.5.



1710 H. Ibrahim

2 Preliminaries and basic tools

In this section, we define the fundamental function spaces used in this paper.
We also recall some important embeddings.

2.1 Parabolic BMO" and Sobolev spaces

Each coordinate z;, 7 = 1, ..., n is given the weight 1, while the time coordinate ¢
is given the weight 2. The vector a = (ay, ... ,an, apny1) = (1,...,1,2) € R*!
is called the (n + 1)-dimensional parabolic anisotropy. For this given a, the
action of u € [0,00) on 2z = (x,t) is given by u®z = (ux1,. .. , u,, u*t). For
p>0and s € R we set p*®z = (p®)*2. In particular, p=%2 = (p~1)%2 and
27Jaz = (279)%2, j € Z. For z € R*"™! 2 #£ 0, let |z|, be the unique positive
number y such that:
2 2 42

G pr oot
and let |z], = 0 for 2 = 0. The map |- |, is called the parabolic distance
function which is C*°. In the case where a = (1,...,1) € R"" we get the
usual Euclidean distance ||z|| = (22 + -+ + 22 + *)1/2. Denoting O C R"*!,

any open subset of R"*! we are ready to give the definition of the first two
parabolic spaces used in our analysis.

Definition 2.1 (Parabolic bounded mean oscillation spaces). A function f €
L, (O) (defined up to an additive constant) is said to be of parabolic bounded

loc

mean oscillation, f € BMO*(O), if we have:

| fllBaroa(oy = Sllp lnf (|Q| / lf— c|) < 400, (2.2.1)
where Q denotes (for zo € O and r > 0) an arbitrary parabolic cube:
Q=0.(2)={zeR"™: |z — 2|, <r}.

Definition 2.2 (Parabolic Sobolev spaces). Letm € N. We define the parabolic
Sobolev space W3™™(O) as follows:

W,™O) = {f € L}(O); 9705 f € L*(O),Vr,s € N such that 2r + s < 2m},

. 2m T S
with Hf||W22m,m(O) = Zj:O Z?r—f—s:j 10703 f | 12(0)
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2.2 Parabolic Lizorkin-Triebel and Besov spaces

Along with the above parabolic distance |- |,, the Littlewood-Paley decompo-
sition is now recalled. Let 6 € C§°(R"™!) be any cut-off function satisfying:

O(z)=1 if |z, <1

0(2) =0 if |z]o > 2. (2.2.2)

Let ¢(2) = 0(z) — 6(2°2). We now construct a smooth (compactly supported)
parabolic dyadic partition of unity (¢;),ez by letting

Vi(2) =9(277%), jEZ, (2.2.3)

satisfying > .., ¢;(z) = 1 for z # 0. Define ¢;, j € Z, as the inverse Fourier
transform of v;, i.e. ¢; = 1; where we let

¥ = Po- (2.2.4)
It is worth noticing that ¢; satisfies:
pi(z) =2Dip(20%2) j€Z and z€R" (2.2.5)

The above Littlewood-Paley decomposition asserts that any tempered distri-
bution f € &'(R™™!) can be decomposed as:

f= Z @j* [ with the convergence in §'/P (modulo polynomials).
jEL
Here S(R™™!) is the usual Schwartz class of rapidly decreasing functions and

S’(R™1) is its corresponding dual, represents the space of tempered distribu-
tions. We now define parabolic Lizorkin-Triebel spaces.

Definition 2.3 (Parabolic homogeneous Lizorkin-Triebel spaces). Given a
smoothness parameter s € R, an integrability exponent 1 < p < o0, and a
summability exponent 1 < ¢ < oo (1 < ¢ < oo if p=o00). Let p; be given
by (2.2.5), we define the parabolic homogeneous Lizorkin-Triebel space F;; as
the space of all functions f € 8'(R™) with finite quasi-norms

1/q
||fHF;;g(Rn+1) - (Z 28qj|S0j * f|q> < 00,

jGZ Lp (Rn+1 )

and the natural modification for ¢ = oo.
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As a convention, for s € R, and 1 < g < oo, we denote

||f+ 5% (Rn+1) = H 28qj|90j * f|q)l/q

2.2.6
Loo(Rn+1) ( )

and

/-1

e ety = H(Z 24|, x f|9)!/ (2.2.7)
j<—1

Loo(Rn«Fl)'
The space Flg 5 can be identified with the parabolic Hardy space HP*(R"!),
1 < p < oo, having the following square function characterization stated in-
formally as:

Hro @) = {f e S®: (M les xS € L'}, (2:28)

jEL
This identification between the above two spaces is the following:

Theorem 2.4 (Identification between HP* and FOQ‘I) (See Bownik [2].) For
all 1 < p < 0o, we have Fyy (R™1) ~ HPa(R"1),

Another useful space throughout our analysis is the parabolic inhomogeneous
Besov space. The main difference in defining this space is the choice of the
parabolic dyadic partition of unity that is now altered. Indeed, we take (1;) ;>0
satisfying:

Y; :=1; defined by (2.2.3) if j >1

Y; =6 defined by (2.2.2) if j =0. (2.2.9)

Again, it is clear that 3., 1;(2) = 1, but now for all z € R™*1 and in exactly
the same way as above, we can rewrite the Littlewood-Paley decomposition
with

G; =1, j >0, ;is given by (2.2.9). (2.2.10)
We then arrive to the following definition:

Definition 2.5 (Parabolic inhomogeneous Besov spaces). Given a smoothness
parameter s € R, an integrability exponent 1 < p < 00, and a summability
ezponent 1 < q < oo, we define the parabolic inhomogeneous Besov space By
as the space of all functions u € S'(R™™Y) with finite quasi-norms

1/q
Jull gya = <Z 2% ||p; * u!|qu(Rn+1)> <00, (p; is given by (2.2.10)

J=0
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and the natural modification for ¢ = 0o, i.e.

Jul| pzo, = sup 2% || * ull Lomnsry,  ; is given by (2.2.10). (2.2.11)
Jj=0

For a detailed study of anisotropic Lizorkin-Triebel and Besov spaces, we refer
the reader to Triebel [16].

2.3 Embeddings of parabolic Besov and Sobolev spaces

We present two embedding results from Johnsen and Sickel [10], and Stockert
[14].

Theorem 2.6 (Embeddings of Besov spaces).(See Johnsen and Sickel [10].)
Let s,t e R, s >t, and 1 < p,r < oo satisfy: s — ”TTQ =t— ”T*'Q Then for any
1 < q < o0 we have the following continuous embedding:

Byg(R™) — Bro(R™H). (2.2.12)

Proposition 2.7 (Sobolev embeddings in Besov spaces).(See Stickert [14].)
Let m € N, then we have:

W;m,m(RnJrl) SN BQQTZ&“(R”+1)' (2213)

3 Proof of Theorem 1.1

In this section we give the proof of Theorem 1.1. We start by showing the
equivalence (1.1.8) whose isotropic version can be found in Triebel [15], and
Frazier and Jawerth [6].

Lemma 3.1 (Equivalence between F(?OGQ and BMO®). We have F(?OGQ (R™H1) ~
BMO*(R™1). Precisely, there exists a constant C' > 0 such that:

O fllg0s, < I fllmaron < Il (3.3.)

Proof. See [7, Lemma 3.2, page 6]. 0

A basic estimate is now shown in the following lemma.

Lemma 3.2 (Logarithmic estimate in parabolic Lizorkin-Triebel spaces). Let
v > 0 be a positive real number. Then, for f € F with 1+l e sy and
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Hf,HF;Ea(RnH) are both finite, there exists a constant C = C(n,7y) > 0 such
that:

1/2
I, < € (11l Qo (Ul + 1)) ) 032)

Proof. We first indicate that the constant C' = C'(n,v) > 0 may vary from
line to line in the proof which is divided into two steps.

Step 1 (First estimate on ||fHFO,al). Let N € N. We compute

LW+H Z 2

IJ\_

A ),

()]

>N

< Ol + C@N + DY fllgas, + €27 il

1£llgs < H |

27N

IN

l71<N

+C, 27N

with C, = (3 1)1/2. As a conclusion we may write
Fllme, < € (@N + D2 FlLpan + 27 (1l + 1l i) - (333
Step 2 (Optimization in N ). We optimize (3.3.3) in N by setting:
N=1 i [filge + 1 < 270l

Then it is easy to check (using (3.3.3)) that

1/2
[ fillize + \rfr\Fw,wéa) / 554

|
HfHFOval < CHfHFo,a2 14 | log*t
- : Teae

In the case where | fi | pra + [If-[lz=ye > 27| f| poa , we take 1 < § < 27 such
that ’ ’ ’

[l + 15 1

[T 2

In fact this is valid since the function N(() varies continuously from N (1) to
N(27) =14 N(1) on the interval [1,27]. Using (3.3.3) with the above choice

e N.

N = N(ﬁ) = log; (ﬂ

(Z!%*M ..
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of N, we obtain:

[ 1Fellime 4 1=l N \ /2
Iflpoe < C |212 <log; (5 o == £ W e, + =1 W e,

171l o, B
] 1/2
2 1l + =My 2/2
< + 00,2 00,2 i s Y
= C (710g2)1/2 <1og ( HfHFOv”Q ||fHF;’o2 + 8 HfHFgo2 )

where for the second line we have used the fact that

Ml + L=y

o8 < o8 T
FL%

The above computations again imply (3.3.4). By using the inequality:

1/2
x <log (e + %)) < C(1+z(log(e +y))?) for 0<az <1,

1/2
x <log <e + y)) < Ca(log(e +y)"* for =>1, (3.3.5)
x
in (3.3.4), we directly arrive to our result. O
We now present the proof of our first main result.

Proof of Theorem 1.1. First let us mention that the constant C' = C'(m,n) >
0 appearing in the following proof may vary from line to line. We will show
inequality (1.1.9) in the scalar-valued version, i.e. by considering f = f; = 0;g
for some fixed 1 = 1,... ,n+ 1. The vector-valued version can then be easily
deduced. The proof requires estimating all the terms of inequality (3.3.2). We
start with the obvious estimate (see (3.3.1)):

£l z0.0, < Cllf Nl Baroe- (3.3.6)

The remaining terms will be estimated in the following three steps.

n+2

Step 1 (An upper bound on || f1 ||z ). Set n = 2m — 3= > 0. Choose 7 such

that:
0<y<m.
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We compute (see (2.2.6)):

1/2
1 llie, = <2227j|90j*f|2>

j>1 Lo

< ng;l) 2" | ; * fl Lo (3.3.7)
JzZ

\1/2
with C' = <2j21 22(7*’7)3) < +o00. Note that the sequence of functions

(¢;)j>1 given in (3.3.7) can be identified with those given in (2.2.11). Hence
we may write

sup 2% [|g; * fllzee < sup2%||g; * fllr=, ¢, is given by (2.2.10),

Jj=1 Jj=0
and then (using (3.3.7)) we obtain:

1+l ie, < Cllfll Bz (3.3.8)
Using (2.2.12) with s = 2m, p = 2, ¢ = oo, t = 1 and r = 0o, we deduce that:
Byt — Bl
Therefore, by (2.2.13), we get
i B e

which, together with (3.3.8), give:

[ Fellize, < CllS g (3.3.9)

Step 2 (An upper bound on Hf,HF—A/éa). In this step, we will use the fact
that 0,9 = f; (for which we keep dénoting it by f, ie. f = f;) for some
i=1,...,n+1, with g € L°°(R"™). For € R"", define

O(z) = (0;0)(2), ¢ is given by (2.2.4), (3.3.10)
and

D;(z) = 2MHDiPp(2799%) for all j < —1. (3.3.11)
Using (2.2.5) we obtain:

(Dipj)(2) = 27®(2) if i=1,...,n



Critical parabolic Sobolev embedding 1717

(Dipj)(2) =2%®;(2) if i=n+1. (3.3.12)

We now compute (see (2.2.7), (3.3.11) and (3.3.12)):

1/2
1Nl = (Z 2‘2”'|s0j*f|2> (3.3.13)

jgfl Lo
< Csup [|®; * g1, (3.3.14)
j<—1

where the constant C' is given by:

C?=>) 29070 if i=1,...,n

j<—1

C?=) 207 if i=n+1,

Jj<—-1

which is finite 0 < €' < 400 under the choice
0<vy <Ll
In order to terminate the proof, it suffices to show that
15 % gllroe < Cligllzee,

which can be deduced, by translation and dilation invariance, from the follow-
ing estimate:

(@ *g)(0)] < Cllgllze. (3.3.15)
Indeed, define the positive radial decreasing function h(r) = h(||z]|) as follows:

h(r) = sup |®(z)].

21>

From (3.3.10), we remark that the function ® is the inverse Fourier transform
of a compactly supported function. Hence, we have:

h(0) = || @[ < +o0, (3.3.16)

and the asymptotic behavior

C

Tn+2

h(r) < forall r>1. (3.3.17)
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We compute (taking S” as the n-dimensional sphere of radius r):

@O = [ |#(=2)la:)it:

< [ o(-2lg(2do ) ) dr
< C(/Ooor"h(r)dr) . (3.3.18)

Using (3.3.16) and (3.3.17) we deduce that:
0 1 0
/ r™h(r)dr / r"h(r)dr +/ r"h(r)dr
0 0 1

1 X pn
C(/o h(O)cl7"+/1 Tn+2dr)

< C([®[lz~+1)

IN

which, together with (3.3.18), directly implies (3.3.15). As a conclusion, we
obtain (see (3.3.13)):

1f Nl p e < Cliglizee (3.3.19)

Step 3 (A lower bound on HfHFO,al and conclusion). Remarking that

1l = || D s 51| . < s,

JEZ ’
when f(0) = 0, the estimates (3.3.2), (3.3.6), (3.3.9) and (3.3.19) lead directly
to the proof. O

4 Proof of Theorem 1.3

For the sake of simplicity, we only give the proof in the framework of one
spatial dimensions x = z;. The extension to the multi spatial dimensions can
be easily deduced and will be made clear later in this section. Again, the
constant C' > 0 that will appear in the following proof may vary from line to
line but will only depend on m and T’

Proof of Theorem 1.3. We first remark that the function f can be extended
by continuity to the boundary 0€)r of 2. Following the same notations of
Ibrahim and Monneau [9], we take f as the extension of f over

Or = (=1,2) x (=T, 27)
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given by:
_ 2m—1
flz,t) = chf(—)\jx,t) for —1<x<0,0<t<T (4.4.1)
=0
~ 2m—1
flat) =) e f(l+X(1—2)t) for 1<2<20<t<T,
=0

2m—1
flx,t) = Z ci(=\)f=1 for k=0,...,2m— 1.

For the extension with respect to the time variable ¢, we use the same extension
(4.4.1) summing up only to m — 1. The above extension (4.4.1) has been made
in order to have (see for instance Evans [5]) f € W2™™(Qr) and

HJEHWQM""(QT) < CHwagm’m(QT)' (44.2)
Now let Z; C Z5 be two subsets of (ZT defined by:
2y ={(x,t); —1/4d <z <5/4and —T/4 <t <5T/4}

and
Zy={(x,t); —3/4<x<T7/4and —3T/4 <t <TT/4}.

We take the cut-off function ¥ € C5°(R?), 0 < ¥ < 1 satisfying:
U(z,t) =1 for (x,t) € Z (4.4.3)
U(z,t) =0 for (z,t) € R*\ Z,.
From (4.4.2), we easily deduce that ¥ f e W7™™(RR?) and

H\ijHWQQ""vm(RQ) S CHfHme‘m(QT) (444)

Hence we can apply the scalar-valued version of inequality (1.1.9) (see Re-
mark ??) with ¢ = 1, i.e. 019 = f; the new function (for which we give the
same notation) f = ¥ f € W;™™(R?) and g € L>(R?) given by

glat) = / Wy, 0)f (g, t)dy.
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Since W f is of compact support, and (again by the extension (4.4.1)) HJEHLOO(QT) <
CHfHWQQm,m(QT), we deduce that

||9HL°°(R2) < OHfHLoo(ﬁT) < CHfHij»m(QT)' (4.4.5)

Collecting the above arguments (namely (4.4.4) and (4.4.5)) together with the
fact that (see Ibrahim and Monneau [9])

IV fllByoae) < Cllf ll57m0° @g):

inequality (1.1.9) gives:
~ - + - 1/2
o= < 10 F iy < € (14 10 awomcey (108 (10 lhygrongen + o))

1/2
< ¢ (1+ 1l (108" Ilhuzerian) )

Notice that in the first line of the above inequalities we have used that ¥ =1
in QT. O

Remark 4.1 The inequality (1.1.9) used in the previous proof could have also
been used for i = 2. In this case we simply take g(x,t) = fot U(z,s)f(x,s)ds.

Remark 4.2 In the case of multi spatial dimensions z;, i = 1,... ,n, we si-
multaneously apply the extension (4.4.1) to each spatial coordinate while fizing
all the other coordinates including time t. However, the extension with respect
to t is kept unchanged.

5 Comparison between parabolic logarithmic
inequalities

In this section we give the proof of Theorem 1.5. Throughout all this section,
we only consider isotropic function spaces, i.e. a = (1,...,1) € R*™. We
only deal with the parabolic function space W7™"™. As usual, the constant
C = C(m,n) > 0 may differ from line to line. First of all, we remark that
estimate (1.1.11) turns out to be true (using the trivial identity z'/2 < 14 x)
if A= [lgllix < C for ||fllyzmn < 1, or if B = [lg]ze/[fllyzmn < C for
| f HWQQm,m > 1. This will be proved in the forthcoming arguments. We start
with the following lemmas:
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Lemma 5.1 Letn=1,2,3, s = "T“, and m € N* satisfying 2m > "T” For

any g € L*(R™) with f = Vg € W;™™(R"), we have g € H*(R"*') and

ie < 2. (5.5.1)

9]

The norm in the homogeneous Sobolev space H® is given by || f||%,, = S 1€1125| £ (£)|2de
where || - || is the usual Euclidean distance.

Proof. Follows directly since 1 < s < m, using the definition of the norm in
Hs. 0

Lemma 5.2 Under the same hypothesis of Theorem 1.5, we have:

1/2
1 llwzmm + llgll 2o
lgllzo < C 1A+ [ Fllyzmm <log <e + 2 . (5.5.2)

| Tz

Proof. We consider the isotropic (a = (1,...,1)) homogeneous dyadic parti-
tion of unity (¢;);ez with ZjeZ Y; =1 and ¢; = 9;. Fix some 0 <y < 1, and
take an arbitrary N € N*. We write:

N

lgllze <> Ml * gllz + Yl * gl + Y llps*glle. (55.3)
=1

J<0 J J>N
We estimate the right-hand side of (5.5.3). Benstein’s inequality gives:
n__i'_l .
e * gllz < C2EF g, 5 gl (5.5.4)

We let s = 2L, Using (5.5.4), we compute:

. C
> i xgllze <CY 27l glle < ——llglee. (5.5.5)

Jj<0 J<0

Again, using (5.5.4), we obtain:

N N
D llesxgllem <O 290y % gllze < ONY2|g|

j=1 j=1

s
B3 5

which, together with the fact that 3‘572 ~ H*, and estimate (5.5.1) of Lemma 5.1,
yield:

N

D ey # gl < CNY2| f[ly2mom. (5.5.6)

j=1
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The last term of the right-hand side of (5.5.3) can be estimated as follows:

. . _ 2=
>l ol = 3 20 gy o) <20 (1255 ) ol

>N >N

(5.5.7)
We know that Bgoyoo ~ C7; the homogeneous Hélder space whose semi-norm
can be estimated as follows:

lg(21) — g(22)]
gllen = sup
g =2

This, together with (5.5.7) yield:

Y lles * glle < C27N(|f lyyzmm + llgllz). (5.5.8)

J>N
Combining (5.5.3), (5.5.5), (5.5.6) and (5.5.8), we finally get:

lglle < C(1+ N fllyzmn + 277 ([ flyzmen + lgllo))-

< £z + Nz

By optimizing (as in Step 2 of Lemma 3.2) in N the above inequality, the proof
easily follows. a

We are now ready to give the proof of Theorem 1.5.

Proof of Theorem 1.5. As it was already mentioned in the beginning of this
section, the proof relies on considering two cases.

Case 1 (||fllyzmm < 1). Let A := [|g|[r=. Using inequalities (3.3.5) and
(5.5.2), we obtain:
A< C[L+ (log(e + 14 A))/?,

which directly implies that A < C, and hence (1.1.11) is obtained.

Case 2 (||fHW22m,m > 1). Dividing inequality (5.5.2) by Hf||W22m,m, we obtain:

1/2
P I O R 1 P
Hf“wjmvm ||f“w22mm

Letting B := HgHLoo/HfHWQQm,m, we can easily see that B satisfies (as the term
A in Case 1):
B < C[1+ (log(e + 1 + B))¥%,

which shows that B < C', and the proof is done. O
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