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Abstract

In this paper, a structure theorem is obtained by a permissible dou-
ble (R, A) which is about regular semigroup with inverse transversals.
It improves a structure theorem which is obtained by McAlister and
McFadden about regular semigroup with inverse transversals. Fur-
thermore, we give some properties of regular semigroups with inverse
transversals.
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1 Introduction and preliminaries

In 1982, Blyth and McFadden introduced regular semigroups with inverse
transversals in [4], this type of semigroup has attracted much attention. An
inverse subsemigroup S° of a regular semigroup S is an inverse transversal
if |[V(z)(S° =1 for any x € S, where V(x) denotes the set of inverses of
z. In this case, the unique element of V(x) (S is denoted by z° and (z°)°
is denoted by 2%. An inverse transversal S° of a regular semigroup S is a
Q-inverse transversal if S°SS° C S°. Let S be an regular semigroup with an
inverse transversal S°, and let

R(S)={z € S| 2% =22}, L(S) = {a € S | aa® = a™a"},

I(S) ={e € EB(S) | ec" = e}, A(S) = {f € E(S) | f°f = f},

where E(S) = {x € S | * = x} which is the idempotents of S. A band B is
left [right] reqularif efe = ef [efe = fe] for any e, f € B. A left [right] inverse
semigroup is an orthodox semigroup whose band of idempotents is left [right]
regular. An inverse subsemigroup S° of a regular semigroup S is called a S-
inverse transversal if 1(S) and A(S) are subsemigroups of S. In [1] Tatsuhiko
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Saito first show that R(S) [L(S)] is a subsemigroup of S if and only if 7(5)
[A(S)] is subsemigroup of S. In [5], Tang Xilin shows that I(.S) [A(S)] is left
[right] regular band with an inverse transversal F(S°). This means that, in
the terminology of [2], every inverse transversal of S is a S-inverse transversal.

For convenience, R(S) is denoted by R and L(S) is denoted by L, and
I(S) is denoted by I and A(S) is denoted by A, and the semilattice F(S°) is
denoted by E°. We list several known results which will be frequently used in
this paper without special reference.

Let S be an regular semigroup with an inverse transversal S°. In [6], we
know that

LNR=S° E(R)=1, E(L)=A, INA=E".
If S is a left [right] inverse semigroup, then
R=S[L=S5], I =E(S)[A=E(5)].

If ¢° € E°, then ¢’ = g% for each e € I and f¢° = f%¢° for each f € A. The
regular subsemigroup (E(.S)) generated by the idempotents of S is denoted by
C, and we denote that ((e)) = (F(eCe)) for any e in E(S). Clearly, eCe is
regular, so is {(€)). By [6], we know that C° = C'N S” is an inverse transversal
of C' and

E'=E(C"),E(C) = E(S),

Ic={ecC e’ =e}={ec E(S)|e’ =e}=1,
and
Ae={feC|ff=f={feEW®)|ff=f=A

Let S be a regular semigroup with an inverse transversal S°, for any a € S,
define A\, € Ps (the semigroup of partial mappings of S) as follows:

Aot (aa®) — (a’a), v+ aza.
The composition of A\, and A\, in Pg is denoted by A\ for any a,b € S.

Lemma 1.1 Let S be an regular semigroup with a Q-inverse transversal S°,
then R and L are orthodox semigroups.

Lemma 1.2 Let S be an regular semigroup with an inverse transversal S,
and e = aa’, f = a’a for each a € S. Then )\, is an isomorphism, its inverse is
At () = Led,y — aya’.

In aregular semigroup S with an inverse transversal S, the subsets I, A, R, L
play important roles in studying the nature of this sort of semigroup. In this
paper, a structure theorem is obtained by a permissible double (R, A) which is
about regular semigroup with inverse transversals. It improves a structure the-
orem which is obtained by McAlister and McFadden about regular semigroup
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with inverse transversals. Furthermore, we give some properties of regular
semigroups with inverse transversals.

2 The main results

Theorem 2.1 Let R and L be orthodox semigroups with a common Q-inverse
transversal S°. Suppose that A is a right regular band with an inverse transver-
sal E°. Let A x R — S° described by (e, z) — e*x such that, for any z,y € R
and for any e, f € A,

(1) (exx)y =exxy and f(exx) = fexux;

(2)exxz=ecxifz € E°or e € E.
Define a multiplication on the set R| x |A = {(x,e) € R x A | 2% = €} by
(z,e)(y, f) = (x(exy),[(exy)°(exy)]f). Then R| x |A is a regular semigroup
with a Q-inverse transversal which is isomorphic to S°.

Conversely, every regular semigroup with a ()-inverse transversal can be
constructed in this way.

Proof. We give an outline of the proof.
By using (1) and (2), we can calculate: for any (x,e), (y, f), (z,9) € R| x|A,

[z(ex y)’x(exy) = (exy)’(exy) = {[(exy)’(exy)]f},

[(,e)(y, )]z, 9) = (@(exy) (fx2), {[(exy) (f2)]"(exy) (f2) }g) = (z,€)[(y, f)(2, 9)]
and if r, s € SO, then (r,7%r)(s, s%) = (rs, (rs)'rs).
Let (z,e) € R| x |A, then we have

z(ex 22 = z(e x2°2) = z(e* ) = x(ee’) = we’ = 222 = =

and

(exa)z(ex2®) = (exx’x)(exa”) = (ex'r)(exa”) = e’ (exa?) = €”(exa?) = Pexa® = exa®.

0 0 ,.00,.0

Thus ex2° = 2°. By using this fact, we can prove that (z°, 2°°2) is an inverse
in the set S° x |E® = {(r,7%r) | r € S°} of (z,e).

Thus R| x |A is a regular semigroup containing an inverse subsemigroup
59 x |E® which is isomorphic to S°, and each element of R| x |A has an inverse
in SO x |E°.

Let (r,7%7) be an inverse in S°| x |E° of (z,¢e) € R| x |A. Then we have

(z,e) = (x,e)(r,r'r)(x,e) = (z(e 1)z, {[(e * r)z]°(e * r)x}e)
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and
(r.1%r) = (. 17r) (2, €)(r,17) = (rae 1), (e x ) ra(e x 1)),

Thus we have z = z(e * r)z and r = rz(e * r).
Since
exr=exrx(exr)=(exr)r(exr),

thus e x r = 2.
Since
2% = (exr)r® = ex rr’ = e(rr?),

0

thus 270 ia an idempotent in S°, and so

re = (rz)” = (2°r°)% = 2%°.

Thus we have

2’ =exr=(exr)rr =2 r = rar = rarz(exr) =ra(exr) =r.
Thus S%) x |E° is a Q-inverse transversal of R| x |A.

Conversely, suppose that S is a regular semigroup with a )-inverse transver-
sal S% Let A x R — SY be a mapping given by (e,x) — e *x = ex.
Then the mapping satisfied (1) and (2), and we can constructed a regular
semigroup R| x |[A = {(z,e) € R x A | 2% = €°} under a multiplication
(z,e)(y, f) = (wey, (ey)®eyf). By defining a mapping R| x |[A — S given by
(x,e) — xe, we can prove that R| x |[A ~ S.

Theorem 2.2 Let S be a regular semigroup with an inverse transversal S°,
then Ay = A\, ! for any a € S°.
Proof. For each a € S, by Lemma 1.2, we know
Ao : (a’a™) — (a®a"), x> a®za’.
Aot {(d"a)) — (aa”), y— aya’.

Since
R(S)={xze€ S| 2%r = xoxoo}, L(S)={a€ S| aa’ = aooao}, L(S)NR(S) = SY,

thus aa® = a”a’, a’a = aa for any a € S°.

It is obvious that domM, = (@) = (@) = dom\.', ranl,o =
{a®a®) = (aa®) = ran\;!.
Suppose that x € {(a’a®)), then we have x = x; - - - x,,, where 1, -+ ,x, €
E(a’a®Ca’a™), and x; = aa®x;a’a™ for any i € {1,--- ,n},
2o = a”aa"z,a% - - - aa"z,a"a"a’
aa’a®z ad’a - - - alax,a’
aalaziala - - - alax,a’aa’
0 0 0

= aria’a---a’axr,a’,
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then x = a’axia’a---a’ax,a’a, thus © € {a’a) = (aa®), and x; =

a’a®x;a’a” = a®az;a’a for any i € {1,--- ,n}, where zy,- -+, z, € F(a®aCa’a),

x/\;1 = aa’azia’a- - - dax,a’ad® = aridla - - - alax,ad’,

thus A\ = 2\, ! for any a € S°.
Let S be a regular semigroup with an inverse transversal S°, and let T' =

U e, e =aad®, f=ada, g =100, h =1 for any a,b € S. As the same way
a€sS
in [3], we can define a multiplication on the set T" by A, o Ay = Agp, and Ay

is an isomorphism from {(ab(ab)’)) onto {((ab)®ab)), then we have the following
result:

Theorem 2.3 Let S be a regular semigroup with an inverse transversal S°,
then T is a regular semigroup with a multiplication by A\, o Ay = Agp.

Proof. The operation is well-defined:
For any \,, \p € T, it is obvious that Ay, € T, and x\, = (ab)’z(abd).
The operation is associative:

(>\a o )\b) o )\c = )\ab o )\c = )\abc = )\a o ()\b o )\c)a

we show that T ia a semigroup.
For any A\, € T, there exists A\,0 € T satisfied:

Aa © Ag0 0 Ay = Aga0 © Ag = Aga0q = Aq.
Thus we show that 7' is a regular semigroup.
Then we have the following theorem:

Theorem 2.4 Let S be a regular semigroup with an inverse transversal S°,
and e = aa’, f = a’a for each a € S. Then

(1) (Ao = AF, (LN = el

(2) (eD)Xa = fOIf, (AfIN;' = eAel.

Proof. (1) For any m,n € eAe®, there exist s,t € A, such that m = ese®, n =

etel.

Then

m? = ese’ese’ = ese’se’ = ese’ = m, mn = eseete’ = ese’te’ = este” € eAe’.
Thus eAe® is a band.
Since eAe’ = eAe’e C E(eCe) C ((e), thus eAe” is a subband of {e)).
Similarly, f°If is a subband of (f).
For any x € A,

(exe®) Ny = (aa’za™a’) N\, = a®ra™a’a = a"za™f,
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and
(a’2a™)’aza™ = a°2°a™a"2a” = a°2°2a™ = a’za™ € A,
then we have (exe)\, € Af, thus (eAe’)\, C Af.

Conversely, for any y € A, we know that
yf = ya'a = a®a”ya’a = a’ea®ya’c’a,

and
(@®ya®)°a®ya® = a®%a®aPya’ = aPylya® = a®ya® € A,
then we have yf = (ea®ya’e®)\, € (eAe®)\,, thus Af C (eAe®)\,.
We obtain that (eAe®)\, = Af. Similarly, we can show that (f°If)\;! =
el.

(2) For any g € I, we have
(eg) e = a'ega = a’ga = a"a™a’ga = a°a™a’ga™a’a = f°a’gaf,

and
ga®(@°ga®)’ = ®9a®a’g%a® = gg%a® = a®ga® € I.
Thus we obtain that (el)\, C f°If.

Conversely, for any h € I, we have
fOhf = a®a®ha’a = a’ea®had’a,
and
a®ha®(a®ha®)’ = a®ha®a®h0a® = PRk = a®hd® € I,
so fOhf = (ea®ha’)\, € (eI)\,, we obtain that fOIf C (el)\,.
Thus (el)\, = f°If. Similarly, we can show that (Af)\;! = eAe’.
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