S-iterative Process for a Pair of Single Valued and Multi-valued Nonexpansive Mappings

Kritsana Sokhuma

Department of Mathematics, Faculty of Science and Technology Muban Chom Bueng Rajabhat University Ratchaburi 70150, Thailand k_sokhuma@yahoo.co.th

Naknimit Akkasriworn

Department of Mathematics, Faculty of Science and Technology Rambhai Barni Rajabhat University Chantaburi 22000, Thailand boyjuntaburi@hotmail.com

Abstract

Let E be a nonempty compact convex subset of a uniformly convex Banach space X, and $t: E \to E$ and $T: E \to KC(E)$ be a single valued nonexpansive mapping and a multi-valued nonexpansive mapping, respectively. Assume in addition that $Fix(t) \cap Fix(T) \neq \emptyset$ and $Tw = \{w\}$ for all $w \in Fix(t) \cap Fix(T)$. Suppose $\{x_n\}$ is generated iterative by $x_1 \in E$,

$$y_n = (1 - \beta_n)x_n + \beta_n z_n$$

$$x_{n+1} = (1 - \alpha_n)z_n + \alpha_n t y_n, \ \forall n \ge 1,$$

where $z_n \in Tx_n$ and $\{\alpha_n\}$, $\{\beta_n\}$ are sequences of positive numbers satisfying $0 < a \le \alpha_n, \beta_n \le b < 1$. Then the sequence $\{x_n\}$ converges strongly to a common fixed point of t and T.

Mathematics Subject Classification: 47H10, 46B25

Keywords: Nonexpansive mappings, Fixed points, Uniformly convex Banach space, S-iteration

1 Introduction

Let X be a Banach space and E a nonempty subset of X. We shall denote by FB(E) the family of nonempty bounded closed subsets of E and by

KC(E) the family of nonempty compact convex subsets of E. Let $H(\cdot, \cdot)$ be the Hausdorff distance on FB(X), i.e.,

$$H(A,B) = \max\{\sup_{a \in A} \operatorname{dist}(a,B), \sup_{b \in B} \operatorname{dist}(b,A)\}, A,B \in FB(X),$$

where $\operatorname{dist}(a, B) = \inf\{\|a - b\| : b \in B\}$ is the distance from the point a to the subset B.

A mapping $t: E \to E$ is said to be nonexpansive if

$$||tx - ty|| \le ||x - y||$$
 for all $x, y \in E$.

A point x is called a fixed point of t if tx = x.

A multi-valued mapping $T: E \to FB(X)$ is said to be nonexpansive if

$$H(Tx, Ty) \le ||x - y||$$
 for all $x, y \in E$.

A point x is called a fixed point for a multi-valued mapping T if $x \in Tx$.

We use the notation Fix(T) stands for the set of fixed points of a mapping T and $Fix(t) \cap Fix(T)$ stands for the set of common fixed points of t and T. Precisely, a point x is called a common fixed point of t and T if $x = tx \in Tx$.

In 2006, S. Dhompongsa et al. [5] proved a common fixed point theorem for two nonexpansive commuting mappings.

Theorem 1.1 (see [5], Theorem 4.2) Let E be a nonempty bounded closed convex subset of a uniformly Banach space X, $t: E \to E$, and $T: E \to KC(E)$ a nonexpansive mapping and a multi-valued nonexpansive mapping respectively. Assume that t and T are commuting, i.e. if for every $x, y \in E$ such that $x \in Ty$ and $ty \in E$, there holds $tx \in Tty$. Then t and T have a common fixed point.

The purpose of this paper is to study the new iterative process, called the modified S-iteration method with respect to a pair of single valued and multi-valued nonexpansive mappings. We also establish the strong convergence theorem of a sequence from such process in a nonempty compact convex subset of a uniformly convex Banach space.

2 Preliminary Notes

The important property of a uniformly convex Banach space we use is the following lemma proved by Schu [2] in 1991.

Lemma 2.1 (see [2]) Let X be a uniformly convex Banach space, let $\{u_n\}$ be a sequence of real numbers such that $0 < b \le u_n \le c < 1$ for all $n \ge 1$, and let $\{x_n\}$ and $\{y_n\}$ be sequences of X such that $\limsup_{n \to \infty} ||x_n|| \le a$, $\limsup_{n \to \infty} ||y_n|| \le a$ and $\lim_{n \to \infty} ||u_n x_n + (1 - u_n)y_n|| = a$ for some $a \ge 0$. Then, $\lim_{n \to \infty} ||x_n - y_n|| = 0$.

The following observation will be used in proving our results and the proof is a straightforward.

Lemma 2.2 Let X be a Banach space and E be a nonempty closed convex subset of X. Then,

$$dist(y, Ty) \le ||y - x|| + dist(x, Tx) + H(Tx, Ty),$$

where $x, y \in E$ and T is a multi-valued nonexpansive mapping from E into FB(E).

A fundamental principle which plays a key role in ergodic theory is the demiclosedness principle. A mapping t defined on a subset E of a Banach space X is said to be demiclosed if any sequence $\{x_n\}$ in E the following implication holds: $x_n \to x$ and $tx_n \to y$ implies tx = y.

Theorem 2.3 (see [1]) Let E be a nonempty closed convex subset of a uniformly convex Banach space X and $t: E \to E$ be a nonexpansive mapping. If a sequence $\{x_n\}$ in E converges weakly to p and $\{x_n - tx_n\}$ converges to 0 as $n \to \infty$, then $p \in Fix(t)$.

In 2009, Agarwal et al. [4] introduced the S-iteration following well-known iteration.

For E a convex subset of a linear space X and t a mapping of E into itself, the iterative sequence $\{x_n\}$ of the S-iteration process is generated from $x_1 \in E$ and is defined by

$$y_n = (1 - \beta_n)x_n + \beta_n t x_n,$$

$$x_{n+1} = (1 - \alpha_n)t x_n + \alpha_n t y_n, \quad \forall n \ge 1,$$

where $\{\alpha_n\}$, $\{\beta_n\}$ are sequences in (0, 1) satisfying the condition:

$$\sum_{n=1}^{\infty} \alpha_n \beta_n (1 - \beta_n) = \infty.$$

In 2010, Sokhuma and Keawkhao [3] defined the modified Ishikawa iteration method scheme for a pair of single valued and multi-valued nonexpansive mappings as follows:

Let E be a nonempty closed bounded convex subset of a Banach space X, $t: E \to E$ be a single valued nonexpansive mapping, and $T: E \to FB(E)$ be a multi-valued nonexpansive mapping. The sequence $\{x_n\}$ of the modified Ishikawa iteration is defined by

$$y_n = (1 - \beta_n)x_n + \beta_n z_n$$

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n t y_n, \quad \forall n \ge 1,$$

where $x_1 \in E, z_n \in Tx_n$ and $0 < a \le \alpha_n, \beta_n \le b < 1$.

They proved the strong convergence theorem of a sequence from this process in a nonempty compact convex subset of a uniformly convex Banach space.

In this paper, we present a new iteration method modifying the above ones and call it the modified S-iteration.

Definition 2.4 Let E be a nonempty closed bounded convex subset of a Banach space X, $t: E \to E$ be a single valued nonexpansive mapping, and $T: E \to FB(E)$ be a multi-valued nonexpansive mapping. The sequence $\{x_n\}$ of the modified S-iteration is defined by

$$y_n = (1 - \beta_n)x_n + \beta_n z_n$$

$$x_{n+1} = (1 - \alpha_n)z_n + \alpha_n t y_n, \quad \forall n \ge 1,$$
(1)

where $x_1 \in E, z_n \in Tx_n$ and $0 < a \le \alpha_n, \beta_n \le b < 1$.

3 Main Results

In this section, we present our main results.

Lemma 3.1 Let E be a nonempty compact convex subset of a uniformly convex Banach space X, $t: E \to E$ and $T: E \to FB(E)$ a single valued and a multi-valued nonexpansive mapping, respectively, and $Fix(t) \cap Fix(T) \neq \emptyset$ satisfying $Tw = \{w\}$ for all $w \in Fix(t) \cap Fix(T)$. Let $\{x_n\}$ be the sequence of the modified S-iteration defined by (1). Then $\lim_{n\to\infty} ||x_n - w||$ exists for all $w \in Fix(t) \cap Fix(T)$.

Proof. Let $x_1 \in E$ and $w \in Fix(t) \cap Fix(T)$, we have

$$||x_{n+1} - w|| = ||(1 - \alpha_n)z_n + \alpha_n t((1 - \beta_n)x_n + \beta_n z_n) - w||$$

$$\leq (1 - \alpha_n) ||z_n - w|| + \alpha_n ||t((1 - \beta_n)x_n + \beta_n z_n) - w||$$

$$\leq (1 - \alpha_n) ||z_n - w|| + \alpha_n ||(1 - \beta_n)x_n + \beta_n z_n - w||$$

$$\leq (1 - \alpha_n) ||z_n - w|| + \alpha_n (1 - \beta_n) ||x_n - w|| + \alpha_n \beta_n ||z_n - w||$$

$$= (1 - \alpha_n) dist(z_n, Tw) + \alpha_n (1 - \beta_n) ||x_n - w|| + \alpha_n \beta_n dist(z_n, Tw)$$

$$\leq (1 - \alpha_n) H(Tx_n, Tw) + \alpha_n (1 - \beta_n) ||x_n - w|| + \alpha_n \beta_n H(Tx_n, Tw)$$

$$\leq (1 - \alpha_n) ||x_n - w|| + \alpha_n (1 - \beta_n) ||x_n - w|| + \alpha_n \beta_n ||x_n - w||$$

$$= ||x_n - w||.$$

Since $\{||x_n - w||\}$ is a decreasing and bounded sequence, we can conclude that the limit of $\{||x_n - w||\}$ exists.

We can see how Lemma 2.1 is useful via the following lemma.

Lemma 3.2 Let E be a nonempty compact convex subset of a uniformly convex Banach space X, $t: E \to E$ and $T: E \to FB(E)$ a single valued and a multi-valued nonexpansive mapping, respectively, and $Fix(t) \cap Fix(T) \neq \emptyset$ satisfying $Tw = \{w\}$ for all $w \in Fix(t) \cap Fix(T)$. Let $\{x_n\}$ be the sequence of the modified S-iteration defined by (1). If $0 < a \le \alpha_n \le b < 1$ for some a, b in \mathbb{R} , then $\lim_{n \to \infty} ||ty_n - z_n|| = 0$.

Proof. Let $w \in Fix(t) \cap Fix(T)$. By Lemma 3.1, we put $\lim_{n \to \infty} ||x_n - w|| = c$ and consider

$$||ty_{n} - w|| \leq ||y_{n} - w||$$

$$= ||(1 - \beta_{n})x_{n} + \beta_{n}z_{n} - w||$$

$$\leq (1 - \beta_{n}) ||x_{n} - w|| + \beta_{n} ||z_{n} - w||$$

$$= (1 - \beta_{n}) ||x_{n} - w|| + \beta_{n} dist(z_{n}, Tw)$$

$$\leq (1 - \beta_{n}) ||x_{n} - w|| + \beta_{n} H(Tx_{n}, Tw)$$

$$\leq (1 - \beta_{n}) ||x_{n} - w|| + \beta_{n} ||x_{n} - w||$$

$$= ||x_{n} - w||.$$

So, we have

$$\limsup_{n \to \infty} ||ty_n - w|| \le \limsup_{n \to \infty} ||y_n - w|| \le \limsup_{n \to \infty} ||x_n - w|| = c.$$
 (2)

Recall that

$$||z_n - w|| = dist(z_n, Tw)$$

$$\leq H(Tx_n, Tw)$$

$$\leq ||x_n - w||.$$

This implies that

$$\limsup_{n \to \infty} ||z_n - w|| \le \limsup_{n \to \infty} ||x_n - w|| = c.$$

Thus,

$$c = \lim_{n \to \infty} ||x_{n+1} - w||$$

$$= \lim_{n \to \infty} ||(1 - \alpha_n)z_n + \alpha_n t y_n - w||$$

$$= \lim_{n \to \infty} ||\alpha_n t y_n - \alpha_n w + z_n - \alpha_n z_n + \alpha_n w - w||$$

$$= \lim_{n \to \infty} ||\alpha_n (t y_n - w) + (1 - \alpha_n)(z_n - w)||.$$

By Lemma 2.1, we can conclude that

$$\lim_{n \to \infty} ||(ty_n - w) - (z_n - w)|| = \lim_{n \to \infty} ||ty_n - z_n|| = 0.$$

The following lemmas are useful and crucial for our main results.

Lemma 3.3 Let E be a nonempty compact convex subset of a uniformly convex Banach space X, $t: E \to E$ and $T: E \to FB(E)$ a single valued and a multi-valued nonexpansive mapping, respectively, and $Fix(t) \cap Fix(T) \neq \emptyset$ satisfying $Tw = \{w\}$ for all $w \in Fix(t) \cap Fix(T)$. Let $\{x_n\}$ be the sequence of the modified S-iteration defined by (1). If $0 < a \le \alpha_n, \beta_n \le b < 1$ for some $a, b \in \mathbb{R}$, then $\lim_{n \to \infty} ||x_n - z_n|| = 0$.

Proof. Let $w \in Fix(t) \cap Fix(T)$. We put, as in Lemma 3.2, $\lim_{n \to \infty} ||x_n - w|| = c$. For $n \ge 1$, we have

$$||x_{n+1} - w|| = ||(1 - \alpha_n)z_n + \alpha_n t y_n - w||$$

$$\leq (1 - \alpha_n) ||z_n - w|| + \alpha_n ||t y_n - w||$$

$$= (1 - \alpha_n) dist(z_n, Tw) + \alpha_n ||t y_n - w||$$

$$\leq (1 - \alpha_n) H(Tx_n, Tw) + \alpha_n ||t y_n - w||$$

$$\leq (1 - \alpha_n) ||x_n - w|| + \alpha_n ||y_n - w||,$$

which implies that

$$\frac{\|x_{n+1} - w\| - \|x_n - w\|}{\|x_{n+1} - w\| - \|x_n - w\|} \le -\alpha_n \|x_n - w\| + \alpha_n \|y_n - w\|}{\|x_{n+1} - w\| - \|x_n - w\|} \le \|y_n - w\| - \|x_n - w\|.$$

Because $0 < a \le \alpha_n \le b < 1$, we have

$$\left(\frac{\|x_{n+1} - w\| - \|x_n - w\|}{\alpha_n}\right) + \|x_n - w\| \le \|y_n - w\|.$$

So, we obtain

$$\lim_{n \to \infty} \inf \left\{ \left(\frac{\|x_{n+1} - w\| - \|x_n - w\|}{\alpha_n} \right) + \|x_n - w\| \right\} \le \lim_{n \to \infty} \inf \|y_n - w\|.$$

Then we get

$$c \leq \liminf_{n \to \infty} \|y_n - w\|$$
.

Since, from (2), $\limsup_{n\to\infty} ||y_n - w|| \le c$, we have

$$c = \lim_{n \to \infty} ||y_n - w||$$

$$= \lim_{n \to \infty} ||(1 - \beta_n)x_n + \beta_n z_n - w||$$

$$= \lim_{n \to \infty} ||(1 - \beta_n)(x_n - w) + \beta_n (z_n - w)||$$
(3)

where $0 < a \le \beta_n \le b < 1$.

Hence, we have

$$\limsup_{n \to \infty} ||z_n - w|| \le \limsup_{n \to \infty} ||x_n - w|| = c.$$
(4)

By Lemma 2.1, (3) and (4), we obtain

$$\lim_{n \to \infty} ||x_n - z_n|| = 0.$$

Lemma 3.4 Let E be a nonempty compact convex subset of a uniformly convex Banach space X, $t: E \to E$ and $T: E \to FB(E)$ a single valued and a multi-valued nonexpansive mapping, respectively, and $Fix(t) \cap Fix(T) \neq \emptyset$ satisfying $Tw = \{w\}$ for all $w \in Fix(t) \cap Fix(T)$. Let $\{x_n\}$ be the sequence of the modified S-iteration defined by (1). If $0 < a \le \alpha_n, \beta_n \le b < 1$ for some $a, b \in \mathbb{R}$, then $\lim_{n \to \infty} ||tx_n - x_n|| = 0$.

Proof. Consider

$$||tx_{n} - x_{n}|| \leq ||tx_{n} - ty_{n}|| + ||ty_{n} - x_{n}||$$

$$\leq ||x_{n} - y_{n}|| + ||ty_{n} - x_{n}||$$

$$= ||x_{n} - (1 - \beta_{n})x_{n} - \beta_{n}z_{n}|| + ||ty_{n} - x_{n}||$$

$$= \beta_{n} ||x_{n} - z_{n}|| + ||ty_{n} - x_{n}||$$

$$\leq \beta_{n} ||x_{n} - z_{n}|| + ||ty_{n} - z_{n}|| + ||x_{n} - z_{n}||$$

$$= (1 + \beta_{n}) ||x_{n} - z_{n}|| + ||ty_{n} - z_{n}||.$$

Then, we obtain

$$\lim_{n \to \infty} ||tx_n - x_n|| \le \lim_{n \to \infty} (1 + \beta_n) ||x_n - z_n|| + \lim_{n \to \infty} ||ty_n - z_n||.$$

Hence, by Lemma 3.2 and Lemma 3.3, $\lim_{n\to\infty} ||tx_n - x_n|| = 0$.

We give the sufficient conditions which imply the existence of common fixed points, as follow:

Theorem 3.5 Let E be a nonempty compact convex subset of a uniformly convex Banach space X, $t: E \to E$ and $T: E \to FB(E)$ a single valued and a multi-valued nonexpansive mapping, respectively and $Fix(t) \cap Fix(T) \neq \emptyset$ satisfying $Tw = \{w\}$ for all $w \in Fix(t) \cap Fix(T)$. Let $\{x_n\}$ be the sequence of the modified S-iteration defined by (1). If $0 < a \leq \alpha_n, \beta_n \leq b < 1$ for some $a, b \in \mathbb{R}$, then $x_{n_i} \to y$ for some subsequence $\{x_{n_i}\}$ of $\{x_n\}$ implies $y \in Fix(t) \cap Fix(T)$.

Proof. Assumed that $\lim_{n\to\infty} ||x_{n_i}-y|| = 0$. From Lemma 3.4, we have

$$0 = \lim_{n \to \infty} ||tx_{n_i} - x_{n_i}|| = \lim_{n \to \infty} ||(I - t)(x_{n_i})||.$$

Since I - t is demiclosed at 0, we have (I - t)(y) = 0 and hence y = ty, i.e., $y \in Fix(t)$. By Lemma 2.2 and by Lemma 3.3, we have

$$dist(y, Ty) \leq ||y - x_{n_i}|| + dist(x_{n_i}, Tx_{n_i}) + H(Tx_{n_i}, Ty)$$

$$\leq ||y - x_{n_i}|| + ||x_{n_i} - z_{n_i}|| + ||x_{n_i} - y|| \to 0,$$

as $i \to \infty$. It follows that $y \in Fix(T)$. Therefore $y \in Fix(t) \cap Fix(T)$ as desired.

Hereafter, we arrive at the convergence theorem of the sequence of the modified S-iteration.

Theorem 3.6 Let E be a nonempty compact convex subset of a uniformly convex Banach space X, $t: E \to E$ and $T: E \to FB(E)$ a single valued and a multi-valued nonexpansive mapping, respectively, and $Fix(t) \cap Fix(T) \neq \emptyset$ satisfying $Tw = \{w\}$ for all $w \in Fix(t) \cap Fix(T)$. Let $\{x_n\}$ be the sequence of the modified S-iteration defined by (1) with $0 < a \le \alpha_n, \beta_n \le b < 1$ for some $a, b \in \mathbb{R}$. Then $\{x_n\}$ converges strongly to a common fixed point of t and T.

Proof. Since $\{x_n\}$ is contained in E which is compact, there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $\{x_{n_i}\}$ converges strongly to some point $y \in E$, i.e., $\lim_{i \to \infty} ||x_{n_i} - y|| = 0$. By Theorem 3.5, we have $y \in Fix(t) \cap Fix(T)$ and by Lemma 3.1, we have that $\lim_{n \to \infty} ||x_n - y||$ exists. It must be the case that $\lim_{n \to \infty} ||x_n - y|| = \lim_{i \to \infty} ||x_{n_i} - y|| = 0$. Therefore $\{x_n\}$ converges strongly to a common fixed point y of t and T.

ACKNOWLEDGEMENTS. This research was supported by the Faculty of Science and Technology, Muban Chom Bueng Rajabhat University and Rambhai Barni Rajabhat University.

References

- [1] F.E. Browder, Semicontractive and semiaccretive nonlinear mappings in Banach spaces, Bull. Amer. Math. Soc. 74(1968), 660-665.
- [2] J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 43(1991), 153-159.
- [3] K. Sokhuma and A. Kaewkhao, Ishikawa Iterative Process for a Pair of Single-valued and Multivalued Nonexpansive Mappings in Banach Spaces, Fixed Point Theory and Applications, vol. 2010, Article ID 618767, 9 pages, 2010. doi:10.1155/2010/618767.
- [4] Ravi P. Agarwal, Donal O'Regan and D.R. Sahu, Fixed Point Theory for Lipschitzian-type Mappings with Applications, Springer, London/New York, 2009.
- [5] S. Dhompongsa, A. Kaewcharoen, A. Kaewkhao, The Dominguez-Lorenzo condition and fixed point for multi-valued mappings, Nonlinear Analysis. 64(2006), 958-970.

Received: October, 2011