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Abstract

Let R be a ring with a subring A such that a power of every element
of R lies in A. The following results are proved. If R is a semiprime left
Noetherian ring and R is FBN-ring, so is A. If R is semiprime Noethe-
rian rings, A is left FBN-ring and J(A) # {0}, then R is left FBN-ring.
Different properties of R to be left fully bounded left Noetherian ring are
studied. Furthermore, we show that if R is left Noetherian ring which
is H-extension of a subring A, A C Z(R), where Z(R) is the center of
R, then R is a left fulls bounde left Noetherian ring. Also, we show that
if R ILT A where A is a commutative subring of left Noetherian ring R.
Then R is left fully bounded left Noetherian ring. Moreover, we proved
that if R is weakly injective ring, so is A. Also, we show that if R is
weakly R-injective, so then A is weakly A-injective.
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1 Introduction

Through this paper R will denote an associative ring and A will always denote
a subring of R. Following Faith [2], we say R is radical over subring A, or R
is A-radical if for each r € R there exists n = n(r) > 1 such that " € A.

A left Noetherian ring R is left bounded if every essential left ideal I of R
contains a nonzero two sided ideal of R. A left Noetherian ring is left fully
bounded left Noetherian ring (called left FBN-ring) if evey prime factor ring
of R is left bounded. A fully bounded Noetherian ring is left and right fully
bounded Noetherian ring. Trivially, commutative Noetherian rings and finite
algebras over them are fully bounded Noetherian rings. More generally, it
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is known [10] that a Noetherian ring is FBN-ring if it satisfies a polynomial
identity.

Let R be a ring and let M and N be R-modules. Let F(M) denote the
injective hull of M. Recall that M is injective relative to N or simply N-
injective if for each homomorphism.

¢:N—EM) , ¢(N)cCM.

This motivates the definition of weak relative-injectivity which is defined
as follows:

An R-module M is said to be weakly-injective relative to the R-module N
or weakly N-injective if for each R-homomorphism ¢ : N — E(M), ¢(N) C
X = M, for some submodule X of E(M). A ring R is right weakly N-injective
if the right module R is weakly N-injective [6].

An R-module M is called weakly R"™-injective if every n-element generated
submodules of its injective hull F(M) is contained in a submodule X of E(M)
isomorphic to M. An R-module M is called weakly-injective if it is weakly R"
injective for all n > 0. The ring R is called a right weakly-injective (W —1I) ring
if R is weakly-injective as right R-module. In particular, a ring R is weakly
R-injective (W RI) if R is weakly R-injective as right R-module.

2 Rings Radical over Subrings

In this section we establish a necessary and sufficient condition for a ring R
which is radical over subring A to be left fully bounded left Noetherian ring.

Lemma 2.1. Let R be a radical over subring A. Then for every ideal I < R,
ANT is an ideal in A.

Proof. 1t is clear that AN [ is a subring of A. Let a € ANI and s € A, we
want to show that as,sa € ANI. Sincea € ANI, s € A hence as,sa € A,
as,sa € I (a C R,I < R). Therefore, sa,as € ANI. Then AN is an ideal in
A. O

Remark 2.1. From this Lemma, if R is radical over A and R is a Noetherian
ring, then A is a Noetherian ring.

Lemma 2.2. Let R be a radical over subring A, then for every prime ideal P
in R, R/P is a radical over A/P N A.

Proof. We want to show that for every # € R/P 3 n(F) such that 7" ¢
A/PNA. It is clear that for every 7 € R/P, 7 = (r+p)" = " +p. but since,
R is aradical over A and A+ P/P ~ A/AN P this implies that 7™ € A/P N A.
Therefore R/ P is radical over A/P N A. O
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Theorem 2.3. Let R be a semiprime left Noetherian ring, R is radical over
subring A and R is a left FBN-ring. Then A is a semiprime left FBN-ring.

Proof. Let P is a prime ideal of R. Passing to R/P we can assume without
loss of generality that P = 0 and R is a prime Goldie.

Since R is a semprime left Goldie ring and R is radical over a subring A,
then A is semiprime left Goldie ring by Theorem 4 in [3].

Assume that [ is a left essential ideal of A, then by Zorn’s lemma there
exist a left maximal ideal I of R with respect to I'NI = 0. therefore, 1 = I& 1’
is an essential left ideal of R. Since R is a left FBN-ring, hence 1 contains a
two-sided ideal J # {0} of R. This implies that {0} # J N A is a two-sided
ideal of A and {0} #JNACLNA=1.

Therefore, A is a left bounded and hence A is a left FBN-ring. O

Theorem 2.4. Let R be a semiprime left Noetherian ring and R is radical
over subring A. If A is left fully bounded left Noetherian ring and J(A) # 0.
Then R is left fully bounded left Noetherian ring.

Proof. We will show that every essential left ideal of a prime factor ring of R
contains two-sided ideal # {0} of R.

Suppose P is a prime ideal of R, passing to R/P, we can assume without
loss of generality that P = 0, and R is a prime Goldie ring. Let I be a left
essential ideal of R. Clearly I’ = I N A is essential left ideal of A by Remark
2 in [3]. Since A is left fully bounded left Noetherian ring, then I” contains a
nonzero two-sided ideal of A, say J C I’. But since J(A) # 0, hence there is
a central idempotent e of A such that J(A) = eA [1].

Therefore, eA C J C I’ and by [4] Z(A) C Z(R) consequently e € Z(R).
Then I D I' D J D eA. Since [ is a left essential ideal of R hence I D eR # {0}
where eR is a nonzero two-sided ideal of R generated by a central idempotent
of R. Consequently R is a fully bounded left Noetherian ring. O

The following example show that, there is a left fully bounded left Noethe-
rian ring A with no nonzero Jacobson radical J(A).

Ezxample 2.1. Let F be a field, then the formal power series A = F[z]] is a
left fully bounded left Noetherian ring and J(A) # {0}.

Proof. Since F is a field hence the formal power series F'[[z]] is a Noetherian
ring by [7]. But F[[z]] is a commutative, therefore F[[z]] is a left fully bounded
left Noetherian ring. Also, F[[z]] has unique maximal ideal < x >, hence
J(A) # {0}. It is clear that any extension ring R of A = F[[z]] is left fully
bounded left Noetherian ring by Theorem 2.4. O

Using Theorem 1.1 in [2] we get the following result.
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Theorem 2.5. If R is a left Noetherian ring with no nil ideals # {0}, and if
R is redical over a division subring A # R, then R is left fully bounded left
Noetherian ring.

Also, from Theorem 1.2 in [2], we deduce the following results.

Theorem 2.6. If R is radical over commutative subring and if J(R) = 0.
Then R is a left fully bounded left Noetherian ring.

Corollary 2.7. If R is left Noetherian semisimple ring and if n is fixed natural
number such that to each pair x,y € R, x is radical over the centralizer of y~
n R, then R s left fully bounded left Noetherian ring.

Proof. From Corollary 1.4 in [2], we have R is a commutative ring. Therefore,
R is left fully bounded left Noetherian ring. O

(*) For any z,y € R, there exist natural numbers m,n such that z"y™ =
yma.

Theorem 2.8. If R is a left Noetherian primitive ring with minimal left ideal,
or if R is a subdirect sum of such rings, and if R satisfies (*), then R is a left
fully bounded left Noetherian ring.

Proof. Since R is a primitive ring with minimal left ideal, or R is a subdirect
sum of such rings and if R satisfies (*). Then R is commutative from Theorem
1.5 in [2]. Then R is left fully bounded left Noetherian ring. O

If R is a left Noetherian ring with no nil ideals # {0} and radical over a com-
mutative (possibly semisimple) subring B in R necessarily left fully bounded
left Noetherian ring?

If A is semisimple ideal, the answer is yes. This can be seen as follows:
J(A) =0 so that J(R)N A = {0}, whence J(A) is nil. By hypothesis, J(A) =
{0} and R is left fully bounded left Noetherian ring by theorem 2.6.

3 H-Extension Ring

In this section we show that if R|HA, where A commutative, then R is left
fully bounded left Noetherian ring.
We begin with the following definitions.

Definition 3.1. A ring R is called as H-extension of a subring A denoted by
R| A if for every r € R there exists an integer n(r) > 1, such that " —r € A

8],
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Theorem 3.1. Let R be a left Noetherian ring which is H-extension of a
subring A, A C Z(R), where Z(R) is the center of R, then R is a left fully
bounded left Noetherian ring.

Proof. Since R is an H-extension of a subring A, A C Z(R), then R is an
H-ring. hence R is a commutative (see [5], p. 317). Therefore, R is a left fully
bounded left Noetherian ring. O

Theorem 3.2. Suppose R is a left Noetherian radical ring without zero di-
visors and R\HA, where A is a commutative subring, then R is a left fully
bounded left Noetherian ring.

Proof. Since R is a radical ring without zero divisors and R| A, A 'is a com-
mutative ring, then R is a commutative ring by Proposition 4 [4]. Hence is a
left fully bounded left Noetherian ring. O

Using Theorem 1 in [9], we deduce the following theorem.

Theorem 3.3. Suppose R\HA where A is a commutative subring of left Noethe
rian ring R. Then R is a left fully bounded left Noetherian ring.

Also, from Theorem 2 in [9], we can get the following result.

Theorem 3.4. Suppose R is a right Noetherian algebra over a filed F and
R\HA, where A is a right ideal satisfying some identity. Then R is a left fully
bounded left Noetherian ring.

4 Weakly Injectivity

Theorem 4.1. Let R be a radical over subring A and R is weakly-injective.
Then A is weakly-injective.

Proof. Let R is weakly injective ring, we will show that A is weakly-injective
ring. Let ay, a9, -+ ,a, € E(As) C E(Rg). Need B C E(A,) such that
ai,as, - ,a, € B and By & A,. Since R is weakly R™-injective and a; €
E(Rg) for every 1 < i < n, then there exists Xp C Rg such that a; € X = Rp
for every i, choose B = X N E(A4). Therefore, a; € B for every i and
Ba=XNAs =2 RRNE(As) = Aa, hence A is weakly injective. O

Theorem 4.2. Let R be a radical over subring A and R is weakly R-injective,
then R is weakly A-injective.

Proof. Let Q = F(Rg) and S = E(A4). Suppose that R is weakly R-injective
ring, we will show that A is weakly A-injective. Let s € S be an arbitrary
element, we claim that sA C X = A4. It is clear that sA C sR, where sR
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is a cyclic R-submodule of ). Since is weakly R-injective ring, there exists
Y C @ such that sA C sR C Y = Rr. We choose X =Y NS CS. Thus
SACYNS=X. Since Y 2 R, then X =Y NS= RrpNS =A4. Hence A
is weakly A-injective ring. O
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