Regular Semigroups with a S^0 - Orthodox Transversal

K. Indhira and V. M. Chandrasekaran

School of Advanced Sciences VIT University Vellore-632 014, India vmcsn@vit.ac.in

Abstract

In this paper, we consider another generalization for quasi-ideal orthodox transversal, the so-called S^0 -orthodox transversals. We give a structure theorem for regular semigroups with S^0 -orthodox transversals. If S^0 is a S^0 -orthodox transversal of S then S can be described in terms of S^0 .

Mathematics Subject Classification: 20M10

Keywords: regular semigroup; quasi-ideal; inverse transversal; orthodox transversal

1 Introduction

Let S be a regular semigroup and S^0 be a regular subsemigroup of S. A natural question that has been considered by many authors is to what extent is S determined by S^0 ? The concept of an inverse transversal is one of the answer to this question. Recall that an inverse transversal of a regular semigroup S is an inverse subsemigroup S^0 that contains precisely one inverse for every $x \in S$. In 1982, Blyth and McFadden introduced the class of regular semigroups with an inverse transversal [1].

Recently, the concept of inverse transversal was generalized by many authors [2-10]. In particular, the concept of orthodox transversals was introduced by Chen Jianfei [2] as a generalization of inverse transversals. Chen Jianfei obtained an excellent structure theorem for regular semigroups with quasi-ideal orthodox transversals. In 2007, Xiangjun Kong [7] constructed regular semigroups with quasi-ideal orthodox transversals by a simpler format set. In 2009, Xiangjun Kong and Xianzhong Zhao [10] gave a structure theorem for regular semigroups with quasi-ideal orthodox transversals by two orthodox

semigroups. Hence the general case of orthodox transversals is to be considered. The main results are the sets

$$I = \{aa^0: a \in S, \, a^0 \in V(a) \cap S^0\}$$
 and
$$\Lambda = \{a^0a: a \in S, \, a^0 \in V(a) \cap S^0\}$$

are two components of regular semigroups with orthodox transversals. Chen-Jianfei [2] have shown that I and Λ are subbands if S^0 is a quasi-ideal orthodox transversal of S. Though each element of the sets I and Λ is an idempotent, they are necessarily subbands of S. In 2001, Chen Jianfei and Guo Yugi [3] shown that, if S^0 is an orthodox transversal of S, then the semi bands $\langle I \rangle$ and $\langle \Lambda \rangle$ generated by I and Λ respectively are bands. In this paper, we consider another generalization for quasi-ideal orthodox transversal, called S^0 - orthodox transversals. We give a structure theorem for regular semigroups with S^0 orthodox transversals. This is also one of the answer to our question. That is, if S^0 is a S^0 - orthodox transversal of S then S can be described in terms of S^0 .

Section 2 presents some necessary notation and known results. In section 3, we introduce two new subclasses, S- orthodox transversals and S^0- orthodox transversals of orthodox transversals and we obtain some basic properties of I and Λ when S is an S^0- orthodox transversal. In section 4, we give a structure theorem for regular semigroup with S^0- orthodox transversals. When S^0 is a quasi ideal of S, our theorem simplifies considerably.

2 Preliminaries

We adopt the terminology, notation and results of [2] and [3].

Definition 2.1 Let S be a semigroup and S^0 a subsemigroup of S. We call S^0 an *orthodox transversal* of S if the following conditions are satisfied.

```
(i) V_{S^0}(x) \neq \phi for all x \in S.

(ii) if x, y \in S and \{x, y\} \cap S^0 \neq \phi, then V_{S^0}(x)V_{S^0}(y) \subseteq V_{S^0}(yx).
```

Note that if S^0 is an orthodox transversal of S, then S is regular by (i) and S^0 is an orthodox subsemigroup of S by (ii).

Theorem 2.2 Let S be a regular semigroup and S^0 a quasi-ideal orthodox transversal of S. Then

(i)
$$I \cap \Lambda = E(S^0)$$

(ii) $I = \{e \in E(S) : (\exists e^* \in E(S^0)), eLe^*\}$
 $\Lambda = \{f \in E(S) : (\exists f^+ \in E(S^0)), fRf^+\}$
(iii) $IE(S^0) \subseteq I, E(S^0)\Lambda \subseteq \Lambda.$
(iv) I and Λ are subbands of S .

Theorem 2.3 Let S^0 be a quasi-ideal orthodox transversal of a regular semigroup S. Then

```
(i) if e \in I (or \Lambda) then V_{S^0}(e) \subseteq E(S^0).

(ii) if x \in S and x^0 \in V_{S^0}(x), then V_{S^0}(x) = V_{S^0}(x^0x)x^0V_{S^0}(xx^0).

(iii) if V_{S^0}(x) \cap V_{S^0}(y) \neq \phi for any x, y \in S, then V_{S^0}(x) = V_{S^0}(y).
```

Theorem 2.4 Let S^0 be an orthodox transversal of S, then the Green relation H on S saturates S^0 . (That is, S^0 is a union of some H-classes on S.) In particular, the maximum idempotent-separating congruence on S saturates S^0 .

Theorem 2.5 Let S^0 be an orthodox transversal of S. Then S is an orthodox semigroup if and only if for every $a, b \in S$, $V_{S^0}(a)V_{S^0}(b) \subseteq V_{S^0}(ba)$.

Lemma.2.6 If S^0 is an orthodox transversal of S then for any $a, b \in S^0$, $V(a) \cap V(b) \neq \phi \Rightarrow V_{S^0}(a) = V_{S^0}(b)$.

Lemma.2.7 Let S^0 be an orthodox transversal of S. For $e \in S$, if $V_{S^0}(e) \cap E(S^0) \neq \phi$, then $V_{S^0}(e) \subseteq E(S^0)$.

Theorem.2.8 Let S^0 be an orthodox transversal of S. The semiband $\langle I \rangle$ (respectively $\langle \Lambda \rangle$) generated by I (respectively Λ) is a subband of S.

Note that if S^0 is an orthodox transversal of S then I is a band if and only if $E(S^0)I \subseteq I$.

3 S^0 – ORTHODOX TRANSVERSALS

Definition 3.1 Let S^0 be an orthodox transversal of S. S^0 is said to be an $S-orthodox\ transversal$ of S if I and Λ are subbands of S.

Definition 3.2 Let S^0 be an S-orthodox transversal of S. Then S^0 is said to be an S^0 -orthodox transversal of S if the regular semigroup S^0SS^0 is an orthodox transversal of S.

It is clear that a quasi-ideal orthodox transversal is an S^0 -orthodox transversal. We denote S^0SS^0 by U.

Lemma 3.3 Let S^0 be an S^0 -orthodox transversal of S. If $i \in I$, then iRe for some $e \in E(U)$ implies $i \in E(U)$; if $\lambda \in \Lambda$, then λLe for some $e \in E(U)$ implies $\lambda \in E(U)$.

Proof. If iRe then $i = ei = eii^* \in S^0SS^0 = U$, and hence $i \in E(U)$. The second statement can be proved dually.

Lemma 3.4 Let S^0 be an S^0 -orthodox transversal of S. If $i \in I$ $(or\Lambda)$ then $V_{S^0}(i) \subseteq E(U)$.

Proof. Let $i \in I$. Take $i^* \in E(S^0)$ such that iLi^* , and suppose that $x \in V_{S^0}(i)$ and $x^0 \in V_{S^0}(x)$. Since $x^0x \in E(S^0)$, $x^0xi \in S^0SS^0 = U$ and hence $x^0xi \in E(U)$. On the other hand, $i^*xx^0 \in E(U)$ since U is orthodox. Therefore,

$$x^{0} = x^{0}xx^{0}$$

$$= x^{0}xixx^{0} \text{ since } x \in V_{S^{0}}(i)$$

$$= x^{0}xi.i^{*}xx^{0} \text{ since } iLi^{*}$$

$$= E(U).E(U) \subseteq E(U).$$

Therefore, $x \in E(U)$, since U is orthodox. Thus $V_{S^0}(i) \subseteq E(U)$.

Define

$$\bar{I} = \{ i \in E(S) : (\exists i^* \in E(U)) : \mathbf{1}^* \mathbf{L}i \}$$

$$\bar{\Lambda} = \{ \lambda \in E(S) : (\exists \lambda' \in E(U)) : \lambda' \mathbf{R}\lambda \}$$

Clearly \bar{I} and $\bar{\Lambda}$ are subbands of S.

For each $e \in E(U)$, let

$$I_e = \{ i \in \bar{I} : (\exists i^* \in E(U)) i^* Re \}$$

$$\Lambda_e = \{ \lambda \in \bar{\Lambda} : (\exists \lambda' \in E(U)) \lambda' Le \}.$$

Lemma 3.5 Let S^0 be an S^0 -orthodox transversal of S. Then I_e and Λ_e are rectangular bands.

Proof. Let $i, i_1 \in I_e$. Then there exist $i^*, i_1^* \in E(U)$ such that $i^*ReRi_1^*$. Since S^0 is S^0 -orthodox transversal, $ii_1 \in I$ and $i^*i_1^* \in E(U)$. Further, since $i^*ReRi_1^*$, $i^*i_1^* = i_1^*Re$. Hence I_e is a band. Let $i, i_1 \in I_e$. Then by Lemma 2.6, $V_{S^0}(ii_1i) = V_{S^0}(i)$. Since E(U) is a band, so it is a semilattice of rectangular

bands. Therefore ii_1i and i are in the same rectangular band. Hence ii'i = i.ii'i.i = i.

Therefore I_e is a rectangular band. Similarly, Λ_e is also a rectangular band.

Lemma 3.6 Let S^0 be an S^0 -orthodox transversal of S. For any $i_1, i_2, i_3 \in \overline{I}$ with $i_3 Ri_1$, we have $i_3 i_2 = i_1 i_2$. Dually, for any $\lambda_1, \lambda_2, \lambda_3 \in \overline{\Lambda}$, with $\lambda_3 L\lambda_1$, we have $\lambda_2 \lambda_3 = \lambda_2 \lambda_1$.

Proof. If $i_1, i_2, i_3 \in \overline{I}$ then for some $i_1^*, i_2^*, i_3^* \in E(U)$, we have $i_1^* L i_1, i_2^* L i_2$ and $i_3^* L i_3$. If $i_3 R i_1$, then by Green's lemma, $i_3 i_1^* = i_1$, and hence $i_3 i_2 = i_3 (i_1^* i_2) = (i_3 i_1^*) i_2 = i_1 i_2$. The second statement can be proved dually.

Maintaining the notation followed in [5], the following theorem is similar to Theorem of 2.5 of [5].

Theorem 3.7 The association $r(e) \mapsto A_{r(e)}, (r(e), r(f)) \longmapsto A(r(e), r(f))$ where

$$A_{r(e)} = I_e/R = \{\overrightarrow{i} \in \overline{I}/R : (\exists i^* \in E(U)) i^*Re\}$$

with $\overrightarrow{e} = r(e)$ as base point and where the map

$$A(r(e), r(f)) : A_{r(e)} \rightarrow A_{r(f)}$$

is given by $\vec{i}A(r(e), r(f)) = \vec{ie}$, defines a functor $A : E(U)/R \to P$.

Dually, the association, $\ell(e) \mapsto B_{\ell(e)}, (\ell(e), \ell(f)) \mapsto B(\ell(e), \ell(f))$, where $B_{\ell(e)} = \Lambda_e/L = \{\overleftarrow{\lambda} \in \overline{\Lambda}/R : (\exists \lambda' \in E(U)) \ \lambda'Le\} \ with \overleftarrow{e} = \ell(e) \ as \ base \ point, \ and \ where \ the \ map \ B(\ell(e), \ell(f)) : B_{\ell(e)} \to B_{\ell(f)} \ is \ given \ by \ \overleftarrow{\lambda} \ B(\ell(e), \ell(f)) = \overleftarrow{f\lambda} \ defines \ a \ functor \ B : E(U)/L \to P.$

4 Main Theorem

Let us define S^0 -pair for an orthodox semigroup S^0 .

Definition 4.1 Let S^0 be an orthodox semigroup. By an S^0 -pair (A,B) we mean a pair of functors

$$A: E(S^0)/\mathbf{R} \to P, \, B: E(S^0)/\mathbf{L} \to P.$$

Given an S^0 – pair (A, B), $a B \times A matrix over S^0$ is a function

*:
$$(b,a) \longmapsto b * a : \bigcup_{\ell(e) \in E(S^0)/L} B_{\ell(e)} \times \bigcup_{r(f) \in E(S^0)/R} A_{r(f)} \to S^0$$

Definition 4.2 Let (A, B) be an S^0 -pair with a $B \times A$ matrix * over S. By an enrichment $\xi = \xi(A, B)$ of (A, B) relative to * we mean a family of maps

$$A_{b,a}^{x,y}: A_{r(x)} \to A_{r(x.b*a.y)}, \qquad B_{b,a}^{x,y}: B_{\ell(y)} \to B_{\ell(x.b*a.y)}$$

where $x, y \in S^0$, $b \in B_{\ell(x)}$, $a \in A_{r(y)}$, such that

$$(M_1)$$
 $A_{\ell(x),r(y)}^{x,y} = A(r(x),r(xy))$ and $B_{\ell(x),r(y)}^{x,y} = B(\ell(y),\ell(xy)),$

$$(M_2)$$
 if $xRx.b*a.y$ then $A_{b,a}^{x,y} = id$; and if $yLx.b*a.y$ then $B_{b,a}^{x,y} = id$,

$$(M_3) A_{b,a}^{x,y} A_{c B_{b,a}^{x,y},d}^{x.b*a.y,z} = A_{b,a A_{c,d}^{y,z}}^{x,y.c*d.z},$$

$$(M_4) B_{c,d}^{y,z} B_{b,a}^{x,y,c*d,z} = B_{c B_{b,a}^{x,y},d}^{x,b*a,y,z},$$

$$(M_5) x.b*a.y.c B_{b,a}^{x,y}*d.z = x.b*a A_{c,d}^{y,z}.y.c*d.z$$

for all $x, y, z \in S$, $b \in B_{\ell(x)}$, $a \in A_{r(y)}$, $c \in B_{\ell(y)}$, $d \in A_{r(z)}$.

Theorem 4.3 Let S^0 be an orthodox semigroup and let (A, B) be an S^0 -pair. Let * be a $B \times A$ matrix over S^0 satisfying

$$(N_1)$$
 if $b \in B_{\ell(e)}$ and $a \in A_{r(f)}$ then $b * a \in \ell(e).Sr(f)$.
 (N_2) for any $b \in B_{\ell(e)}$, $a \in A_{r(f)}$, $b * r(f)$, $\ell(e) * a \in \ell(e)r(f)$.

Let ξ be an enrichment of (A, B) relative to *. Then the set

$$W = W(S^0; A, B; *; \xi) = \{(a, x, b) : x \in S^0, a \in A_{r(x)}, b \in B_{\ell(x)}\}$$

is a regular semigroup under the multiplication

$$(a, x, b)(c, y, d) = \{aA_{bc}^{x,y}, x.b*c.y, dB_{bc}^{x,y}\}$$

$$(4.1)$$

The map $\eta: S^0 \to W$, $x\eta = (r(x), x \ell(x))$ is an injective homomorphism of S^0 to W. If we identify S^0 with $S^0\eta$, via η , then S^0 is an S^0 -orthodox transversal of S.

Conversely, every regular semigroup with an S^0 -orthodox transversal can be constructed in this way.

Proof. The associativity of the multiplication follows from $(M_3) - (M_5)$. We first prove that η is an injective homomorphism. Clearly η is one-to-one. Since $A_{\ell(x),r(y)}^{x,y}$, $B_{\ell(x),r(y)}^{x,y}$ are base point preserving function by (M_1) , we get

$$x\eta.y\eta = (r(x), x, \ell(x)) (r(y), y, \ell(y))$$

= $(r(xy), xy, \ell(xy))$
= $(xy)\eta$.

Hence η is an injective homomorphism.

Let $(a, x, b) \in W$. Then $x \in S^0$, let $x^* \in V_{S^0(x)}$, by (N_2) and (M_2) ,

$$(a, x, b) (r(x^*), x^*, \ell(x^*)) (a, x, b) = (a, xx^*, \ell(x^*))(a, x, b) = (a, x, b)$$

and

$$\begin{array}{l} (r(x^*), x^*, \ell(x^*)) \, (a, x, b) \, (r(x^*), x^*, \ell(x^*)) \\ &= \, (r(x^*), x^*x, b) (r(x^*), x^*, \ell(x^*)) \\ &= \, (r(x^*), x^*, \ell(x^*)) \end{array}$$

so that $(r(x^*), x^*, \ell(x^*)) \in V_{S^0}((a, x, b))$, since we can identify S^0 with $S^0\eta$, $V_{S^0}((a, x, b)) \neq \phi$.

Moreover, for any
$$(a, x, b) \in W$$
,
 $V_{S^0}((a, x, b)) = \{(r(x^*), x^*, \ell(x^*)) : x^* \in V_{S^0}(x)\}.$

Hence W is a regular semigroup. Now let $(a, x, b) \in W$ and $r(y), y, \ell(y) \in S^0 \eta \cong S^0$. Let $(r(x^*), x^*, \ell(x^*)) \in V_{S^0}((a, x, b))$ and $(r(y^*), y^*, \ell(y^*)) \in V_{S^0}((r(y), y, \ell(y)))$. Then

$$(r(x^*), x^*, \ell(x^*))(r(y^*), y^*, \ell(y^*)) \in V_{S^0}((a, x, b))V_{S^0}((r(y), y, \ell(y)))$$
$$\Rightarrow (r(x^*y^*), x^*y^*, \ell(x^*y^*)) \in V_{S^0}((a, x, b))V_{S^0}((r(y), y, \ell(y))).$$

Consider $(r(y), y, \ell(y))$ $(a, x, b) = (r(yx), yx, bB_{\ell(y),a}^{x,y})$ by (N_2) and M_2 . Next we prove that $(r(x^*y^*), x^*y^*, \ell(x^*y^*)) \in V_{S^0}((r(yx), yx, bB_{\ell(y),a}^{x,y}))$. But this is immediately follows, since S^0 is an orthodox semigroup and by (M_2) and (N_2) .

Therefore, for any $(a, x, b) \in W$, $(r(y), y, \ell(y)) \in S^0 \eta \cong S^0$,

$$V_{S^0}((a,x,b))V_{S^0}((r(y),y,\ell(y))) \subseteq V_{S^0}((r(y),y,\ell(y))(a,x,b)).$$

Hence S^0 is an orthodox transversal.

Note that by (M_2) ,

$$E(W) = \{(a, x, b) \in W : x \cdot (b * a) \cdot x = x\}.$$

Consider the sets

$$I = \{(a, x, b) \in E(W) : (\exists ((r(x_1), x_1, \ell(x_1))) \in E(S^0) (a, x, b) L(r(x_1), x_1, \ell(x_1))\}$$

$$\Lambda = \{(c, y, d) \in E(W) : (\exists ((r(y_1), y_1, \ell(y_1))) \in E(S^0) (c, y, d) R(r(y_1), y_1, \ell(y_1)) \}.$$

Let $(a, x, b), (c, y, d) \in I$. Take $(r(x_1), x_1, \ell(x_1)) \in E(S^0)$ such that $(r(x_1), x_1, \ell(x_1))$ L(a, x, b), then

$$(a, x, b)(c, y, d) = (a, x, b)(r(x_1), x_1, \ell(x_1))(c, y, d)$$

But $(r(x_1), x_1, \ell(x_1)) \in E(S^0)$ by (N_2) . Thus

$$(a, x, b)(c, y, d) = (a, x, b)(r(x_1), x_1, \ell(x_1)) \subseteq IE(S^0) \subseteq I,$$

by Theorem 2.2(iii). Hence I is a band. Similarly, we can prove Λ is a band. So S^0 is a S-orthodox transversal of S. Since S^0 is an orthodox transversal of S, S^0WS^0 is a regular subsemigroup of S. Let $(a, x, b) \in W$, $(r(x_1), x_1, \ell(x_1))$, $(r(x_2), x_2, \ell(x_2)) \in S^0\eta.W.S^0\eta \cong S^0WS^0$, then

$$(r(x_1), x_1, \ell(x_1)) (a, x, b)(r(x_2), x_2, \ell(x_2)) = (r(m), m, \ell(m_1))$$
by (N_2)

where $m = x_1 \cdot \ell(x_1) * a.x.b * r(x_2) \cdot x_2 \in S^0 W S^0$.

Therefore,

$$U = S^{0}WS^{0} = S^{0}\eta.W.S^{0}\eta$$

= $\{(r(m), m, \ell(m)) : m \in S^{0}WS^{0}\}.$

By (N_2) , U is an orthodox transversal of W. Let (A, B) be an U-pair with a $B \times A$ matrix * over U and $\xi = \xi(A, B)$ be an enrichment of A, B relative to *.

Then the set

 $\overline{W} = \overline{W}(U; A, B, *, \xi) = \{((a, x, b) : x \in U, a \in A_{r(x)}, b \in B_{\ell(x)}\}$ is a regular semigroup under the multiplication given by (4.1) and U is an

orthodox transversal of \overline{W} .

Conversely, suppose that S^0 is an S^0 -orthodox transversal of S. Let (A, B) be the S^0SS^0 - pair defined in Theorem 3.7, we define a $B \times A$ matrix * over $S^0SS^0 = U$ as follows. Fix an R- invariant map $\alpha : \overline{I} \to \overline{I}$ so that α is constant on each R- class of \overline{I} . Similarly fix an L- invariant map $\beta : \overline{\Lambda} \to \overline{\Lambda}$ so that β is constant on each each L- class of $\overline{\Lambda}$. For each $\overline{\lambda} \in B_{\ell(e)}$, $\overline{i} \in A_{r(f)}$,

define

$$\overleftarrow{\lambda} * \overrightarrow{i} = (\lambda \beta)(i\alpha).$$

Clearly * is well defined. For, if $\overleftarrow{\lambda}_1 = \overleftarrow{\lambda}_2$, $\overrightarrow{i_1} = \overrightarrow{i_2}$ then $\lambda_1 \beta = \lambda_2 \beta$, $i_1 \alpha = i_2 \alpha$ and so $((\lambda \beta)(i\alpha)) = ((\lambda_2 \beta)(i_2 \alpha))$. We show that * satisfies (N_1) and (N_2) .

$$(N_{1}) \text{ If } \overleftarrow{\lambda} \in B_{\ell(e)}, \overrightarrow{i} \in A_{r(f)}, \text{ then}$$

$$\overleftarrow{\lambda} * \overrightarrow{i} = (\lambda \beta)(i\alpha)$$

$$= e(\lambda \beta)(i\alpha)f \in \ell(e)Ur(f).$$

$$(N_{2}) \text{ If } \overleftarrow{\lambda} \in B_{\ell(e)}, \overrightarrow{i} \in A_{r(f)} \text{ then}$$

$$\overleftarrow{\lambda} * r(f) = (\lambda \beta)(f\alpha)$$

$$= (\lambda \beta)^{*}(\lambda \beta)f(\alpha) \in \ell(e)r(f),$$
since $(\lambda \beta) \in U = S^{0}SS^{0}$. Similarly, $\ell(e) * \overrightarrow{i} \in \ell(e)r(f)$.

For each quadruple $(x, y, \overrightarrow{i}, \overleftarrow{\lambda})$, where $x, y \in U, \overleftarrow{\lambda} \in B_{\ell(x)}, \overrightarrow{i} \in A_{r(y)}$, define

$$A \stackrel{x,y}{\overleftarrow{\lambda}, \overrightarrow{i}} : A_{r(x)} \to A_{r(x.} \stackrel{\longrightarrow}{\overleftarrow{\lambda}} \xrightarrow{i} y)$$
 and
$$B \stackrel{x,y}{\overleftarrow{\lambda}, \overrightarrow{i}} : B_{\ell(y)} \to B_{\ell(x.} \stackrel{\longrightarrow}{\overleftarrow{\lambda}} \xrightarrow{i} y)$$
 by
$$\overrightarrow{w} A \stackrel{x,y}{\overleftarrow{\lambda}, \overrightarrow{i}} = \overrightarrow{wh} \text{ and } \overleftarrow{w} B \stackrel{x,y}{\overleftarrow{\lambda}, \overrightarrow{i}} = \overleftarrow{kw}$$

where $h \in \overline{I}$, $k \in \overline{\Lambda}$ are such that $hRx\lambda iyLk \in S$. These maps are well defined. For, if $\overline{w_1} \in A_{r(x)}$ and $h_1 \in \overline{I}$ are such that $\overline{w} = \overline{w_1}$ and $\overline{h} = \overline{h_1}$ with $hRx\lambda iyLh_1$, then by Lemma 3.6, $wRw_1 \Rightarrow wh = w_1h$. Since $hRh_1 \Rightarrow w_1hRw_2h$, $whRw_1h$, and hence $\overline{wh} = \overline{w_1h_1}$. We show that $\xi = \{A_{\overline{\lambda}, \overline{i}}^{x, y}, B_{\overline{\lambda}, \overline{i}}^{x, y}\}$ is an enrichment of (A, B) relative to *. Clearly (M_1) holds. To verify (M_2) , take any

$$A \stackrel{x,y}{\overleftarrow{\lambda}}_{,i} \xrightarrow{i} : A_{r(x)} \to A_{r(x)} \xrightarrow{} A_{r(x)} \xrightarrow{i}_{.y}$$

with $xRx. \overleftarrow{\lambda} * \overrightarrow{i}.y$, and let $h \in \overline{I}$ be such that $hRx\lambda iy$. Then for any $\overrightarrow{w} \in A_{r(x)}$,

$$\overrightarrow{w}A\overset{x,y}{\overleftarrow{\lambda}}_{,\overrightarrow{i}} = \overrightarrow{wh} = \overrightarrow{w},$$

since by Lemma 3.5, wRwh. Hence $A_{\overleftarrow{\lambda}, \overrightarrow{i}}^{x,y} = id$. Dually, we have $B_{\overleftarrow{\lambda}, \overrightarrow{i}}^{x,y} = id$ whenever $yLx. \overleftarrow{\lambda} * \overrightarrow{i}.y$.

Now let

$$W = W(U, A, B, *, \xi) = \{(\overleftarrow{\lambda}, x, \overrightarrow{i}) : x \in U; \overleftarrow{\lambda} \in A_{r(x)}, \overrightarrow{i} \in B_{\ell(x)}\}$$

and define a multiplication on W by (4.1). Note that ξ satisfies $(M_3)-(M_5)$ if and only if the multiplication on W is associative. We verify $(M_3)-(M_5)$ by establishing the associativity of the multiplication. To this end, define $\gamma: S \to W$ by

$$s\gamma = (\overrightarrow{ss^*}, s^{00}, \overleftarrow{s^*s})$$

where $s^0 \in V_U(s)$ and $s^{00} \in V_U(s^0)$. Then γ is bijective map with inverse $\mu : W \to S$ given by $(\overleftarrow{\lambda}, x, \overrightarrow{i})\mu = \lambda xi$. Multiplication is preserved by γ , since

$$(s\gamma)(t\gamma) = (\overrightarrow{ss^*}, s^{00}, \overleftarrow{s^*s})(\overrightarrow{tt^*}, t^{00}, \overleftarrow{t^*t})$$

$$= (\overrightarrow{ss^*h}, s^{00}. \overleftarrow{s^*s} * \overrightarrow{tt^*}. t^{00}, \overleftarrow{t^*t})$$

$$= (\overrightarrow{ss^*h}, (st)^{00}, \overleftarrow{kt^*t})$$

$$= (st)\gamma,$$

the last step follows, since U is an orthodox transversal and $s^0 \in V_U(s)$, $s^{00} \in V_U(s^0)$, $t^0 \in V_U(t)$, $t^{00} \in V_U(t^0)$, $h \in \overline{I}$, $\overline{k} \in \overline{\Lambda}$ with $h \operatorname{R} s^{00} \cdot (s^* s t t^*) t^{00} \operatorname{L} k$. This implies that the multiplication in W is associative and γ is an isomorphism of regular semigroups. In particular ξ satisfies $(M_3) - (M_4)$ and hence ξ is an enrichment of (A, B) relative to *. Hence by the direct part of the theorem, $\overline{W} = \overline{W}(U; A, B; *, \xi)$ is a regular semigroup with an orthodox transversal $U = S^0 S S^0$. $\cong S^0 \eta.W.S^0 \eta$, since $S \cong W$ and the proof of the theorem is complete.

Lemma 4.4 The maps $\{A_{a,b}^{x,y}, B_{a,b}^{x,y}\}$ in the statement of the Theorem 4.3 are base point preserving maps if and only if $S^0 = S^0 \eta$ is a quasi-ideal of W.

Proof. Suppose that the maps $\{A_{a,b}^{x,y}, B_{a,b}^{x,y}\}$ are base point preserving maps.

Let $(r(x), x, \ell(x)), (r(y), y, \ell(y)) \in S^0$ and $(a, z, b) \in W$. Then

$$(r(x), x, \ell(x))(a, z, b)(r(y), y, \ell(y)) = (r(m), m, \ell(m)) \in S^0(=S^0\eta)$$

where $m = x.\ell(x) * a.x.bB_{\ell(x),a}^{x,z} * r(y).y \in S$. So S^0 is a quasi-ideal of W.

Conversely, assume that S^0 is a quasi-ideal of W. Then

$$(r(x)A_{a,b}^{x,y}, x.a * b.y, \ell(y)B_{a,b}^{x'y})$$

$$= (r(x), x, a)(b, y, \ell(y))$$

$$= (r(e), e, \ell(e))(r(x), x, a)(b, y, \ell(y))(r(f), f, \ell(f)) \text{ by } (M_2) \text{ and } (N_2)$$

$$\in S^0,$$

where $e, f \in E(S^0)$ are such that eRx, fLy.

This implies

$$r(x)A_{a,b}^{x,y} = r(x.a*b.y) \text{ and } \ell(y)B_{a,b}^{x,y} = \ell(x.a*b.y).$$

Hence $A_{a,b}^{x,y}, B_{a,b}^{x,y}$ are base point preserving maps.

Note that when S^0 is a quasi-ideal orthodox transversal of S then $S^0SS^0=S^0$. So S^0 is both an S-orthodox transversal and S^0 -orthodox transversal. The following is the quasi-ideal version of the main theorem.

Theorem 4.5 Let S^0 be an orthodox semigroup and let (A, B) be an S^0 pair. Let * be a $B \times A$ matrix over S satisfying $(N_1), (N_2)$ and the following condition:

$$(N_3)$$
 $(i)e.(b*aA(r(f), r(f')))f' = e.b*a.f'$
 $(ii) e'.(bB(\ell(e), \ell(e')*a)f = e'.b*a.f$

for all $e, e', f, f' \in E(S^0)$ with $\ell(e) \geq \ell(e'), r(f) \geq r(f'), a \in A_{r(f)}, b \in B_{\ell(e)}$. Then

$$W = W(S; A, B, *) = \{(a, x, b) : x \in S^0; a \in A_{r(x)}, b \in B_{\ell(x)}\}\$$

is a regular semigroup under the multiplication

$$(a, x, b)(c, y, d) = (aA(r(x), r(z)), z, dB(\ell(y), \ell(z))$$

where z = x.b * c.y. The map $\eta: S \to W, x\eta = (r(x), x, \ell(x))$ is an injective

homomorphism of S to W. If the identity S with $S\eta$, via η , then S is a quasiideal orthodox transversal of W.

Conversely, every regular semigroup with a quasi-ideal orthodox transversal can be constructed in this way.

Proof. For each quadruple (x, y, b, a), where $x, y \in S, b \in B_{\ell(x)}, a \in A_{r(y)}$, let

$$A_{b,a}^{x,y} = A(r(x), r(x.b*a.y))$$
 and $B_{b,a}^{x,y} = B(\ell(y), \ell(x.b*a.y)).$

Clearly the system $\xi = \xi(A, B) = \{A_{b,a}^{x,y}, B_{b,a}^{x,y}\}$ satisfies (M_1) and (M_2) . Using (N_3) we get

$$\begin{aligned} (x.b*a.y)(c.B_{b,a}^{x,y}*d)z &= (x.b*a.y)(cB(\ell(y),\ell(x.b*a.y))z*d\\ &= x.b*a.y.c*d.z\\ &= x.b*aA(r(y),r(y.c*d.z))(y.c*d.z)\\ &= (x.b*aA_{c,d}^{y,z})(y.c*d.z), \end{aligned}$$

which implies $(M_3) - (M_5)$. Thus ξ is an enrichment of (A, B) relation to *. Then $W = (S^0, A, B; *) = W(S^0; A, B, *, \xi)$ and the direct part of the theorem follows from the direct part of Theorem 4.3 except perhaps the fact that $S(=S\eta)$ is a quasi-ideal of W. But this is immediate from Lemma 4.4, since $A_{b,a}^{x,y}, B_{b,a}^{x,y}$ are base point preserving maps.

Conversely, suppose S^0 is a quasi-ideal orthodox transversal of S. Let (A, B) be an S^0 -pair with a $B \times A$ matrix over S^0 , as in the converse part of Theorem 4.3. Then * satisfies (N_1) and (N_2) . We now show that * also satisfies (N_3) .

Take any $\overleftarrow{\lambda} \in B_{\ell(e)}$, $\overrightarrow{i} \in A_{r(f)}$ and $r(f) \ge r(f')$. Then $\overrightarrow{i} A(r(f), r(f')) = \overrightarrow{if'}$ and,

$$\begin{array}{l} e(\overleftarrow{\lambda}*\overrightarrow{i}A(r(f),r(f')))f'=e(\overleftarrow{\lambda}*\overrightarrow{if'})f'\\ =e((\lambda\beta)(if'\alpha))f'\\ =e((\lambda\beta)(i\alpha))f' \text{ by Lemma 3.3.}\\ =e(\overleftarrow{\lambda}*\overrightarrow{i})f'. \end{array}$$

Hence $(N_3)(i)$ is satisfied. A dual argument proves $(N_3)(ii)$. Hence by the direct part of the theorem, W = W(S; A, B; *) is a regular semigroup containing $S(= S\eta)$ as a quasi-ideal orthodox transversal of W. Finally, as in the proof of Theorem 4.3 the map $\gamma: T \to W$ is an isomorphism of regular semigroups.

References

- [1] T.S. Blyth and R.B. McFadden, Regular semigroups with a multiplicative inverse transversal, *Proc. Roy. Soc. Edinburgh*, **92A**(1982), 253-270.
- [2] Chen Jianfei, On regular semigroups with orthodox transversals, *Comm. Algebra*, **27(9)** (1999), 4275-4288,
- [3] Chen Jianfei and Guo Yuqi, Orthodox transversals of regular semigroups, International J. Algebra and computation, 11(2) (2001), 269-279.
- [4] Ling Yongfa and Chen Jianfei, Some notes on regular semigroups with orthodox transversals, Far East J. Math. Sci., 11(2) (2003), 137-145.
- [5] M.Loganathan and V.M.Chandrasekaran, Regular semigroups with a split map, *Semigroup Forum*, **44** (1992), 199-212.
- [6] Wang Pei and Xiangjun Kong, Regular semigroups with multiplicative orthodox transversals, J. Math. Sci. Adv. Appl., 4(2) (2010), 381-393.
- [7] Xiangjun Kong, Regular semigrops with quasi-ideal orthodox transversals, Semigroup Forum, 74 (2007), 247-258.
- [8] Xiangjun Kong and Wang Pei, Weakly multiplicative orthodox transversals, *Qufu Shifan Daxue Xuebao Ziran Kexue*, **32(4)** (2006), 43-45.
- [9] Xiangjun Kong and Wang Pei, Relationship between the orthodox transversals of a regular semigroup, *Xibei Shifan Daxue Xuebao Ziran Kexue*, **2(2)** (2006), 16-18.
- [10] Xiangjun Kong and Xianzhong Zhao, A new construction for regular semigroups with quasi-ideal orthodox transversals, *J. Aust. Math. Soc.*, **86** (2009), 177-187.

Received: January, 2012