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Abstract

The Rational Sequence Topology is one of the famous topological
spaces, which is a Tychonoff and not normal. In this paper, we show
that the Rational Sequence Topology is an almost normal but not a
π-normal space.
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1 Introduction and Preliminary

Throughout this paper, a space X always means a topological space on which
no separation axioms are assumed, unless explicitly stated. We will denote an
ordered pair by 〈x, y〉, the set of positive integers by N, the power set of A
by P(A) and the set of real numbers by R. For a subset A of a space X, A,
int(A) and X \A denote to the closure, the interior and the complement of A
in X, respectively.

Now, we need to recall the following definitions.

Definition 1.1 A subset A of a space X is called a closed domain (resp.
an open domain) if A = int(A) (resp. A = int(A)), [5].

Definition 1.2 A subset A of a space X is called a π-closed (resp. π-open)
if it is a finite intersection of closed domain subsets (resp. a finite union of
open domain subsets), [11].
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Definition 1.3 Two sets A and B of a space X are said to be separated if
there exist disjoint open sets U and V of X such that A ⊆ U and B ⊆ V , see
[1, 2, 6].

Definition 1.4 A space X is called a first countable if every point x ∈ X
has a countable local base B = {Bn : n ∈ N}, see [2, 6].

Definition 1.5 A set A of a space X is called a Gδ-set of X if it is a
countable intersection of open subsets of X, see [2].

Definition 1.6 A topological space X is called a mildly normal, [8], (resp.
quasi-normal, [11]) if any two disjoint closed domain (resp. π-closed) subsets
A and B of X can be separated.

Definition 1.7 A space X is called an almost normal, [9], (resp. a π-
normal, [4]) if any disjoint closed subsets A and B of X, one of which is
closed domain (resp. π-closed), can be separated.

Definition 1.8 A space X is said to be a semi-normal if for any closed set
A and every open set B with A ⊆ B, there exists an open set U such that
A ⊆ U ⊆ int(U) ⊆ B, see [9].

Clearly that:

normal =⇒ π-normal =⇒ almost normal =⇒ mildly normal

normal =⇒ π-normal =⇒ quasi-normal =⇒ mildly normal

Non of the above implications is reversible.

One of the problems that introduced by Kalantan in 2008, see [4], was “Is
there a Tychonoff space, which is an almost normal and not a π-normal?.”
We presented some characterizations and properties on π-normality in [7]. In
this paper, we show that the Rational Sequence topology, which is a Tychonoff
space, is an almost normal and not a π-normal. First, we need to recall the
following definitions and theorems which are in [3]: Two sets A and B are said
to be equipotent and write A ∼ B, if there exists a one-to-one function f from
A onto B. If A and B be two sets, then we write |A| ≤ |B| and say that the
cardinality of A is less than or equal to the cardinality of B, if there exist a
one-to-one function f : A → B. If A be any set, then |A| < |P(A)|, (Cantor
Theorem). If X is a separable space and has an uncountable closed relatively
discrete subset C, then X is not normal, (Jones’ Lemma), see [1, 2, 6].
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2 Main Results

First, we recall the definition of the Rational Sequence topology:

Definition 2.1 Let X = R. For each x ∈ P, where P is the irrational
numbers, fix a sequence {xn}n∈� ⊂ Q, such that xn −→ x, where the con-
vergency is taken in (R,U), R with its usual topology. Let An(x) denote the
nth-tail of the sequence, where An(x) = {xj : j ≥ n}. For each x ∈ P, let
B(x) = {Un(x) : n ∈ N}, where Un(x) = An(x) ∪ {x}. For each x ∈ Q, let
B(x) = {{x}}. Then {B(x)}x∈� is a neighborhood system. The unique topol-
ogy on R generated by {B(x)}x∈� is called the Rational Sequence topology on
R and denoted by RS.

In this space, we observe that X is a Tychonoff, first countable, not normal
and separable. Any singleton {x} is π-closed. Q is an open dense subset of
X. Also, any subset of Q is an open subset of X. P is an uncountable closed
discrete subspace of X. For more information about this space, see [10].

Now, we prove the following result.

Proposition 2.2 The Rational sequence topology is an almost normal.

Proof: Let A and B be any two disjoint closed sets in X such that A is
closed domain. Since A is a closed domain, then A = int(A). So, A can not
be in P (i.e A 
⊆ P). In fact, if A ⊆ P, then int(A) = ∅ 
= A. Therefore, there
are two cases about A, which are A ⊆ Q or A ∩ Q 
= ∅ 
= A ∩ P. For each
case about A, there are three subcases about B, which are B ⊆ Q or B ⊆ P

or B ∩Q 
= ∅ 
= B ∩P. Now, we show that A and B can be separated for each
case.
Case 1. Let A ⊆ Q.
Subcase a1. Let B ⊆ Q.
Then, A and B are disjoint clopen (closed and open) subsets. Hence, A and
B can be separated.
Subcase a2. Let B ⊆ P.
Since A ∩ B = ∅ and A is clopen. Then for each x ∈ B, we have x 
∈ A. By
regularity of X, there exists an open set Ux such that x ∈ Ux and Ux ∩A = ∅.
Thus, B ⊆ ⋃

x∈BUx. Take U =
⋃

x∈BUx, which is an open set in X such that
B ⊆ U and U ∩ A = ∅. Hence, A and B can be separated.
Subcase a3. Let B ∩ Q 
= ∅ 
= B ∩ P.
Then, B ∩ Q is an open and B ∩ P is a closed. Thus, we have A and B ∩ Q

are disjoint open subsets. Put U1 = A and V1 = B ∩ Q. So, we can write

A ⊆ U1 , B ∩ Q ⊆ V1 and U1 ∩ V1 = ∅ (1)
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Since A ∩ (B ∩ P) = ∅ and A is clopen , then by Subcase a2., there is an
open set V2 such that

B ∩ P ⊆ V2 and A ∩ V2 = ∅ (2)

From (1) and (2), we have

B ⊆ V1 ∪ V2 and A ∩ (V1 ∪ V2) = ∅
Now, put U = A and V = V1 ∪ V2. Then, U and V are open sets of X such
that A ⊆ U , B ⊆ V and U ∩ V = ∅. Hence, A and B can be separated.
Case 2. Suppose A ∩ Q 
= ∅ 
= A ∩ P.
Subcase b1. Let B ⊆ Q.
Then, the open set A∩Q is disjoint from the clopen set B. Thus, they can be
separated by putting U1 = A ∩ Q and V1 = B. So, we can write

A ∩ Q ⊆ U1 , B ⊆ V1 and U1 ∩ V1 = ∅ (3)

Also, the closed set A ∩ P is disjoint from the clopen set B. Then by subcase
a2., there exists an open set U2 such that

A ∩ P ⊆ U2 and U2 ∩ B = ∅ (4)

From (3) and (4), we have

A ⊆ U1 ∪ U2 and B ∩ (U1 ∪ U2) = ∅
Put U = U1 ∪ U2 and V = B. Thus, there exist open sets U and V of X such
that A ⊆ U , B ⊆ V and U ∩ V = ∅. Hence, A and B can be separated.
Subcase b2. Let B ⊆ P.
Then, (A ∩ Q) ∩ B = ∅, where A ∩ Q is open. Since A is closed domain and
Q is an open dense subset of X, then we have A ∩ Q = A. Now, for each
x ∈ B, we have x 
∈ A = A ∩ Q. Therefore, for each x ∈ B, there exists a
basic open neighborhood Vx of x such that Vx ∩ (A ∩ Q) = ∅. Now, we have
B ⊆ ⋃

x∈BVx. Let V =
⋃

x∈BVx. Then, V is an open set of X such that B ⊆ V

and V ∩ (A ∩ Q) = ∅. Since A ∩ Q is an open, then we have V ∩ (A ∩ Q) = ∅
and V ∩ A ∩ Q = ∅. Therefore, there exists an open set V of X such that

B ⊆ V , V ∩ (A ∩ Q) = ∅ and V ∩ A = ∅ (5)

Claim: A ∩ V = ∅.
Suppose that V ∩A 
= ∅. Then, there exists an element y ∈ X such that y ∈ V
and y ∈ A. By (5), we have y 
∈ A∩Q and y 
∈ V . Now, since y ∈ A = A ∩ Q,
then for each basic open neighborhood Uy of y we have

Uy ∩ (A ∩ Q) 
= ∅ (6)
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Since X is a first countable, see [10], and y ∈ V = V ∩ Q, then there exists
a sequence {yn : n ∈ N} of points of V ∩ Q ⊆ V such that yn −→ y. Let
Dy = {yn : n ∈ N} ∪ {y}. Then, Dy is an open neighborhood of y. By (6), we
have Dy ∩ (A ∩ Q) 
= ∅. Since y 
∈ A ∩ Q, then there exists an element ym for
some m ∈ N such that ym ∈ A ∩ Q. But ym ∈ V . Hence V ∩ (A ∩ Q) 
= ∅,
which is a contradiction as by (5), V ∩ (A ∩ Q) = ∅. Therefore, A ∩ V = ∅.
Now, A∩ V = ∅. This implies that A ⊆ X \ V . Put U = X \ V . Then, U and
V are disjoint open sets of X such that A ⊆ U and B ⊆ V . Hence, A and B
can be separated.
Subcase b3. Let B ∩ P 
= ∅ 
= B ∩ Q.
Since A ∩B = ∅, then A∩ (B ∩ P) = ∅, where B ∩ P is closed set in X. Then
by Subcase b2, there exist open sets U1 and V1 such that

A ⊆ U1 , B ∩ P ⊆ V1 and U1 ∩ V1 = ∅ (7)

Also, Let V2 = B ∩ Q. Then, V2 is an open set of X such that A ∩ V2 = ∅
and A ∩ V2 = ∅. This implies that A ⊆ X \ V2. Now, A ⊆ U1 ∩ X \ V2 and
B ⊆ V1 ∪ V2. Put U = U1 ∩ X \ V2 and V = V1 ∪ V2. Then, U and V are
disjoint open sets of X such that A ⊆ U and B ⊆ V . Hence, A and B can
be separated. For each case, we have shown that A and B can be separated.
Therefore, X is almost normal space.

In view of the facts that every almost normal, semi-normal space is normal
and that the Rational Sequence topology is not normal, we have the following
corollaries.

Corollary 2.3 The Rational Sequence topology is not semi-normal.

Corollary 2.4 Every π-normal, semi-normal space is normal.

Observe that the Rational Sequence topology is an example of an almost
normal, Tychonoff space but not semi-normal.

Now, we show that the Rational Sequence topology is not quasi-normal.
First, we give the following lemmas.

Lemma 2.5 In the Rational Sequence topology, every closed subset A ⊆ P

is a Gδ-set.

Proof: Let A ⊆ P and let x ∈ A. Since X is a first countable and T1-space,
then {x} is a Gδ-set of X, see [2]. Therefore, {x} has a decreasing sequence
{Un(x) : n ∈ N} of open sets of X such that {x} =

⋂
n∈� Un(x). So for each

n, x ∈ Un(x) and A ⊆ ⋃
x∈AUn(x). Therefore, A =

⋃
x∈A(

⋂
n∈� Un(x)) =⋂

n∈�(
⋃

x∈A Un(x)). Put Un(A) =
⋃

x∈A Un(x). Then {Un(A) : n ∈ N} is a
decreasing sequence of open sets of X such that A =

⋂
n∈� Un(A). Hence, A

is a Gδ-set.
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Lemma 2.6 In the Rational Sequence topology, the set P is a π-closed sub-
set of X.

Proof: By the Lemma 2.5, we have P is a Gδ-set of X. Then, there exists
a decreasing sequence {Un : n ∈ N} of open sets of X such that

P =
⋂

n∈�
Un ⊆

⋂

n∈�
Un

First, we show that
⋂

n∈� Un ⊆ P. For that, let y ∈ ⋂
n∈� Un. This implies

that y ∈ Un for each n ∈ N. Then either y ∈ Q or y ∈ P. If y ∈ Q, then
{y} is a basic open neighborhood of y and so {y} ∩ Un 
= ∅, for each n ∈ N.
Then, y ∈ Un for each n ∈ N. Therefore, y ∈ ⋂

n∈� Un = P. So y ∈ P, which
is a contradiction as y ∈ Q. Hence, y 
∈ Q and therefore y ∈ P. Since y was
arbitrary, then we have ⋂

n∈�
Un ⊆ P =

⋂

n∈�
Un

Therefore, we have P =
⋂

n∈� Un =
⋂

n∈� Un.

Now, for each n ∈ N, let An = U4n−3 \ U4n−2 and Bn = U4n−1 \ U4n. Then An

and Bn are disjoint open sets of X for each n. Furthermore, An ∩ Bn = ∅ for
each n ∈ N. Now, let A =

⋃
n∈� An and B =

⋃
n∈� Bn. Then, A and B are

open sets of X such that

A =
⋃

n∈�
An = (

⋃

n∈�
An)

⋃
P = (

⋃

n∈�
An)

⋃
P

and

B =
⋃

n∈�
Bn = (

⋃

n∈�
Bn)

⋃
P = (

⋃

n∈�
Bn)

⋃
P

Then, A and B are closed domain sets of X and A ∩ B = P. Hence, P is
π-closed. Therefore, P is uncountable π-closed discrete subspace of X.

Lemma 2.7 In the Rational sequence topology, for any closed subset A ⊆ P,
there exists an open set U of X such that A = U ∩ P.

Proof: Let A be any non-empty closed subset of X such that A ⊆ P. Then,
for each x ∈ A, we have x ∈ P. Thus, there exists a sequence A(x) = {xn :
n ∈ N} ⊂ Q such that xn −→ x for each x ∈ A. Suppose U(x) = A(x) ∪ {x}
be a basic open neighborhood of x. Then, we have

A ⊆
⋃

x∈A

U(x) = (
⋃

x∈A

A(x))
⋃

A
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Now, let U =
⋃

x∈A U(x) and W =
⋃

x∈A A(x).Then, U and W are open sets

of X such that W ⊆ Q, A ⊆ W and U = W ∪ A. Clearly that A ⊆ U ⊆ U .
Therefore, we have

A ⊆ U ∩ P

Now, we need to show that U ∩ P ⊆ A.
Let y ∈ U ∩ P. Then y ∈ U and y ∈ P. Since y ∈ P, then there exists
a sequence {yn : n ∈ N} ⊂ Q such that yn −→ y. Now, for each n ∈ N,
let Vn = {ym : m ≥ n} ∪ {y}. Then, Vn is a basic open neighborhood of y
for each n ∈ N. Thus, Vn is clopen for each n, see [10]. We observe that
V1 ⊇ V2 ⊇ V3 ⊇ ... ⊇ Vn ⊇ .... Also, {y} =

⋂
n∈� Vn =

⋂
n∈� Vn. Since y ∈ U ,

then we have Vn ∩ U 
= ∅ for each n ∈ N.
Claim: y ∈ U .
Suppose that y 
∈ U , then y 
∈ W and y 
∈ A. Since y 
∈ A, Vn \ {y} ∩ U 
= ∅,
Vn \ {y} ⊂ Q and U = W ∪ A, then we have Vn ∩ W 
= ∅ for each n ∈ N.
Therefore, there is an element z ∈ W such that z ∈ Vn = Vn for each n ∈ N.
This implies that z ∈ ⋂

n∈� Vn = {y}. Hence z = y. Therefore, y ∈ W , which
is a contradiction as y 
∈ W . Therefore, y ∈ U .
Now, since y ∈ U , U = W ∪ A and y 
∈ W , then we have y ∈ A. Since y was
arbitrary, then we have U ∩ P ⊆ A. Therefore, A = U ∩ P. Hence for any
closed set A ⊆ P, there exists an open set U of X such that A = U ∩ P.

Since P and U are π-closed and the intersection of two π-closed sets is
π-closed, then we have the following corollary:

Corollary 2.8 In the Rational sequence topology, any closed set A ⊆ P is
π-closed subset of X.

The following result is analogous to the Jones’ Lemma for normal spaces,
see [2, 6].

Theorem 2.9 If X is an infinite, separable space with a dense subset D and
has an uncountable closed relatively discrete subset C such that |P(D)| ≤ |C|
and every subset of C is π-closed subset of X, then X is not quasi-normal.

Proof: We need to show that X is not quasi-normal.
For that, suppose X is quasi-normal. For each A ∈ P(C), where A 
= ∅ and by
the Corollay 2.8, we have A and C \A are π-closed subsets and A∩C \A = ∅.
Since X is quasi-normal, then there exist two disjoint open subsets UA and VA

of X such that A ⊆ UA and C \ A ⊆ VA. Let DA = UA ∩ D, then DA 
= ∅.
Now, suppose that A, B ∈ P(C) and A 
= B. We may assume that A\B 
= ∅.
Let UA and VA are two disjoint open sets of X such that

A ⊆ UA, C \ A ⊆ VA



884 Sadeq Ali Saad Thabit and Hailiza Kamarulhaili

and let UB and VB are two disjoint open sets of X such that

B ⊆ UB, C \ B ⊆ VB

Since A \B 
= ∅, then A∩C \B 
= ∅. Thus, we have UA ∩ VB 
= ∅, which is an
open set of X. Since D is dense, then UA ∩ VB ∩ D 
= ∅. Now, we have

UA ∩ VB ∩ D ⊆ UA ∩ D = DA

and

UA ∩ VB ∩ D 
⊆ UB ∩ D = DB

Therefore, DA 
= DB. Thus, for any two distinct subsets A, B ∈ P(C),
there exist two distinct subsets DA and DB of D. Then, we have

|P(C)| ≤ |P(D)| (8)

Since C 
∼ P(C) (i.e. |C| < |P(C)|), then by (8), we have C 
∼ P(D) and
|C| < |P(D)|, which is not the case |P(D)| ≤ |C|. Hence, X is not quasi-
normal.

The Rational sequence topology satisfies the conditions of the Theorem
2.9 and since every π-normal space is quasi-normal, we have the following
corollaries:

Corollary 2.10 The Rational sequence topology is not quasi-normal.

Corollary 2.11 The Rational sequence topology is not π-normal.

We have observed that the Rational sequence topology is an example of a
Tychonoff space which is an almost normal but not a π-normal.

3 Conclusion

We proved that the Rational Sequence topology is an almost normal but not a
π-normal. We observed that it is not semi-normal and not quasi-normal. So,
this space is an example of a Tychonoff space which is an almost normal but
not a π-normal (resp. not a quasi-normal). Also, we presented some properties
about it.
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