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Abstract

In this paper, we consider another generalization for quasi-ideal or-
thodox transversal, the so-called S0-orthodox transversals. We give a
structure theorem for regular semigroups with S0-orthodox transver-
sals. If S0 is a S0-orthodox transversal of S then S can be described in
terms of S0.
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1 Introduction

Let S be a regular semigroup and S0 be a regular subsemigroup of S. A natural
question that has been considered by many authors is to what extent is S
determined by S0? The concept of an inverse transversal is one of the answer
to this question. Recall that an inverse transversal of a regular semigroup S is
an inverse subsemigroup S0 that contains precisely one inverse for every x ∈ S.
In 1982, Blyth and McFadden introduced the class of regular semigroups with
an inverse transversal [1].

Recently, the concept of inverse transversal was generalized by many au-
thors [2-10]. In particular, the concept of orthodox transversals was introduced
by Chen Jianfei [2] as a generalization of inverse transversals. Chen Jianfei
obtained an excellent structure theorem for regular semigroups with quasi-
ideal orthodox transversals. In 2007, Xiangjun Kong [7] constructed regular
semigroups with quasi-ideal orthodox transversals by a simpler format set.
In 2009, Xiangjun Kong and Xianzhong Zhao [10] gave a structure theorem
for regular semigroups with quasi-ideal orthodox transversals by two orthodox
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semigroups. Hence the general case of orthodox transversals is to be consid-
ered. The main results are the sets

I = {aa0 : a ∈ S, a0 ∈ V (a) ∩ S0}
and

Λ = {a0a : a ∈ S, a0 ∈ V (a) ∩ S0}

are two components of regular semigroups with orthodox transversals. Chen-
Jianfei [2] have shown that I and Λ are subbands if S0 is a quasi-ideal orthodox
transversal of S. Though each element of the sets I and Λ is an idempotent,
they are necessarily subbands of S. In 2001, Chen Jianfei and Guo Yugi [3]
shown that, if S0 is an orthodox transversal of S, then the semi bands 〈I〉 and
〈Λ〉 generated by I and Λ respectively are bands. In this paper, we consider
another generalization for quasi-ideal orthodox transversal, called S0- ortho-
dox transversals. We give a structure theorem for regular semigroups with S0-
orthodox transversals. This is also one of the answer to our question. That is,
if S0 is a S0- orthodox transversal of S then S can be described in terms of
S0.

Section 2 presents some necessary notation and known results.In section 3,
we introduce two new subclasses, S− orthodox transversals and S0− orthodox
transversals of orthodox transversals and we obtain some basic properties of I
and Λ when S is an S0− orthodox transversal. In section 4, we give a structure
theorem for regular semigroup with S0− orthodox transversals. When S0 is a
quasi ideal of S, our theorem simplifies considerably.

2 Preliminaries

We adopt the terminology, notation and results of [2] and [3].

Definition 2.1 Let S be a semigroup and S0 a subsemigroup of S. We call S0

an orthodox transversal of S if the following conditions are satisfied.

(i) VS0(x) �= φ for all x ∈ S.
(ii) if x, y ∈ S and {x, y} ∩ S0 �= φ, then VS 0(x)VS 0(y) ⊆ VS0(yx).

Note that if S0 is an orthodox transversal of S, then S is regular by (i) and
S0 is an orthodox subsemigroup of S by (ii).

Theorem 2.2 Let S be a regular semigroup and S0 a quasi-ideal orthodox
transversal of S. Then
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(i) I ∩ Λ = E(S0)
(ii) I = {e ∈ E(S) : (∃e∗ ∈ E(S0)) , eLe∗}

Λ = {f ∈ E(S) : (∃f+ ∈ E(S0)) , fRf+}
(iii) IE(S0) ⊆ I, E(S0)Λ ⊆ Λ.
(iv) I and Λ are subbands of S.

Theorem 2.3 Let S0 be a quasi-ideal orthodox transversal of a regular semi-
group S. Then

(i) if e ∈ I (or Λ) then VS0(e) ⊆ E(S0).
(ii) if x ∈ S and x0 ∈ VS0(x), then VS 0(x) = VS 0(x0x)x0VS 0(xx0).
(iii) if VS 0(x)∩VS 0(y) �= φ for any x, y ∈ S, then VS 0(x) = VS 0(y).

Theorem 2.4 Let S0 be an orthodox transversal of S, then the Green relation
H on S saturates S0. (That is, S0 is a union of some H−classes on S.) In
particular, the maximum idempotent-separating congruence on S saturates S0.

Theorem 2.5 Let S0 be an orthodox transversal of S. Then S is an orthodox
semigroup if and only if for every a, b ∈ S, VS0(a)VS0(b) ⊆ VS0(ba).

Lemma.2.6 If S0 is an orthodox transversal of S then for any a, b ∈ S0,
V (a) ∩ V (b) �= φ ⇒ VS0(a) = VS0(b).

Lemma.2.7 Let S0 be an orthodox transversal of S. For e ∈ S, if VS0(e) ∩
E(S0) �= φ, then VS0(e) ⊆ E(S0).

Theorem.2.8 Let S0 be an orthodox transversal of S. The semiband 〈I〉 (re-
spectively 〈Λ〉) generated by I (respectively Λ) is a subband of S.

Note that if S0 is an orthodox transversal of S then I is a band if and only
if E(S0)I ⊆ I.

3 S0− ORTHODOX TRANSVERSALS

Definition 3.1 Let S0 be an orthodox transversal of S. S0 is said to be an
S−orthodox transversal of S if I and Λ are subbands of S.

Definition 3.2 Let S0 be an S−orthodox transversal of S. Then S0 is said
to be an S0−orthodox transversal of S if the regular semigroup S0SS0 is an
orthodox transversal of S.
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It is clear that a quasi-ideal orthodox transversal is an S0−orthodox transver-
sal. We denote S0SS0 by U.

Lemma 3.3 Let S0 be an S0−orthodox transversal of S. If i ∈ I, then iRe
for some e ∈ E(U) implies i ∈ E(U); if λ ∈ Λ, then λLe for some e ∈ E(U)
implies λ ∈ E(U).

Proof. If iRe then i = ei = eii∗ ∈ S0SS0 = U, and hence i ∈ E(U). The
second statement can be proved dually.

Lemma 3.4 Let S0 be an S0−orthodox transversal of S. If i ∈ I (orΛ) then
VS0(i) ⊆ E(U).

Proof. Let i ∈ I. Take i∗ ∈ E(S0) such that iLi∗, and suppose that x ∈ VS0(i)
and x0 ∈ VS0(x). Since x0x ∈ E(S0), x0xi ∈ S0SS0 = U and hence x0xi ∈
E(U). On the other hand, i∗xx0 ∈ E(U) since U is orthodox. Therefore,

x0 = x0xx0

= x0xixx0 since x ∈ VS0(i)
= x0xi.i∗xx0 since iLi∗

= E(U).E(U) ⊆ E(U).

Therefore, x ∈ E(U), since U is orthodox. Thus VS0(i) ⊆ E(U).

Define
Ī = {i ∈ E(S) : (∃i∗ ∈ E(U)) : ı∗Li}
Λ̄ = {λ ∈ E(S) : (∃λ′ ∈ E(U)) : λ′Rλ}

Clearly Ī and Λ̄ are subbands of S.

For each e ∈ E(U), let

Ie = {i ∈ Ī : (∃i∗ ∈ E(U)) i∗Re}
Λe = {λ ∈ Λ̄ : (∃λ′ ∈ E(U)) λ′Le}.

Lemma 3.5 Let S0 be an S0−orthodox transversal of S. Then Ie and Λe are
rectangular bands.

Proof. Let i, i1 ∈ Ie. Then there exist i∗, i∗1 ∈ E(U) such that i∗ReRi∗1.
Since S0 is S0−orthodox transversal, ii1 ∈ I and i∗i∗1 ∈ E(U). Further, since
i∗ReRi∗1, i∗i∗1 = i∗1Re. Hence Ie is a band. Let i, i1 ∈ Ie. Then by Lemma 2.6,
VS0(ii1i) = VS0(i). Since E(U) is a band, so it is a semilattice of rectangular
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bands. Therefore ii1i and i are in the same rectangular band. Hence
ii′i = i.ii′i.i = i.

Therefore Ie is a rectangular band. Similarly, Λe is also a rectangular band.

Lemma 3.6 Let S0 be an S0−orthodox transversal of S. For any i1, i2, i3 ∈ Ī
with i3Ri1, we have i3i2 = i1i2. Dually, for any λ1, λ2, λ3 ∈ Λ̄, with λ3Lλ1, we
have λ2λ3 = λ2λ1.

Proof. If i1, i2, i3 ∈ Ī then for some i∗1, i
∗
2, i

∗
3 ∈ E(U), we have i∗1Li1, i∗2Li2 and

i∗3Li3. If i3Ri1, then by Green’s lemma, i3i
∗
1 = i1, and hence i3i2 = i3(i

∗
1i2) =

(i3i
∗
1)i2 = i1i2. The second statement can be proved dually.

Maintaining the notation followed in [5], the following theorem is similar
to Theorem of 2.5 of [5].

Theorem 3.7 The association r(e) 
→ Ar(e), (r(e), r(f)) 
−→ A(r(e), r(f))
where

Ar(e) = Ie/R = {−→i ∈ Ī/R : (∃i∗ ∈ E(U)) i∗Re}

with −→e = r(e) as base point and where the map

A(r(e), r(f)) : Ar(e) → Ar(f)

is given by �iA(r(e), r(f)) = �ie, defines a functor A : E(U)/R→ P.

Dually, the association, �(e) 
→ B�(e), (�(e), �(f)) 
→ B(�(e), �(f)), where B�(e) =

Λe/L = {←−λ ∈ Λ̄/R : (∃λ′ ∈ E(U)) λ′Le} with ←−e = �(e) as base point, and

where the map B(�(e), �(f)) : B�(e) → B�(f) is given by
←−
λ B(�(e), �(f)) =

←−
fλ

defines a functor B : E(U)/L→ P.

4 Main Theorem

Let us define S0−pair for an orthodox semigroup S0.

Definition 4.1 Let S0 be an orthodox semigroup. By an S0−pair (A, B) we
mean a pair of functors

A : E(S0)/R→ P, B : E(S0)/L→ P.

Given an S0 − pair (A, B), a B × A matrix over S0 is a function



1660 K. Indhira and V. M. Chandrasekaran

∗ : (b, a) 
−→ b ∗ a :
⋃

�(e)∈E(S0)/L

B�(e) ×
⋃

r(f)∈E(S0)/R

Ar(f) → S0

Definition 4.2 Let (A, B) be an S0−pair with a B × A matrix ∗ over S. By
an enrichment ξ = ξ(A, B) of (A, B) relative to ∗ we mean a family of maps

Ax,y
b,a : Ar(x) → Ar(x.b∗a.y), Bx,y

b,a : B�(y) → B�(x.b∗a.y)

where x, y ∈ S0, b ∈ B�(x), a ∈ Ar(y), such that

(M1) Ax,y
�(x),r(y) = A(r(x), r(xy)) and Bx,y

�(x),r(y) = B(�(y), �(xy)),

(M2) if xRx.b ∗ a.y then Ax,y
b,a = id; and if yLx.b ∗ a.y then Bx,y

b,a = id,

(M3) Ax,y
b,a Ax.b∗a.y,z

c Bx,y
b,a

,d = Ax,y.c∗d.z
b,a Ay,z

c,d
,

(M4) By,z
c,d Bx,y.c∗d.z

b,a Ay,z
c,d

= Bx.b∗a.y,z
c Bx,y

b,a
,d ,

(M5) x.b ∗ a.y.c Bx,y
b,a ∗ d.z = x.b ∗ a Ay,z

c,d .y.c ∗ d.z

for all x, y, z ∈ S, b ∈ B�(x), a ∈ Ar(y), c ∈ B�(y), d ∈ Ar(z).

Theorem 4.3 Let S0 be an orthodox semigroup and let (A, B) be an S0−pair.
Let ∗ be a B ×A matrix over S0 satisfying

(N1) if b ∈ B�(e) and a ∈ Ar(f) then b ∗ a ∈ �(e).S r(f).
(N2) for any b ∈ B�(e), a ∈ Ar(f), b ∗ r(f), �(e) ∗ a ∈ �(e)r(f).

Let ξ be an enrichment of (A, B) relative to ∗. Then the set

W = W (S0 ; A , B ; ∗ ; ξ) = {(a, x, b) : x ∈ S0, a ∈ Ar(x), b ∈ B�(x)}

is a regular semigroup under the multiplication

(a, x, b)(c, y, d) = {aAx,y
b,c , x.b∗c.y, dBx,y

b,c } (4.1)

The map η : S0 → W, xη = (r(x), x �(x)) is an injective homomorphism
of S0 to W. If we identify S0 with S0η, via η, then S0 is an S0−orthodox
transversal of S.

Conversely, every regular semigroup with an S0−orthodox transversal can
be constructed in this way.



Regular semigroups with a S0− orthodox transversal 1661

Proof. The associativity of the multiplication follows from (M3)− (M5). We
first prove that η is an injective homomorphism. Clearly η is one-to-one. Since
Ax,y

�(x),r(y), Bx,y
�(x),r(y) are base point preserving function by (M1), we get

xη.yη = (r(x), x, �(x)) (r(y), y, �(y))
= (r(xy), xy, �(xy))
= (xy)η.

Hence η is an injective homomorphism.

Let (a, x, b) ∈W. Then x ∈ S0, let x∗ ∈ VS0(x), by (N2) and (M2),

(a, x, b) (r(x∗), x∗, �(x∗)) (a, x, b) = (a, xx∗, �(x∗))(a, x, b) = (a, x, b)
and

(r(x∗), x∗, �(x∗)) (a, x, b) (r(x∗), x∗, �(x∗))
= (r(x∗), x∗x, b)(r(x∗), x∗, �(x∗))
= (r(x∗), x∗, �(x∗))

so that (r(x∗), x∗, �(x∗)) ∈ VS0((a, x, b)), since we can identify S0 with S0η,
VS0((a, x, b)) �= φ.

Moreover, for any (a, x, b) ∈W,
VS0((a, x, b)) = {(r(x∗), x∗, �(x∗)) : x∗ ∈ VS0(x)}.

Hence W is a regular semigroup. Now let (a, x, b) ∈ W and r(y), y, �(y) ∈
S0η ∼= S0. Let (r(x∗), x∗, �(x∗)) ∈ VS0((a, x, b)) and (r(y∗), y∗, �(y∗))
∈ VS0((r(y), y, �(y))). Then

(r(x∗), x∗, �(x∗))(r(y∗), y∗, �(y∗)) ∈ VS0((a, x, b))VS0((r(y), y, �(y)))

⇒ (r(x∗y∗), x∗y∗, �(x∗y∗)) ∈ VS0((a, x, b))VS0((r(y), y, �(y))).

Consider (r(y), y, �(y)) (a, x, b) = (r(yx), yx, bBx,y
�(y),a) by (N2) and M(2). Next

we prove that (r(x∗y∗), x∗y∗, �(x∗y∗)) ∈ VS0((r(yx), yx, bBx,y
�(y),a)). But this is

immediately follows, since S0 is an orthodox semigroup and by (M2) and (N2).

Therefore, for any (a, x, b) ∈W, (r(y), y, �(y)) ∈ S0η ∼= S0,

VS0((a, x, b))VS0((r(y), y, �(y))) ⊆ VS0((r(y), y, �(y))(a, x, b)).

Hence S0 is an orthodox transversal.
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Note that by (M2),

E(W ) = {(a, x, b) ∈W : x.(b ∗ a).x = x}.

Consider the sets

I = {(a, x, b) ∈ E(W ) : (∃((r(x1), x1, �(x1))) ∈ E(S0) (a, x, b)L(r(x1), x1, �(x1))}

Λ = {(c, y, d) ∈ E(W ) : (∃((r(y1), y1, �(y1))) ∈ E(S0) (c, y, d)R(r(y1), y1, �(y1))}.

Let (a, x, b), (c, y, d) ∈ I. Take (r(x1), x1, �(x1)) ∈ E(S0) such that (r(x1), x1, �(x1))
L(a, x, b), then

(a, x, b)(c, y, d) = (a, x, b)(r(x1), x1, �(x1))(c, y, d)

But (r(x1), x1, �(x1)) ∈ E(S0) by (N2). Thus

(a, x, b)(c, y, d) = (a, x, b)(r(x1), x1, �(x1)) ⊆ IE(S0) ⊆ I,

by Theorem 2.2(iii). Hence I is a band. Similarly, we can prove Λ is a band.
So S0 is a S−orthodox transversal of S. Since S0 is an orthodox transversal of
S, S0WS0 is a regular subsemigroup of S. Let (a, x, b) ∈W, (r(x1), x1, �(x1)),
(r(x2), x2, �(x2)) ∈ S0η.W.S0η ∼= S0WS0, then

(r(x1), x1, �(x1)) (a, x, b)(r(x2), x2, �(x2)) = (r(m), m, �(m1)) by (N2)

where m = x1.�(x1) ∗ a.x.b ∗ r(x2).x2 ∈ S0WS0.

Therefore,

U = S0WS0 = S0η.W.S0η
= {(r(m), m, �(m)) : m ∈ S0WS0}.

By (N2), U is an orthodox transversal of W. Let (A, B) be an U−pair with a
B ×A matrix ∗ over U and ξ = ξ(A, B) be an enrichment of A, B relative to
∗.

Then the set

W = W (U ; A, B, ∗, ξ) = {((a, x, b) : x ∈ U, a ∈ Ar(x), b ∈ B�(x)}
is a regular semigroup under the multiplication given by (4.1) and U is an
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orthodox transversal of W.

Conversely, suppose that S0 is an S0−orthodox transversal of S. Let (A, B)
be the S0SS0− pair defined in Theorem 3.7, we define a B ×A matrix * over
S0SS0 = U as follows. Fix an R− invariant map α : I → I so that α is
constant on each R− class of I. Similarly fix an L− invariant map β : Λ→ Λ
so that β is constant on each each L− class of Λ. For each

←−
λ ∈ B�(e),

−→
i ∈ Ar(f),

define ←−
λ ∗ −→i = (λβ)(iα).

Clearly * is well defined. For, if
←−
λ 1 =

←−
λ 2,
−→
i1 =

−→
i2 then λ1β =

λ2β, i1α = i2α and so ((λβ)(iα)) = ((λ2β)(i2α)). We show that ∗ satis-
fies (N1) and (N2).

(N1) If
←−
λ ∈ B�(e),

−→
i ∈ Ar(f), then←−

λ ∗ −→i = (λβ)(iα)
= e(λβ)(iα)f ∈ �(e)Ur(f).

(N2) If
←−
λ ∈ B�(e),

−→
i ∈ Ar(f) then←−

λ ∗ r(f) = (λβ)(fα)
= (λβ)∗(λβ)f(α) ∈ �(e)r(f),

since (λβ) ∈ U = S0SS0. Similarly, �(e) ∗ −→i ∈ �(e)r(f).

For each quadruple (x, y,
−→
i ,
←−
λ ), where x, y ∈ U,

←−
λ ∈ B�(x),

−→
i ∈ Ar(y),

define

Ax,y←−
λ ,
−→
i

: Ar(x) → A
r(x.
←−
λ ∗−→i .y)

and
Bx,y←−

λ ,
−→
i

: B�(y) → B
�(x.
←−
λ ∗−→i .y)

by −→wAx,y←−
λ ,
−→
i

=
−→
wh and ←−wBx,y←−

λ ,
−→
i

=
←−
kw

where h ∈ I, k ∈ Λ are such that hRxλiyLk ∈ S. These maps are well de-
fined. For, if −→w1 ∈ Ar(x) and h1 ∈ I are such that −→w = −→w1 and

−→
h =

−→
h1

with hRxλiyLh1, then by Lemma 3.6, wRw1 ⇒ wh = w1h. Since hRh1 ⇒
w1hRw2h, whRw1h, and hence

−→
wh =

−−→
w1h1. We show that ξ = {Ax,y←−

λ ,
−→
i

, Bx,y←−
λ ,
−→
i
}

is an enrichment of (A, B) relative to ∗. Clearly (M1) holds. To verify (M2),
take any

Ax,y←−
λ ,
−→
i

: Ar(x) → A
r(x.
←−
λ ∗−→i .y)
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with xRx.
←−
λ ∗−→i .y, and let h ∈ I be such that hRxλiy. Then for any −→w ∈ Ar(x),

−→wAx,y←−
λ ,
−→
i

=
−→
wh = −→w ,

since by Lemma 3.5, wRwh. Hence Ax,y←−
λ ,
−→
i

= id. Dually, we have Bx,y←−
λ ,
−→
i

= id

whenever yLx.
←−
λ ∗ −→i .y.

Now let

W = W (U, A, B, ∗, ξ) = {(←−λ , x,
−→
i ) : x ∈ U ;

←−
λ ∈ Ar(x),

−→
i ∈ B�(x)}

and define a multiplication on W by (4.1). Note that ξ satisfies (M3)− (M5)
if and only if the multiplication on W is associative. We verify (M3) − (M5)
by establishing the associativity of the multiplication. To this end, define
γ : S →W by

sγ = (
−→
ss∗, s00,

←−
s∗s)

where s0 ∈ VU(s) and s00 ∈ VU(s0). Then γ is bijective map with inverse

μ : W → S given by (
←−
λ , x,

−→
i )μ = λxi. Multiplication is preserved by γ,

since

(sγ)(tγ) = (
−→
ss∗, s00,

←−
s∗s)(

−→
tt∗, t00,

←−
t∗t)

= (
−−→
ss∗h, s00.

←−
s∗s ∗ −→tt∗.t00,

←−
t∗ t)

= (
−−→
ss∗h, (st)00,

←−
kt∗t)

= (st)γ,

the last step follows, since U is an orthodox transversal and s0 ∈ VU(s), s00 ∈
VU(s0), t0 ∈ VU(t), t00 ∈ VU(t0), h ∈ I,

−→
k ∈ Λ with hRs00.(s∗stt∗)t00Lk. This

implies that the multiplication in W is associative and γ is an isomorphism
of regular semigroups. In particular ξ satisfies (M3)− (M4) and hence ξ is an
enrichment of (A, B) relative to ∗. Hence by the direct part of the theorem,
W = W (U ; A, B; ∗, ξ) is a regular semigroup with an orthodox transversal
U = S0SS0. ∼= S0η.W.S0η, since S ∼= W and the proof of the theorem is
complete.

Lemma 4.4 The maps {Ax,y
a,b , Bx,y

a,b } in the statement of the Theorem 4.3 are
base point preserving maps if and only if S0 = S0η is a quasi-ideal of W.

Proof. Suppose that the maps {Ax,y
a,b , Bx,y

a,b } are base point preserving maps.
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Let (r(x), x, �(x)), (r(y), y, �(y)) ∈ S0 and (a, z, b) ∈W. Then

(r(x), x, �(x))(a, z, b)(r(y), y, �(y)) = (r(m), m, �(m)) ∈ S0(= S0η)

where m = x.�(x) ∗ a.x.bBx,z
�(x),a ∗ r(y).y ∈ S. So S0 is a quasi-ideal of W.

Conversely, assume that S0 is a quasi-ideal of W. Then

(r(x)Ax,y
a,b , x.a ∗ b.y, �(y)Bx′y

a,b )
= (r(x), x, a)(b, y, �(y))
= (r(e), e, �(e))(r(x), x, a)(b, y, �(y))(r(f), f, �(f)) by (M2) and (N2)
∈ S0,

where e, f ∈ E(S0) are such that eRx, fLy.

This implies

r(x)Ax,y
a,b = r(x.a ∗ b.y) and �(y)Bx,y

a,b = �(x.a ∗ b.y).

Hence Ax,y
a,b , B

x,y
a,b are base point preserving maps.

Note that when S0 is a quasi-ideal orthodox transversal of S then S0SS0 =
S0. So S0 is both an S−orthodox transversal and S0−orthodox transversal.
The following is the quasi-ideal version of the main theorem.

Theorem 4.5 Let S0 be an orthodox semigroup and let (A, B) be an S0−
pair. Let ∗ be a B × A matrix over S satisfying (N1), (N2) and the following
condition:

(N3) (i)e.(b ∗ aA(r(f), r(f ′)))f ′ = e.b ∗ a.f ′

(ii) e′.(bB(�(e), �(e′) ∗ a)f = e′.b ∗ a.f

for all e, e′, f, f ′ ∈ E(S0) with �(e) ≥ �(e′), r(f) ≥ r(f ′), a ∈ Ar(f), b ∈ B�(e).
Then

W = W (S; A, B, ∗) = {(a, x, b) : x ∈ S0; a ∈ Ar(x), b ∈ B�(x)}

is a regular semigroup under the multiplication

(a, x, b)(c, y, d) = (aA(r(x), r(z)), z, dB(�(y), �(z))

where z = x.b ∗ c.y. The map η : S → W, xη = (r(x), x, �(x)) is an injective
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homomorphism of S to W. If the identity S with Sη, via η, then S is a quasi-
ideal orthodox transversal of W.

Conversely, every regular semigroup with a quasi-ideal orthodox transversal
can be constructed in this way.

Proof. For each quadruple (x, y, b, a), where x, y ∈ S, b ∈ B�(x), a ∈ Ar(y), let

Ax,y
b,a = A(r(x), r(x.b ∗ a.y)) and Bx,y

b,a = B(�(y), �(x.b ∗ a.y)).

Clearly the system ξ = ξ(A, B) = {Ax,y
b,a , Bx,y

b,a } satisfies (M1) and (M2). Using
(N3) we get

(x.b ∗ a.y)(c.Bx,y
b,a ∗ d)z = (x.b ∗ a.y)(cB(�(y), �(x.b ∗ a.y))z ∗ d

= x.b ∗ a.y.c ∗ d.z
= x.b ∗ aA(r(y), r(y.c ∗ d.z))(y.c ∗ d.z)
= (x.b ∗ aAy,z

c,d)(y.c ∗ d.z),

which implies (M3) − (M5). Thus ξ is an enrichment of (A, B) relation to
∗. Then W = (S0, A, B; ∗) = W (S0; A, B, ∗, ξ) and the direct part of the
theorem follows from the direct part of Theorem 4.3 except perhaps the fact
that S(= Sη) is a quasi-ideal of W. But this is immediate from Lemma 4.4,
since Ax,y

b,a , Bx,y
b,a are base point preserving maps.

Conversely, suppose S0 is a quasi-ideal orthodox transversal of S. Let (A, B)
be an S0−pair with a B×A matrix over S0, as in the converse part of Theorem
4.3. Then ∗ satisfies (N1) and (N2). We now show that ∗ also satisfies (N3).

Take any
←−
λ ∈ B�(e),

−→
i ∈ Ar(f) and r(f) ≥ r(f ′). Then

−→
i A(r(f), r(f ′)) =−→

if ′ and,

e(
←−
λ ∗ −→i A(r(f), r(f ′)))f ′ = e(

←−
λ ∗ −→if ′)f ′

= e((λβ)(if ′α))f ′

= e((λβ)(iα))f ′ by Lemma 3.3.

= e(
←−
λ ∗ −→i )f ′.

Hence (N3)(i) is satisfied. A dual argument proves (N3)(ii). Hence by the direct
part of the theorem, W = W (S; A, B; ∗) is a regular semigroup containing
S(= Sη) as a quasi-ideal orthodox transversal of W. Finally, as in the proof
of Theorem 4.3 the map γ : T →W is an isomorphism of regular semigroups.
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