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Özcan Bektaş

Department of Mathematics, Arts and Science Faculty

Rize University, Rize-Turkey

ozcanbektas1986@hotmail.com
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Abstract

The first aim of this paper is to define the dual timelike - spacelike
Mannheim partner curves in Dual Lorentzian Space ID3

1, the second aim
of this paper is to obtain the relationships between the curvatures and
the torsions of the dual timelike - spacelike Mannheim partner curves
with respect to each other and the final aim of this paper is to get
the necessary and sufficient conditions for the dual timelike -spacelike
Mannheim partner curves in ID3

1 .

Mathematics Subject Classification: 53B30, 51M30, 53A35, 53A04

Keywords: Mannheim curves, dual Lorentzian Space, curvature, torsion

1 INTRODUCTION

As is well-known, a surface is said to be “ruled” if it is generated by moving a

straight line continuously in Euclidean space (O’Neill, 1997). Ruled surfaces
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are one of the simplest objects in geometric modeling. One important fact

about ruled surfaces is that they can be generated by straight lines. A practical

application of this type surfaces is that they are used in civil engineering and

physics (Guan et al., 1997).

Since building materials such as wood are straight, they can be considered

as straight lines. The results is that if engineers are planning to construct

something with curvature, they can use a ruled surface since all the lines are

straight (Orbay et al., 2009).

In the differential geometry of a regular curve in the Euclidean 3 - space

IE3, it is well-known that one of the important problem is the characterization

of a regular curve. The curvature functions k1 and k2 of a reguler curve play

an important role to determine the shape and size of the curve (Kuhnel, 1999;

Do Carmo and M.P, 1976). For example, If k1 = k2 = 0, the curve is geodesic.

If k1 �= 0 (constant)and k2 = 0, then the curve is a circle with radius 1/k1. If

k1 �= 0 (constant)and k2 �= 0(constant), then the curve is a helix in the space.

Another way to classification and characterization of curves is the rela-

tionship between the Frenet vectors of the curves. For example Saint Venant

proposed the question whether upon the surfaces generated by the principal

normal of a curve, a second curve can exist which has for its principal nor-

mal the principal normal of the given curve. This question was answered by

Bertrand in 1850; he showed that a necessary and sufficient condition for the

existence of such a second curve is that a linear relationship with constant

coefficients exists between the first and second curvatures of the given original

curve. The pairs of curves of this kind have been called Conjugate Bertrand

curves, or more commonly Bertrand Curves. There are many works related

with Bertrand curves in the Euclidean space and Minkowski space. Another

kind of associated curves are called Mannheim curve and Mannheim partner

curve. If there exists a corresponding relationship between the space curves α

and β such that, at the corresponding points of the curves, principal normal

lines of α coincides with the binormal lines of β, then α is called a Mannheim

curve, and β Mannheim partner curve of α.

In recent studies, Liu and Wang (2007,2008) are curious about the Mannheim

curves in both Euclidean and Minkowski 3- space and they obtained the nec-

essary and sufficient conditions between the curvature and the torsion for a

curve to be the Mannheim partner curves. Meanwhile, the detailed discussion
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concerned with the Mannheim curves can be found in literature (Wang and

Liu, 2007; Liu and Wang, 2008; Orbay and et al., 2009; Özkaldı et al., 2009;

Azak, 2009) and references therein.

Dual numbers had been introduced by W.K. Clifford (1849 - 1879) as a

tool for his geometrical investigations. After him E. Study used dual numbers

and dual vectors in his research on line geometry and kinematics. He devoted

special attention to the representation of oriented lines by dual unit vectors

and defined the famous mapping: The set of oriented lines in an Euclidean

three – dimension space IE3 is one to one correspondence with the points of

a dual space ID3 of triples of dual numbers.

In this paper, we study the dual timelike - spacelike Mannheim partner

curves in dual Lorentzian space ID3
1.

2 PRELIMINARY

By a dual number A, we mean an ordered pair of the form (a, a∗) for all

a, a∗ ∈ IR. Let the set IR× IR be denoted as ID. Two inner operations and

an equality on ID = {(a, a∗) |a, a∗ ∈ IR} are defined as follows:

(i)⊕ : ID × ID → ID, A⊕B = (a, a∗)⊕ (b, b∗) = (a + b, a∗ + b∗) is called

the addition in ID,

(ii)� : ID × ID → ID. A �B = (a, a∗) � (b, b∗) = (ab, ab∗ + a∗b)is called

the multiplication in ID,

(iii) A = B iff a = b, a∗ = b∗.

If the operations of addition, multiplication and equality on ID = IR×IR

with set of real numbers IRare defined as above, the set ID is called the

dual numbers system and the element (a, a∗) of ID is called a dual number.

In a dual number A = (a, a∗) ∈ ID, the real number a is called the real

part of A and the real number a∗ is called the dual part of A The dual number

1 = (1, 0) is called the unit element of multiplication operation ID with respect

to multiplication and denoted by ε. In accordance with the definition of the

operation of multiplication, it can be easily seen that ε2 = 0. Also, the dual

number A = (a, a∗) ∈ ID can be written as A = a + εa∗.

The set ID = {A = a + ε∗a|a, a∗ ∈ IR} of dual numbers is a commutative

ring according to the operations,

i) (a + εa∗) + (b + εb∗) = (a + b) + ε(a∗ + b∗)
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ii)(a + εa∗)(b + εb∗) = ab + ε(ab∗ + ba∗).

The dual number A = a + εa∗ divided by the dual number B = b + εb∗

provided b �= 0 can be defined as
A
B

= a+εa∗
b+εb∗ = a

b
+ εa∗b−ab∗

b2
.

Now let us consider the differentiable dual function. If the dual function f

expansions the Taylor series then we have

f(a + εa∗) = f(a) + εa∗f ′(a)

where f ′(a) is the derivation of f . Thus we can obtain

sin(a + εa∗) = sina + εa∗cosa

cos(a + εa∗) = cosa − εa∗sina

The set of ID3 = {−→A | −→
A = −→a + ε

−→
a∗ ,−→a ,

−→
a∗ ∈ IR3} is a module on the

ring ID. For any
−→
A = −→a + ε

−→
a∗ ,

−→
B =

−→
b + ε

−→
b∗ ∈ ID3, the scalar or inner

product and the vector product of
−→
A and

−→
B are defined by, respectively,

〈−→A ,
−→
B 〉 = 〈−→a ,

−→
b 〉 + ε(〈−→a ,

−→
b∗ 〉 + 〈−→a∗ ,

−→
b 〉),−→

A ∧ −→
B = −→a ∧−→

b + ε(−→a ∧−→
b∗ +

−→
a∗ ∧−→

b ).

If −→a �= 0, the norm ‖−→A ‖ of
−→
A = −→a + ε

−→
a∗ is defined by∥∥∥−→A ∥∥∥ =

√∣∣∣〈−→A ,
−→
A

〉∣∣∣ = ‖−→a ‖ + ε 〈−→a ,−→a ∗〉
‖−→a ‖ , ‖−→a ‖ �= 0.

A dual vector
−→
A with norm 1 is called a dual unit vector. The set

S2 = {−→A = −→a + ε
−→
a∗ ∈ ID3|‖−→A ‖ = (1, 0),−→a ,

−→
a∗ ∈ IR3}

is called the dual unit sphere with the center
−→
O in ID3.

Let α(t) = (α1(t), α2(t), α3(t)) and β(t) = (β1(t), β2(t), β3(t)) be real valued

curves in IE3. Then α̃(t) = α(t) + εα∗(t) is a curve in ID3 and it is called

dual space curve. If the real valued functions αi(t) and α∗
i (t) are differentiable

then the dual space curve α̃(t) is differentiable in ID3. The real part α(t) of

the dual space curve α̃ = α̃(t) is called indicatrix. The dual arc-length of real

dual space curve α̃(t) from t1 to t is defined by

s̃ =
∫ t

t1
‖−→̃α′ (t)‖dt =

∫ t

t1
‖−→α′ (t)‖dt + ε =

∫ t

t1
〈−→t , (

−→
α∗(t))

′〉dt = s + εs∗

−→
t is unit tangent vector of the indicatrix α(t) which is a real space curve

in IE3. From now on we will take the arc length s of
−−→
α(t) as the parameter

instead of t

The Lorentzian inner product of dual vectors
−→
A ,

−→
B ∈ ID3 is defined by

〈−→A ,
−→
B 〉 = 〈−→a ,

−→
b 〉 + ε(〈−→a ,

−→
b∗ 〉 + 〈−→a∗ ,

−→
b 〉)

with the Lorentzian inner product −→a = (a1, a2, a3) and
−→
b = (b1, b2, b3) ∈ IR3

〈−→a ,
−→
b 〉 = −a1b1 + a2b2 + a3b3.
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Thus, ID3, 〈, 〉 is called the dual Lorentzian space and denoted by ID3. We

call the elements of ID3 as the dual vectors. For
−→
A �= −→

0 . the norm ‖−→A ‖
of

−→
A is defined by

∥∥∥−→A ∥∥∥ =

√∣∣∣〈−→A ,
−→
A

〉∣∣∣ . The dual vector
−→
A = −→a + ε

−→
a∗ is

called dual spacelike vector if
〈−→

A ,
−→
A

〉
> 0 or

−→
A = 0, dual timelike vector

if
〈−→

A ,
−→
A

〉
< 0 , dual lightlike vector if

〈−→
A ,

−→
A

〉
= 0 for

−→
A �= 0. The dual

Lorentzian cross-product of
−→
A ,

−→
B ∈ ID3 is defined by−→

A ∧ −→
B = −→a ∧−→

b + ε
(−→a ∧−→

b ∗ + −→a ∗ ∧−→
b

)
where −→a ∧ −→

b = (a3b2 − a2b3, a1b3 − a3b1, a1b2 − a2b1) −→a ,
−→
b ∈ IR3i s the

Lorentzian cross product.

Dual number Φ = θ+εθ∗ is called dual angle between
−→
A ve

−→
B unit dual

vectors. Then we was

sinh (θ + εθ∗) = sinh θ + εθ∗ cosh θ

cosh (θ + εθ∗) = cosh θ + εθ∗ sinh θ.

Let {T (s) , N (s) , B (s)}be the moving Frenet frame along the curve α̃ (s).

Then T (s),N (s) and B (s) are dual tangent, the dual principal normal and

the dual binormal vector of the curve α̃ (s), respectively. Depending on the

casual character of the curve α̃, we have the following dual Frenet formulas:

If α̃ is a dual timelike curve ;

⎛⎜⎝ T ′

N ′

B′

⎞⎟⎠ =

⎛⎜⎝ 0 κ 0

κ 0 τ

0 −τ 0

⎞⎟⎠
⎛⎜⎝ T

N

B

⎞⎟⎠ (2.1)

where 〈T, T 〉 = −1, 〈N, N〉 = 〈B, B〉 = 1, 〈T, N〉 = 〈N, B〉 = 〈T, B〉 = 0.

We denote by {V1 (s) , V2 (s) , V3 (s)} the moving Frenet frame along the curve

β̃ (s). Then V1 (s) , V2 (s) and V3 (s) are dual tangent, the dual principal normal

and the dual binormal vector of the curve β̃ (s), respectively. Depending on

the casual character of the curve β̃, we have the following dual Frenet – Serret

formulas:

If β̃ is a dual spacelike curve with a dual timelike binormal V3;

⎛⎜⎝ V
′
1

V ′
2

V
′
3

⎞⎟⎠ =

⎛⎜⎝ 0 P 0

−P 0 Q

0 Q 0

⎞⎟⎠
⎛⎜⎝ V1

V2

V3

⎞⎟⎠ (2.2)
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where 〈T, T 〉 = 〈N, N〉 = 1, 〈B, B〉 = −1, 〈T, N〉 = 〈N, B〉 = 〈T, B〉 = 0.

If the curves are unit speed curve, then curvature and torsion calculated by,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

κ = ‖T ′‖ ,

τ =
〈
N

′
, B

〉
,

P =
∥∥V

′
1

∥∥ ,

Q =
〈
V

′
2 , V3

〉
.

(2.3)

If the curves are not unit speed curve, then curvature and torsion calculated

by,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
κ =

����α′∧�α′′���
‖�α′‖3 , τ =

det
��α′

,�α′′
,�α′′′�

‖�α′∧�α′′‖2 ,

P = ‖�β′∧�β′′‖
‖�β′‖3

, Q =
det

��β′
,�β′′

,�β′′′�

‖�β′∧�α′′‖2

(2.4)

Definition 2.1. a) Dual Hyperbolic angle: Let
−→
A and

−→
B be dual time-

like vectors in ID3
1. Then the dual angle between

−→
A and

−→
B is defined by〈−→

A ,
−→
B

〉
= −

∥∥∥−→A ∥∥∥ ∥∥∥−→B ∥∥∥ cosh Φ. The dual number Φ = θ + εθ∗ is called the

dual hyberbolic angle.

b) Dual Central angle: Let
−→
A and

−→
B be spacelike vectors inID3

1 that span

a dual timelike vector subspace. Then the dual angle between
−→
A and

−→
B is

defined by
〈−→

A ,
−→
B

〉
=

∥∥∥−→A ∥∥∥ ∥∥∥−→B ∥∥∥ cosh Φ. The dual number Φ = θ + εθ∗ is

called the dual central angle.

c) Dual Spacelike angle: Let
−→
A and

−→
B be dual spacelike vectors inID3

1 that

span a dual spacelike vector subspace. Then the dual angle between
−→
A and−→

B is defined by
〈−→

A ,
−→
B

〉
=

∥∥∥−→A ∥∥∥ ∥∥∥−→B ∥∥∥ cos Φ. The dual number Φ = θ + εθ∗

is called the dual spacelike angle.

d) Dual Lorentzian timelike angle: Let
−→
A be a dual spacelike vector and−→

B be a dual timelike vector in ID3
1. Then the dual angle between

−→
A and

−→
B

is defined by
〈−→

A ,
−→
B

〉
=

∥∥∥−→A ∥∥∥ ∥∥∥−→B ∥∥∥ sinhΦ. The dual number Φ = θ + εθ∗ is

called the dual Lorentzian timelike angle.
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3 DUAL TIMELIKE - SPACELIKE MANNHEIM

PARTNER CURVE IN ID3
1

In this section, we define dual timelike - spacelike Mannheim partner curves in

ID3
1 and we give some characterization for dual timelike - spacelike Mannheim

partner curves in the same space. Using these relationships, we will comment

again Shell’s and Mannheim’s theorems.

Definition 3.1. Let α̃ : I → ID3
1, α̃ (s) = α (s) + εα∗ (s) be a dual timelike

curve and

β̃ : I → ID3
1,β̃ (s) = β (s) + εβ∗ (s) be dual spacelike with timelike binormal.

If there exists a corresponding relationship between the dual timelike curve α̃

and the dual spacelike curve with dual timelike binormal β̃ such that, at the

corresponding points of the curves, the dual binormal lines of α̃ coincides with

the dual principal normal lines of β̃, then α̃ is called a dual timelike Mannheim

curve, and β̃ is called a dual Mannheim partner curve of α̃. The pair
{

α̃, β̃
}

is

said to be dual timelike - spacelike Mannheim pair. Let {T, N, B} be the dual

Frenet frame field along α̃ = α̃ (s) and let {V1, V2, V3} be the Frenet frame field

along β̃ = β̃ (s). On the way Φ = θ + εθ∗ is dual angle between T and V1 ,

there is an following equations between the Frenet vectors and their derivative;

⎛⎜⎝ V
′
1

V
′
2

V
′
3

⎞⎟⎠ =

⎛⎜⎝ sinhΦ cosh Φ 0

0 0 1

cosh Φ sinhΦ 0

⎞⎟⎠
⎛⎜⎝ T

N

B

⎞⎟⎠ . (3.1)

Theorem 3.1. The distance between corresponding dual points of the dual

timelike - spacelike Mannheim partner curves in ID3
1 is constant.

Proof: From the definition of dual spacelike Mannheim curve, we can write

β̃(s∗) = α̃(s) + λ (s)B (s) (3.2)

By taking the derivate of this equation with respect to s and applying the

Frenet formulas, we get

V1
ds∗

ds
= T − λτN + λ′B (3.3)
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where the superscript (′) denotes the derivative with respect to the arc length

parameter s of the dual curve α̃(s). Since the dual vectors B and V2 are

linearly, we get〈
V1

ds∗
ds

, B
〉

= 〈T, B〉 − λτ 〈N, B〉 + λ′ 〈B, B〉 and λ′ = 0

If we take λ = λ1 + ελ∗
1, we get λ′

1 = 0 ve λ∗′
1 = 0 . From here, we can write

λ1 = c1 and λ∗
1 = c2, c1, c2 = cons.

Then we get λ = c1 + εc2. On the other hand, from the definition of distance

function between α̃(s) and β̃(s) we can write

d
(
α̃(s), β̃(s)

)
=

∥∥∥β̃(s) − α̃(s)
∥∥∥ = |λ1| ∓ ελ∗

1 = |c1| ∓ εc2

This is completed the proof.

Theorem 3.2. For a dual timelike - spacelike curve α̃ in ID3
1, there is a dual

spacelike curve β̃ so that
{
α̃, β̃

}
is a dual spacelike Mannheim pair.

Proof: Since the dual vectors V2 and B are linearly dependent, the equation

(3.2) can be written as

α̃ = β̃ − λV2 (3.4)

Since λ is a nonzero constant, there is a dual timelike curve β̃ for all values of

λ.

Now, we can give the following theorem related to curvature and torsion of

the dual timelike - spacelike Mannheim partner curves.

Theorem 3.3. Let
{

α̃, β̃
}

be a dual timelike - spacelike Mannheim pair in

ID3
1. If τ is dual torsion of α̃ and P is dual curvature and Q is dual torsion

of β̃ , then

τ = − P

λQ
(3.5)

Proof: By taking the derivate of equation (3.3) with respect to s and applying

the Frenet formulas, we obtain

V1
ds∗

ds
= T − λτN (3.6)

Let Φ = θ + εθ∗ be dual angle between the dual tangent vectors T and V1,

we can write
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{
V1 = sinhΦ T + cosh Φ N

V3 = cosh Φ T + sinh Φ N
(3.7)

From (3.6) and (3.7) , we get

ds∗

ds
=

1

sinh Φ
, −λτ = cosh Φ

ds∗

ds
(3.8)

By taking the derivate of equation (3.4) with respect to s and applying the

Frenet formulas, we obtain

T = (1 + λP )V1
ds∗

ds
− λQV3

ds∗

ds
(3.9)

From equation (3.7) we can write

{
T = − sinh Φ V1 + cosh Φ V3

N = cosh Φ V1 − sinh Φ V3

(3.10)

where Φ is the dual angle between T and V1 at the corresponding points of

the dual curves of α̃ and β̃ . By taking into consideration equations (3.9) and

(3.10), we get

sinhΦ = − (1 + λP )
ds∗

ds
, cosh Φ = −λQ

ds∗

ds
(3.11)

Substituting ds∗
ds

into (3.11) , we get

sinh2 Φ = − (1 + λP ) , cosh2 Φ = λ2τQ (3.12)

From the last equation, we can write

τ = − P
λQ

If the last equation is seperated into the dual and real parts, we can obtain

{
k2 = − p

cq

k∗
2 = pq∗−p∗q

cq2

(3.13)
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Corollary 3.1. Let
{

α̃, β̃
}

be a dual timelike - spacelike Mannheim pair in

ID3
1. Then, the dual product of torsions τ and Q at the corresponding points

of the dual spacelike Mannheim partner curves is not constant.

Namely, Schell’s theorem is invalid for the dual timelike - spacelike Mannheim

curves. By considering Theorem 3.3 we can give the following results.

Corollary 3.2. Let
{

α̃, β̃
}

be a dual timelike - spacelike Mannheim pair in

ID3
1. Then, torsions τ and Q has a negative sign.

Theorem 3.4. Let
{
α̃, β̃

}
be a dual timelike - spacelike Mannheim pair in

ID3
1. Between the curvature and the torsion of the dual spacelike curve β̃ ,

there is the relationship

μQ − λP = 1 (3.14)

where μ andλ are nonzero dual numbers.

Proof: From equation (3.11), we obtain
sinhΦ
1+λP

= cosh Φ
λQ

,

arranging this equation, we get

tanhΦ = 1+λP
λQ

,

and if we choose μ = λ tanh Φ for brevity, we see that

μQ − λP = 1.

Theorem 3.5. Let
{

α̃, β̃
}

be a dual timelike - spacelike Mannheim pair in

ID3
1. There are the following equations for the curvatures and the torsions of

the curves α̃ ve β̃

i)κ = −dΦ
ds

,

ii)τ = P cosh Φds∗
ds

− Q sinh Φds∗
ds

,

iii)P = τ cosh Φ ds
ds∗ ,

iv)Q = τ sinh Φ ds
ds∗ .

Proof: i)By considering equation (3.7), we can easily that 〈T, V1〉 = cos Φ.

Differentiating of this equality with respect to s by considering equation (2.1)

, we have

〈T ′, V1〉 +
〈
T, V

′
1

〉
= − sinhΦdΦ

ds
,

from equations (2.1) and (2.2), we can write

〈κN, V1〉 +
〈
T, PV2

ds∗
ds

〉
= − sinh ΦdΦ

ds
,

from equations (3.10), we get

κ = −dΦ
ds

.
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If the last equation is seperated into the dual and real part, we can obtain

ii) By considering equation (3.7), we can easily that 〈N, V2〉 = 0. Differenti-

ating of this equality with respect to s and by considering equation (2.1) , we

have

〈N ′, V2〉 +
〈
N, V

′
2

ds∗
ds

〉
= 0,

From equations (2.1) and (2.2), we can write

〈κT + τB, V2〉 +
〈
cosh Φ V1 − sinh Φ V3, (−PV1 + QV3)

ds∗
ds

〉
= 0,

From equations (3.10), we get

τ = P cosh Φds∗
ds

− Q sinhΦds∗
ds

,

iii) By considering equation (3.7), we can easily that 〈B, V1〉 = 0. Differenti-

ating of this equality with respect to s and by considering equation (2.1) , we

have

〈B′, V1〉 +
〈
B, V

′
1

ds∗
ds

〉
= 0,

From equations (2.1), (2.2) and (3.10) we can write

〈−τ (cosh Φ V1 − sinh Φ V3) , V1〉 +
〈
B, PV2

ds∗
ds

〉
= 0,

P = τ cosh Φ ds
ds∗ ,

iv) By considering equation (3.7), we can easily that 〈B, V3〉 = 0. Differenti-

ating of this equality with respect to s by considering equation (2.1) , we have

〈B′, V3〉 +
〈
B, V

′
3

ds∗
ds

〉
= 0,

From equations (2.1), (2.2) and (3.10) we can write

〈−τ (cosh Φ V1 − sinh Φ V3) , V3〉 +
〈
B, QV2

ds∗
ds

〉
= 0,

Q = τ sinh Φ ds
ds∗ .

Corollary 3.3. Let
{

α̃, β̃
}

be a dual timelike - spacelike Mannheim pair in

ID3
1. If the statements of Theorem 3.5 is seperated into the dual and real part,

we can obtain

i)

{
k2 = p cosh θ ds∗

ds
− q sinh θ ds∗

ds

k∗
2 = (p∗ cosh θ + pθ∗ sinh θ) ds∗

ds
− (q∗ sinh θ + qθ∗ cosh θ) ds∗

ds

ii)

{
p = k2 cosh θ ds

ds∗

p∗ = (k∗
2 cosh θ + k2θ

∗ sinh θ) ds
ds∗ ,

iii)

{
q = k2 sinh θ ds

ds∗

q∗ = (k∗
2 sinh θ + k2θ

∗ cosh θ) ds
ds∗ .

By considering the statements iii) and iv) of Theorem 2.5 we can give the

following results.

Corollary 3.4. Let
{

α̃, β̃
}

be a dual timelike - spacelike Mannheim pair in

ID3
1. Then there exist the following relation between curvature and torsion of
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β̃ and torsion of α̃;

P 2 − Q2 = τ 2

(
ds

ds∗

)2

(3.15)

Theorem 3.6. A dual timelike space curve in ID3
1 is a dual timelike - spacelike

Mannheim curve if and only if its curvature P and torsion Q satisfy the formula

λ
(
Q2 − P 2

)
= P (3.16)

where λ is never pure dual constant.

Proof: By taking the derivate of the statement α̃ = β̃ − λV2 with respect to

s and applying the Frenet formulas we obtain

T ds
ds∗ = V1 + λ (PV1 − QV3),

κN
(

ds
ds∗2

)
+ T d2s

ds∗2 = PV2 + λ (P ′V1 − Q′V3 + (P 2 − Q2) V2)

Taking the inner product the last equation with B, we get

λ (Q2 − P 2) = P .

If the last equation is seperated into the dual and real part, we can obtain

{
p = λ (q2 − p2)

p∗ = 2λ (qq∗ − pp∗)
(3.17)

where λ = c1 + εc2 .

Theorem 3.7. Let
{
α̃, β̃

}
be a dual timelike - spacelike Mannheim partner

curves in ID3
1. Moreover, the dual points α̃ (s), β̃ (s) be two corresponding

dual points of
{

α̃, β̃
}

and M ve M∗ be the curvature centers at these points,

respectively. Then, the ratio

∥∥∥β̃ (s) M
∥∥∥

‖α̃ (s) M‖ :

∥∥∥β̃ (s)M∗
∥∥∥

‖α̃ (s)M∗‖ = (1 + κP ) (1 + λP ) �= constant. (3.18)

Proof: A circle that lies in the dual osculating plane of the point α̃ (s) on the

dual timelike curve α̃ and that has the centre M = α̃ (s) + 1
κ
N lying on the

dual principal normal N of the point α̃ (s) and the radius 1
κ

far from α̃ (s),
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is called dual osculating circle of the dual curve α̃ in the point α̃ (s). Similar

definition can be given fort he dual curve β̃ too.

Then, we can write

‖α̃ (s)M‖ =
∥∥ 1

κ
N

∥∥ = 1
κ
,

‖α̃ (s)M∗‖ =
∥∥λB + 1

P
V2

∥∥ = 1
P

+ λ,∥∥∥β̃ (s) M∗
∥∥∥ =

∥∥ 1
P
V2

∥∥ = 1
P
,∥∥∥β̃ (s) M

∥∥∥ =
∥∥λV3 + 1

κ
N

∥∥ = 1
κ

+ λ

Therefore, we obtain
‖�β(s)M‖
‖�α(s)M‖ :

‖�β(s)M∗‖
‖�α(s)M∗‖ = (1 + λP )

√
1 − λ2κ2 �= cons.

Thus, we can give the following

Corollary 3.5. Mannheim’s Theorem is invalid for the dual timelike - space-

like Mannheim partner curve
{
α̃, β̃

}
in ID3

1.
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