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Abstract

The first aim of this paper is to define the dual timelike - spacelike
Mannheim partner curves in Dual Lorentzian Space I D3, the second aim
of this paper is to obtain the relationships between the curvatures and
the torsions of the dual timelike - spacelike Mannheim partner curves
with respect to each other and the final aim of this paper is to get
the necessary and sufficient conditions for the dual timelike -spacelike

Mannheim partner curves in I D{’ .
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1 INTRODUCTION

As is well-known, a surface is said to be “ruled” if it is generated by moving a

straight line continuously in Euclidean space (O’Neill, 1997). Ruled surfaces
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are one of the simplest objects in geometric modeling. One important fact
about ruled surfaces is that they can be generated by straight lines. A practical
application of this type surfaces is that they are used in civil engineering and
physics (Guan et al., 1997).

Since building materials such as wood are straight, they can be considered
as straight lines. The results is that if engineers are planning to construct
something with curvature, they can use a ruled surface since all the lines are
straight (Orbay et al., 2009).

In the differential geometry of a regular curve in the Euclidean 3 - space
IE3, it is well-known that one of the important problem is the characterization
of a regular curve. The curvature functions k; and ks of a reguler curve play
an important role to determine the shape and size of the curve (Kuhnel, 1999;
Do Carmo and M.P, 1976). For example, If k; = ko = 0, the curve is geodesic.
If k1 # 0 (constant)and ke = 0, then the curve is a circle with radius 1/k;. If

k1 # 0 (constant)and ko # 0(constant), then the curve is a helix in the space.

Another way to classification and characterization of curves is the rela-
tionship between the Frenet vectors of the curves. For example Saint Venant
proposed the question whether upon the surfaces generated by the principal
normal of a curve, a second curve can exist which has for its principal nor-
mal the principal normal of the given curve. This question was answered by
Bertrand in 1850; he showed that a necessary and sufficient condition for the
existence of such a second curve is that a linear relationship with constant
coefficients exists between the first and second curvatures of the given original
curve. The pairs of curves of this kind have been called Conjugate Bertrand
curves, or more commonly Bertrand Curves. There are many works related
with Bertrand curves in the Euclidean space and Minkowski space. Another
kind of associated curves are called Mannheim curve and Mannheim partner
curve. If there exists a corresponding relationship between the space curves «
and [ such that, at the corresponding points of the curves, principal normal
lines of a coincides with the binormal lines of 3, then « is called a Mannheim

curve, and  Mannheim partner curve of a.

In recent studies, Liu and Wang (2007,2008) are curious about the Mannheim
curves in both Euclidean and Minkowski 3- space and they obtained the nec-
essary and sufficient conditions between the curvature and the torsion for a

curve to be the Mannheim partner curves. Meanwhile, the detailed discussion
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concerned with the Mannheim curves can be found in literature (Wang and
Liu, 2007; Liu and Wang, 2008; Orbay and et al., 2009; Ozkaldz et al., 2009;
Azak, 2009) and references therein.

Dual numbers had been introduced by W.K. Clifford (1849 - 1879) as a
tool for his geometrical investigations. After him E. Study used dual numbers
and dual vectors in his research on line geometry and kinematics. He devoted
special attention to the representation of oriented lines by dual unit vectors
and defined the famous mapping: The set of oriented lines in an Euclidean
three — dimension space I E? is one to one correspondence with the points of
a dual space ID? of triples of dual numbers.

In this paper, we study the dual timelike - spacelike Mannheim partner

curves in dual Lorentzian space ID5.

2 PRELIMINARY

By a dual number A, we mean an ordered pair of the form (a,a*) for all
a,a* € IR. Let the set IR x IR be denoted as I D. Two inner operations and
an equality on ID = {(a,a*)|a,a* € IR} are defined as follows:

(1)®:IDXID—ID, A® B = (a,a*) ® (b,b*) = (a + b, a* + b*) is called
the addition in I D,

(1) ©:IDxID — ID. A® B = (a,a*) ® (b,b*) = (ab, ab* + a*b)is called
the multiplication in I D,

(1i1) A= B iff a = b, a* = b".

If the operations of addition, multiplication and equality on ID = IR x IR
with set of real numbers I Rare defined as above, the set ID is called the
dual numbers system and the element (a,a*) of ID is called a dual number.
In a dual number A = (a,a*) € ID, the real number a is called the real
part of A and the real number a* is called the dual part of A The dual number
1 = (1,0) is called the unit element of multiplication operation I D with respect
to multiplication and denoted by . In accordance with the definition of the
operation of multiplication, it can be easily seen that 2 = 0. Also, the dual
number A = (a,a*) € ID can be written as A = a + ca*.

The set ID = {A = a+ c*ala,a* € IR} of dual numbers is a commutative
ring according to the operations,

i) (a +ea*) + (b+¢eb*) = (a+b) +e(a* + b%)
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ii)(a + ea*)(b+ eb*) = ab+ (ab* + ba*).
The dual number A = a + ea™ divided by the dual number B = b + &b*

provided b # 0 can be defined as
A _ atead* __ a _}_eabab'

B~ bteb
Now lerrt us COHSlder the differentiable dual function. If the dual function f
expansions the Taylor series then we have
fla+ea’) = f(a) +ea” f'(a)
where f’(a) is the derivation of f. Thus we can obtain
sin(a + ea*) = sina + ea*cosa
cos(a + ea*) = cosa — ol *sina
The set of ID3 = {A|
ring I D. For any A=a+eca’, B
product and the vector product o A and B
N
_I._
+

=@ +ed’, @, a" € IR} is a module on the
a—> B=70+ € ID3, the scalar or inner
are defined by, respectively,

(4, B)= (@, T) + (@, F) + (@
— =

ANB=GAb +e(@ AV
If @ # 0, the norm || A|| of A =
|7 = |(Z. 2| =120+ S, 1= £
A dual vector A with norm 1 is called a dual unit vector. The set
={A =T +ca € ID}||A| =(1,0), @, a € IR}
is called the dual unit sphere with the center O in ID3.
Let a(t) = (a1(t), ao(t), as(t)) and 5(t) = (B1(t), Fa2(t), B3(t)) be real valued

curves in TE3. Then a(t) = a(t) + ea*(t) is a curve in ID? and it is called

dual space curve. If the real valued functions «;(t) and o] (¢) are differentiable

@l 2l

VAN
+ ea”* is defined by

then the dual space curve a(t) is differentiable in ID3. The real part a(t) of
the dual space curve @ = a(t) is called indicatrix. The dual arc-length of real

dual space curve a(t) from t; to ¢ is defined by
T) /
s= [l @ldt = [ [ (@)t +e = [T, (@ (1) )dt = s+ es”

T is unit tangent vector of the indicatrix «(t) which is a real space curve
in TE3. From now on we will take the arc length s of 04—(15_)> as the parameter
instead of ¢
The Lorentzian inner product of dual vectors Z), B € ID? is defined by
(A, B)=(a@, V) +((@, )+ (a*, D))
with the Lorentzian inner product @ = (a1, as, a3) and T = (b1, by, b3) € IR?
(@, 7> = —a1by + agsbs + asbs.
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Thus, ID3,(,) is called the dual Lorentzian space and denoted by ID3. We

call the elements of ID3 as the dual vectors. For A # 0. the norm HXH

of A is defined by HXH = ’<Z>,X>’ . The dual vector A = @ +¢ca” is

called dual spacelike vector if <Z, Z> >0or A = 0, dual timelike vector
if <Z>, X> < 0, dual lightlike vector if <E’, X> — 0 for A # 0. The dual
Lorentzian cross-product of Z), B € ID3is defined by

Z)A?:E’A?Jra(E’/\?*Jr?*/\?)
where @ A b = (azby — agbs, ajbs — asby, ajby — agh) @, D € IR% s the
Lorentzian cross product.

Dual number & = 6 +¢6* is called dual angle between A ve B unit dual
vectors. Then we was

sinh (0 + €6*) = sinh 6 4 €6* cosh §

cosh (6 + £0*) = cosh 0 + €6* sinh 6.

Let {T'(s), N (s), B (s)}be the moving Frenet frame along the curve a (s).
Then T (s),N (s) and B (s) are dual tangent, the dual principal normal and
the dual binormal vector of the curve a(s), respectively. Depending on the
casual character of the curve a, we have the following dual Frenet formulas:

If o is a dual timelike curve ;

T’ 0 « T
N |=]1x 0 7 N (2.1)
B’ 0 —7 0 B

where (T, T) = —1,(N,N) = (B, B) = 1, (T, N) = (N, B) = (T, B) = 0.
We denote by {Vi (s), V5 (s), V5 (s)} the moving Frenet frame along the curve

B (s). Then Vi (s), V5 (s) and V3 (s) are dual tangent, the dual principal normal
and the dual binormal vector of the curve B (s), respectively. Depending on
the casual character of the curve B , we have the following dual Frenet — Serret
formulas:

It B is a dual spacelike curve with a dual timelike binormal Vi;

!

V. 0O P 0 i
il=-roaql|w (2.2)

’

Vs 0 Q@ 0 V3

—
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where (T, T) = (N,N) =1, (B, B) = —1, (T, N) = (N, B) = (T, B) = 0.

If the curves are unit speed curve, then curvature and torsion calculated by,

;

k=T,
7=(N',B),
(2.3)
P =V,
| Q= (V2. V3).

If the curves are not unit speed curve, then curvature and torsion calculated

by,

~ ~
a Ao etla ,a ,«@
A det )
TR T
(2.4)
b 1A _ (773"
AR 13 ra”|*

Definition 2.1. a) Dual Hyperbolic angle: Let A and B be dual time-
like vectors in ID?. Then the dual angle between A and B is defined by
<Z), §>> =— HZ) H?H cosh ®. The dual number ® = 0 + £6* is called the
dual hyberbolic angle.

b) Dual Central angle: Let A and B be spacelike vectors in/ D that span
a dual timelike vector subspace. Then the dual angle between A and B is
defined by <Z), §>> = HZ ’ H?H cosh ®. The dual number & = 0 + €6 is
called the dual central angle.

c) Dual Spacelike angle: Let A and B be dual spacelike vectors inI D? that
span a dual spacelike vector subspace. Then the dual angle between A and
B is defined by <Z, §)> = HXH H?H cos @. The dual number & = 6§ + =6*

is called the dual spacelike angle.

d) Dual Lorentzian timelike angle: Let A be a dual spacelike vector and
T be a dual timelike vector in I D3. Then the dual angle between A and B
is defined by <Z>, §>> = HZ)’ ’? sinh ®. The dual number ® = 6 + 6* is

called the dual Lorentzian timelike angle.
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3 DUAL TIMELIKE - SPACELIKE MANNHEIM
PARTNER CURVE IN [D;}

In this section, we define dual timelike - spacelike Mannheim partner curves in
ID} and we give some characterization for dual timelike - spacelike Mannheim
partner curves in the same space. Using these relationships, we will comment
again Shell’s and Mannheim’s theorems.

Definition 3.1. Let a: [ — ID?, a(s) = a(s) +eca*(s) be a dual timelike
curve and

3:1—ID33(s)=08(s)+eB (s) be dual spacelike with timelike binormal.
If there exists a corresponding relationship between the dual timelike curve «
and the dual spacelike curve with dual timelike binormal B such that, at the
corresponding points of the curves, the dual binormal lines of & coincides with
the dual principal normal lines of 5 , then « is called a dual timelike Mannheim
curve, and B is called a dual Mannheim partner curve of a. The pair {&, 6 } is
said to be dual timelike - spacelike Mannheim pair. Let {7, N, B} be the dual
Frenet frame field along & = & (s) and let {V3, V5, V3} be the Frenet frame field
along B = B(s) On the way ® = 0 + €0* is dual angle between T and V; ,

there is an following equations between the Frenet vectors and their derivative;

Vi sinh® cosh® 0 T
V, | = 0 0o 1 N |. (3.1)
Vs cosh® sinh® 0 B

Theorem 3.1. The distance between corresponding dual points of the dual
timelike - spacelike Mannheim partner curves in ID? is constant.

Proof: From the definition of dual spacelike Mannheim curve, we can write

B(s") = als) +A(s) B(s) (3.2)

By taking the derivate of this equation with respect to s and applying the

Frenet formulas, we get

ds*
ds

Vi— =T — ArN + VB (3.3)
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where the superscript (') denotes the derivative with respect to the arc length
parameter s of the dual curve &(s). Since the dual vectors B and V, are

linearly, we get
(Vi B) = (T, B) — A\ (N,B) + N (B,B) and X' =0

ds
If we take A = A\, + €A%, we get A} = 0 ve \Y = 0 . From here, we can write

A1 = ¢ and A\] = ¢, ¢1, o = cons.
Then we get A = ¢; 4+ £co. On the other hand, from the definition of distance
function between &(s) and ((s) we can write

a(a(s). B(s)) = |Bts) - iGs)|
This is completed the proof.

= |)\1| + 6)\? = |Cl| F €cCo

Theorem 3.2. For a dual timelike - spacelike curve & in D3, there is a dual
spacelike curve B so that {07, B } is a dual spacelike Mannheim pair.
Proof: Since the dual vectors V5 and B are linearly dependent, the equation

(3.2) can be written as

a=03-\V, (3.4)

Since A is a nonzero constant, there is a dual timelike curve 3 for all values of
A

Now, we can give the following theorem related to curvature and torsion of
the dual timelike - spacelike Mannheim partner curves.
Theorem 3.3. Let {d, 6 } be a dual timelike - spacelike Mannheim pair in
ID3. Tf 7 is dual torsion of & and P is dual curvature and @ is dual torsion
of 3, then

P
AQ

Proof: By taking the derivate of equation (3.3) with respect to s and applying

(3.5)

T =

the Frenet formulas, we obtain

ds*
ds

Vi— =T — ArN (3.6)

Let ® = 0 + €6* be dual angle between the dual tangent vectors T" and Vi,

we can write
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Vi=sinh®T + cosh® N (3.7)
Vs = cosh® T + sinh ® N '
From (3.6) and (3.7) , we get
ds* 1 ds*
ds sinh @’ T os ds (3.8)

By taking the derivate of equation (3.4) with respect to s and applying the

Frenet formulas, we obtain

ds* ds*
T=(1 P — .
L+ AP)Vi—= = AQVs (3.9)
From equation (3.7) we can write
T:—sinhCI)‘/le.cosh@Vg (3.10)
N =cosh® V] —sinh® V3

where ® is the dual angle between T" and V; at the corresponding points of
the dual curves of & and 3 . By taking into consideration equations (3.9) and
(3.10), we get

ds* ds*
inh® = —(1 P)— hd =— 11
sin (1+AP) o o8 AQ s (3.11)
Substituting £ into (3.11) , we get
sinh®® = — (1 4+ AP), cosh®® = \*7Q) (3.12)

From the last equation, we can write
- _F
T="30

If the last equation is seperated into the dual and real parts, we can obtain

kg - —Cﬂ
{ _ pq*qu*q (3'13)

*
k3 e
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Corollary 3.1. Let {d, 6 } be a dual timelike - spacelike Mannheim pair in
ID3. Then, the dual product of torsions 7 and @Q at the corresponding points
of the dual spacelike Mannheim partner curves is not constant.

Namely, Schell’s theorem is invalid for the dual timelike - spacelike Mannheim
curves. By considering Theorem 3.3 we can give the following results.
Corollary 3.2. Let {d, 6 } be a dual timelike - spacelike Mannheim pair in
ID3. Then, torsions 7 and @) has a negative sign.

Theorem 3.4. Let {d, 3 } be a dual timelike - spacelike Mannheim pair in

ID3}. Between the curvature and the torsion of the dual spacelike curve B ,

there is the relationship

pQ — AP =1 (3.14)

where 1 and)\ are nonzero dual numbers.

Proof: From equation (3.11), we obtain

sinh® __ cosh®
1+AP —  AQ

arranging this equation, we get
tanh @ = AP

2Q
and if we choose u = Atanh ® for brevity, we see that
uw@Q — AP =1.

Theorem 3.5. Let {64, 3 } be a dual timelike - spacelike Mannheim pair in
ID3. There are the following equations for the curvatures and the torsions of

the curves a ve 3

: _ _d®
Z)H - T ds?

i1)T = P cosh CID% — (@ sinh @%,
iii) P = 7 cosh @4 |

. . ds
iv)Q = 7sinh ® 7=
Proof: i)By considering equation (3.7), we can easily that (T, Vi) = cos .

Differentiating of this equality with respect to s by considering equation (2.1)
, we have
(T", Vi) + (T, V]) = —sinh &2,
from equations (2.1) and (2.2), we can write
(KN, Vi) + (T, PVo2) = — sinh @42,
from equations (3.10), we get

H:—E.
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If the last equation is seperated into the dual and real part, we can obtain
i1) By considering equation (3.7), we can easily that (N, V) = 0. Differenti-
ating of this equality with respect to s and by considering equation (2.1) , we

have
(N, Va) + (N, V, %25 = 0,
From equations (2.1) and (2.2), we can write
(KT + 7B, Va) + (cosh ® V; — sinh @ V3, (—PV; + QV3) &) = 0,
From equations (3.10), we get
7 = P cosh @% — () sinh @%,
i7i) By considering equation (3.7), we can easily that (B, V;) = 0. Differenti-

ating of this equality with respect to s and by considering equation (2.1) , we
have

(B, V1) + (B, %) =0,
From equations (2.1), (2.2) and (3.10) we can write

(=7 (cosh @ Vi — sinh ® V3) , V) + (B, PV = 0,

P =T1cosh @,
iv) By considering equation (3.7), we can easily that (B, V3) = 0. Differenti-

ating of this equality with respect to s by considering equation (2.1) , we have

(B',Vs) + (B, V3 %) =0,

From equations (2.1), (2.2) and (3.10) we can write
(=7 (cosh® V4 —sinh @ V3) , V3) + (B, QVa%) =0,

Q = 7sinh &L
S

Corollary 3.3. Let {d, B } be a dual timelike - spacelike Mannheim pair in

ID3. Tf the statements of Theorem 3.5 is seperated into the dual and real part,

we can obtain
) ko = p cosh 9% — ¢sinh 9%
) . *
k3 = (p* cosh 6 + pf*sinh §) = — (¢*sinh § + 6" cosh §) &=

= ko cosh -2
zz){ P 2 cosh 0/

p* = (ki cosh @ + ky0* sinh 0) 4=

ds
q:k‘Qsinthdi
111) o ds J
q" = (k3 sinh 6 4 ky0* cosh 0) 7.

By considering the statements iii) and iv) of Theorem 2.5 we can give the

following results.

Corollary 3.4. Let {&, B } be a dual timelike - spacelike Mannheim pair in

ID3. Then there exist the following relation between curvature and torsion of
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B and torsion of a;

P?— Q%=1 (d3)2 (3.15)
ds*

Theorem 3.6. A dual timelike space curve in I D3 is a dual timelike - spacelike

Mannheim curve if and only if its curvature P and torsion () satisfy the formula

ANQ*—P) =P (3.16)

where A is never pure dual constant.
Proof: By taking the derivate of the statement a = B — AV, with respect to
s and applying the Frenet formulas we obtain
Ty =Vi+X(PVi - QV3),
KN (42) + TLs — PVy+ A(P'Vi — QVa + (P2 — Q) V&)
Taking the inner product the last equation with B, we get
A(Q*— P?)=P.

If the last equation is seperated into the dual and real part, we can obtain

{ p= A (q2 _p2> (317)

p* =2X(qq* — pp*)

where A = ¢; + €cy .
Theorem 3.7. Let {07, 8 } be a dual timelike - spacelike Mannheim partner

curves in ID?. Moreover, the dual points @& (s), 3 (s) be two corresponding
dual points of {&, 16} }and M ve M* be the curvature centers at these points,

respectively. Then, the ratio

Gk W CLL o1

= L= =Ul+~k + constant. .

la (s) M| [l (s) M~
Proof: A circle that lies in the dual osculating plane of the point @ (s) on the
dual timelike curve & and that has the centre M = @ (s) + +N lying on the

dual principal normal N of the point & (s) and the radius + far from @& (s),
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is called dual osculating circle of the dual curve & in the point & (s). Similar
definition can be given fort he dual curve 3 too.
Then, we can write

@ (s) M| = [|EN]] = %,

& () M*|| = ||AB + 5Va|| = 5 + A,

362 ] = 132l = 3
B(s) M| = |[]\Va+LN|| =14+
Therefore, we obtain

1Ben]| |BM|| _ 7,2

wa - Taear] = (L AP) V1= Ak? # cons.
Thus, we can give the following

Corollary 3.5. Mannheim’s Theorem is invalid for the dual timelike - space-
like Mannheim partner curve {07, B }in ID3.
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