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Abstract

In this paper, the least-squares linear and quadratic filtering pro-
blems are studied in discrete-time linear stochastic systems with un-
certain observations coming from multiple sensors, when the variables
describing the uncertainty in the observations are correlated at instants
that differ two units of time. The least-squares linear filter is obtained
by using an approach based on innovations. The least-squares quadratic
estimation problem is solved by defining an appropriate augmented sys-
tem, whose state linear filtering estimate provides the quadratic filtering
estimate of the original state vector. A numerical simulation example
shows the effectiveness of the proposed estimation algorithms.
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1 Introduction

The state estimation problem in discrete-time linear systems using observa-
tions which are linear functions of the state and are perturbed by additive
Gaussian white noise has been widely studied. Although different techniques
have been used to address this problem, one of the major contributions has
been the well-known Kalman filter, a recursive solution to the least-squares
(LS) optimal filtering problem in Gaussian linear systems. However, in many
practical situations, the widely used assumption of Gaussian noises cannot be
accepted as a realistic statistical description of the processes involved (see for
instance [11]). In these non-Gaussian systems, the Kalman filter only provides
the LS linear estimator and, generally, determining the optimal estimator in
these cases involves severe computational difficulties, thus being necessary to
look for suboptimal estimators which are easier to obtain, such as linear es-
timators or, even, polynomial estimators which improve the commonly used
linear ones.

Signal estimation problems in the presence of non-Gaussian noises have
been widely studied. De Santis et al. [3] were the first who proposed a
quadratic estimator, that is more accurate than the commonly used linear
one and retains the features of easy computability and recursivity. A gen-
eralization of this study is proposed in [2], where a recursive algorithm for
arbitrary degree polynomial estimators is proposed.

On the other hand, there exists a large number of situations where some
observations may not contain information about the system state, thus being
only noise (uncertain observations). In these cases, the observation equation
includes not only additive noises, but also a multiplicative noise, which is mo-
delled by a sequence of Bernoulli random variables, whose values –one or zero–
indicate the presence or absence of the state in the observation, respectively.
Even if the state and the additive noises are gaussian processes, this multi-
plicative noise component makes the joint distribution of the system state and
observations be non-gaussian and, consequently, the optimal estimator of the
signal is not easily obtainable.

The LS linear and polynomial estimation problems in systems with uncer-
tain observations have been studied by several authors under different hypothe-
ses on the variables modelling the uncertainty of the observations. Among
others, in [10] the linear estimation problem is addressed when the uncertainty
is modelled by independent variables. A more general model is considered in
[8], where polynomial estimation algorithms are proposed using observations
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affected by non-independent uncertainty; this model covers those systems with
different transmission channels, where the signal is randomly transmitted by
one of them and there exists a different probability of uncertainty at each cha-
nnel. More recently, other models have been studied to cover situations where
the maximum number of consecutive observations without information on the
signal is bounded; for example, in [9] the polynomial filtering and smoothing
problems are addressed assuming that the variables describing the uncertainty
are correlated at consecutive sampling times, and this model is applied to
situations where the signal cannot be missing in two consecutive observations.

In all the mentioned papers it is assumed that the observations available
for the estimation come either from a single sensor or from multiple sensors
with identical uncertainty characteristics. In the last years, motivated by the
increasing development of sensor networks for data acquisition and signal pro-
cessing, several authors have generalized this study to cases in which there
are multiple sensors featuring different uncertainty characteristics (see e.g. [4]
for independent variables modelling the uncertainty in the observations, and
[5],[1] for situations where the uncertainty in each sensor is modelled by vari-
ables correlated at consecutive sampling times).

In this paper, the LS linear and quadratic filtering problems with uncertain
observations coming from multiple sensors is addressed, when the Bernoulli
variables modelling the uncertainty in the observations are correlated in ins-
tants that differ two units of time. Hence, the current study provides an
extension of the results established in [1] where Bernoulli variables correlated
at consecutive instants are considered. The aim of this extension is to cover
more general practical situations, for example, signal transmission problems
where no more than two consecutive observations without information of the
signal can be transmitted by the same sensor (this occurs e.g. in sensor net-
works where sensor failures may occur and a failed sensor is replaced not
immediately, but two sampling times after having failed). Finally, the be-
haviour of the proposed estimators is illustrated by a numerical simulation
example where a signal generated by a first-order autoregressive model is esti-
mated from uncertain observations coming from two sensors. The linear and
quadratic estimators are compared in terms of their error covariance matrices
and the performance of both estimators is analyzed for different values of the
uncertainty probabilities.

2 Model description

Consider a discrete-time linear stochastic system with uncertain observations
coming from multiple sensors, whose mathematical modelling is accomplished
by the following equations.
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The state equation is given by

xk = Fk−1xk−1 + wk−1, k ≥ 1, (1)

where {xk; k ≥ 0} is an n-dimensional stochastic process representing the
system state, {wk; k ≥ 0} is a white noise process and Fk, for k ≥ 1, are
known deterministic matrices.

We consider scalar uncertain observations {yi
k; k ≥ 1}, i = 1, . . . , m,

coming from m sensors and perturbed by noises whose statistical properties
are not necessarily the same for all the sensors. Specifically, we assume that,
at each time k, the observation yi

k from the i-th sensor is perturbed by an
additive noise vector vi

k and by a multiplicative Bernoulli variable θi
k; that is

yi
k = θi

kH
i
kxk + vi

k, k ≥ 1, i = 1, . . . , m, (2)

where H i
k, for k ≥ 1 and i = 1, . . . , m, are known deterministic matrices of

appropriate dimensions. When θi
k = 1, which occurs with known probability

θ
i

k, the state xk is present in the observation yi
k coming from the i-th sensor

at time k, whereas if θi
k = 0 such observation only contains additive noise vi

k

with probability 1 − θ
i

k.
Denoting yk = (y1

k, . . . , ym
k )T , vk = (v1

k, . . . , vm
k )T , Hk = (H1T

k , . . . , HmT
k )T

and Θk = Diag(θ1
k, . . . , θm

k ), equation (2) is equivalent to the following stacked
observation equation

yk = ΘkHkxk + vk, k ≥ 1. (3)

The LS linear and quadratic estimation problems of the state xk given
by (1) from the observations y1, . . . , yk given by (3) have been addressed in
[1] assuming correlation at consecutive time instants between the Bernoulli
variables that model the presence or absence of the state in the observations
coming from each sensor. Our aim in this paper is to generalize the results
obtained in [1] to the case where these variables are correlated in instants that
differ two units of time. Specifically, the following hypothesis is assumed:

Hypothesis 1. For i = 1, . . . , m, {θi
k; k ≥ 1} is a sequence of Bernoulli

random variables with P [θi
k = 1] = θ

i

k. The variables θi
k and θj

s are independent
for |k − s| �= 0, 2, i, j = 1, . . . , m, and Cov[θi

k, θ
j
s] are known for |k − s| = 0, 2.

Defining θk = (θ1
k, . . . , θm

k )T , the covariance matrices of θk and θs will be
denoted by Kθ

k,s.

On the other hand, the LS linear estimator of xk based on y1, . . . , yk,
i.e. the linear filter of xk, is the orthogonal projection of xk onto the space
of n-dimensional random variables obtained as linear transformations of the
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observations y1, . . . , yk, which requires the existence of the second-order mo-
ments of such observations. The LS quadratic estimator of xk based on
y1, . . . , yk is obtained as the orthogonal projection of xk onto the space of n-
dimensional random variables obtained by linear transformations of y1, . . . , yk

and their second-order powers, y
[2]
1 , . . . , y

[2]
k , defined by the Kronecker product,

y
[2]
i = yi ⊗ yi. Hence, the existence of the second-order moments of the vectors

y
[2]
1 , . . . , y

[2]
k is required to address the LS quadratic estimation problem.

To assure the existence of such moments, the following hypotheses are
assumed:

Hypothesis 2. The initial state x0 is a random vector with zero mean and
Cov[x0] = P0, Cov[x0, x

[2]
0 ] = P

(3)
0 , Cov[x

[2]
0 ] = P

(4)
0 .

Hypothesis 3. The process {wk; k ≥ 0} is a zero-mean white noise with

Cov[wk] = Qk, Cov[wk, w
[2]
k ] = Q

(3)
k and Cov[w

[2]
k ] = Q

(4)
k .

Hypothesis 4. The noise {vk; k ≥ 1} is a zero-mean white process with

Cov[vk] = Rk, Cov[vk, v
[2]
k ] = R

(3)
k and Cov[v

[2]
k ] = R

(4)
k .

Finally, we assume the following hypothesis on the independence of the
initial state and noises:

Hypothesis 5. The initial state x0 and the noise processes {wk; k ≥ 0},
{vk; k ≥ 1} and {θk; k ≥ 1} are mutually independent.

3 LS linear estimation problem

Our aim in this section is to obtain the LS linear filter of xk from a recursive
algorithm. For this purpose, an approach based on innovations is used. This
approach consists of transforming the observation process {yk; k ≥ 1} into
an equivalent one (innovation process) of orthogonal vectors {νk; k ≥ 1},
equivalent in the sense that each set {ν1, . . . , νk} generates the same linear
subspace as {y1, . . . , yk} (see [6]).

The innovation at time k is defined as νk = yk − ŷk/k−1, where ŷk/k−1 is the
one-stage LS linear predictor of yk. Using the orthogonal projection lemma,
the predictor can be expressed as a linear combination of innovations

ŷk/k−1 =

k−1∑
i=1

Tk,iΠ
−1
i νi, k ≥ 2; ŷ1/0 = 0, (4)

where Tk,i = E[ykν
T
i ] and Πi = E[νiν

T
i ] is the covariance of νi.

Similarly, since the innovation is a white process, the state linear filter,
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x̂k/k, and the state one-stage linear predictor, x̂k/k−1, satisfy

x̂k/L =

L∑
i=1

Sk,iΠ
−1
i νi, k ≥ 1, L = k, k − 1, (5)

where Sk,i = E[xkν
T
i ].

So, the following expression for the filter in terms of the predictor is imme-
diate:

x̂k/k = x̂k/k−1 + Sk,kΠ
−1
k νk, k ≥ 1; x̂0/0 = 0. (6)

To derive a recursive linear filtering algorithm, it is necessary to give an
expression for each element of equation (6). Next, an equation for the state
predictor x̂k/k−1 in terms of the filter x̂k/k and expressions for the innovation
νk, its covariance matrix Πk and the matrix Sk,k are obtained.

State predictor x̂����1. From hypotheses 3 and 5, it is immediate that the
filter of the noise wk−1 is ŵk−1/k−1 = E[wk−1] = 0 and hence, taking into
account equation (1), we have

x̂k/k−1 = Fk−1x̂k−1/k−1, k ≥ 1. (7)

Innovation ν�. Since the innovation process is given by νk = yk − ŷk/k−1, it
is enough to get an expression for the one-stage predictor of the observation,
ŷk/k−1.

From the model hypotheses, it follows that Tk,i = Θp
kHkSk,i, for k ≥ 3,

i < k − 2, where Θp
k = E[Θk]. From (4) and after some manipulations, we

obtain

ŷk/k−1 =

k−1∑
i=1

Θp
kHkSk,iΠ

−1
i νi + (Tk,k−2 − Θp

kHkSk,k−2)Π−1
k−2νk−2

+ (Tk,k−1 − Θp
kHkSk,k−1) Π−1

k−1νk−1.

(8)

Denoting Ψk,k−2 = Tk,k−2 − Θp
kHkSk,k−2 and taking into account equation

(3), we obtain:

Ψk,k−2 = E[(Θk − Θp
k)Hkxkν

T
k−2]

= E[(Θk − Θp
k)Hkxky

T
k−2] − E[(Θk − Θp

k) Hkxkŷ
T
k−2/k−3].

From hypotheses 1 and 5, Θk is independent of the innovation νi, for i ≤ k−3;
hence, E[(Θk − Θp

k)Hkxkŷ
T
k−2/k−3] = 0, and using again (3) for yk−2, we obtain

Ψk,k−2 = E[(Θk − Θp
k) Hkxkx

T
k−2H

T
k−2Θk−2]. (9)
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To obtain the above expectation, we use the following property [1]:

Property 1. The random matrices Θk satisfy the equality E[ΘkGm×mΘs] =
E[θkθ

T
s ]◦E[Gm×m] for any random matrix Gm×m independent of {Θk; k ≥ 1},

where ◦ denotes the Hadamard product ([A ◦ B]ij = AijBij).

Then, from (9), we have

Ψk,k−2 = Kθ
k,k−2 ◦

(
HkE[xkx

T
k−2]H

T
k−2

)
.

Now, if we denote Ek = E[xkx
T
k ], from equation (1) it is clear that

Ψk,k−2 = Kθ
k,k−2 ◦

(
HkFk−1Fk−2Ek−2H

T
k−2

)
(10)

and Ek can be obtained recursively by

Ek = Fk−1Ek−1F
T
k−1 + Qk−1, k ≥ 1; E0 = P0. (11)

Analogously,

Tk,k−1 − Θp
kHkSk,k−1 = E[(Θk − Θp

k) Hkxkν
T
k−1]

= Kθ
k,k−1 ◦

(
HkE[xkx

T
k−1]H

T
k−1

)
− E[(Θk − Θp

k)Hkxkŷ
T
k−1/k−2].

Since Kθ
k,k−1 = 0 and ŷk−1/k−2 =

∑k−3
i=1 Tk−1,iΠ

−1
i νi + Tk−1,k−2Π

−1
k−2νk−2, we

have:

Tk,k−1 − Θp
kHkSk,k−1 = −E[(Θk − Θp

k) Hkxkν
T
k−2]Π

−1
k−2T

T
k−1,k−2

= −Ψk,k−2Π
−1
k−2T

T
k−1,k−2.

(12)

Next, substituting (10) and (12) in (8) and using (5) for L = k − 1, it is
concluded that

ŷk/k−1 = Θp
kHkx̂k/k−1 − Ψk,k−2Π

−1
k−2

(
νk−2 − T T

k−1,k−2Π
−1
k−1νk−1

)
, k ≥ 3,

ŷ2/1 = T2,1Π
−1
1 y1,

ŷ1/0 = 0

(13)

where Ψk,k−2 is given in (10) with Ek recursively obtained from (11).

Finally, using (12) and taking into account that, from (1), Sk,k−1 = Fk−1Sk−1,k−1,
the matrices Tk,k−1 in (13) are recursively obtained from

Tk,k−1 = Θp
kHkFk−1Sk−1,k−1 − Ψk,k−2Π

−1
k−2T

T
k−1,k−2, k ≥ 3,

T2,1 = Θp
2H2F1E1H

T
1 Θp

1.
(14)

Matrix S���. Since νk = yk − ŷk/k−1, we have Sk,k = E[xkν
T
k ] = E[xky

T
k ] −

E[xkŷ
T
k/k−1]. Next, we calculate these expectations.
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On the one hand, from (3) we have that E[xky
T
k ] = EkH

T
k Θp

k, ∀k ≥ 1.

On the other, from (13) we obtain

E[xkŷ
T
k/k−1] = E[xkx̂

T
k/k−1]H

T
k Θp

k

+
(
Sk,k−2 − Sk,k−1Π

−1
k−1Tk−1,k−2

)
Π−1

k−2Ψ
T
k,k−2, k ≥ 3,

E[x2ŷ
T
2/1] = F1E1H

T
1 Θp

1Π
−1
1 T T

2,1.

Now, the orthogonal projection lemma assures that E[xkx̂
T
k/k−1] = Ek −

Pk/k−1, where Pk/k−1 = E[(xk − x̂k/k−1)(xk − x̂k/k−1)
T ] is the prediction error

covariance matrix.
Then, using again that Sk,k−1 = Fk−1Sk−1,k−1 and Sk,k−2 = Fk−1Fk−2Sk−2,k−2,

the following expression for Sk,k is derived

Sk,k = Pk/k−1H
T
k Θp

k

− Fk−1

(
Fk−2Sk−2,k−2 − Sk−1,k−1Π

−1
k−1Tk−1,k−2

)
Π−1

k−2Ψ
T
k,k−2, k ≥ 3,

S2,2 = E2H
T
2 Θp

2 − F1E1H
T
1 Θp

1Π
−1
1 T T

2,1,

S1,1 = E1H
T
1 Θp

1.

(15)

Finally, from (1), the prediction error covariance matrix Pk/k−1 is recur-
sively calculated from

Pk/k−1 = Fk−1Pk−1/k−1F
T
k−1 + Qk−1, k ≥ 1 (16)

with Pk/k = E[(xk − x̂k/k)(xk − x̂k/k)
T ], the filtering error covariance matrix,

verifying

Pk/k = Pk/k−1 − Sk,kΠ
−1
k ST

k,k, k ≥ 1; P0/0 = P0. (17)

Covariance matrix of the innovation Π� = E[ν�ν
�
� ]. From the orthog-

onal projection lemma, the covariance matrix of the innovation is obtained as
Πk = E[yky

T
k ]−E[ŷk/k−1ŷ

T
k/k−1]. From (3) and using Property 1, we have that

E[yky
T
k ] = E[θkθ

T
k ] ◦

(
HkEkH

T
k

)
+ Rk, k ≥ 1.

On the other hand, taking into account (13), a similar reasoning to that
used to derive the matrix Sk,k leads to the following expression, for k ≥ 3,

E[ŷk/k−1ŷ
T
k/k−1] = θkθ

T

k ◦
(
Hk

(
Ek − Pk/k−1

)
HT

k

)
+ Ψk,k−2Π

−1
k−2Ψ

T
k,k−2

+ Ψk,k−2Π
−1
k−2Tk−1,k−2Π

−1
k−2Ψ

T
k,k−2

+ Θp
kHkFk−1

(
Fk−2Sk−2,k−2 + Sk−1,k−1Π

−1
k−1Tk−1,k−2

)
Π−1

k−2Ψ
T
k,k−2

+
[
Θp

kHkFk−1

(
Fk−2Sk−2,k−2 + Sk−1,k−1Π

−1
k−1Tk−1,k−2

)
Π−1

k−2Ψ
T
k,k−2

]T
.
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Next, from (15) we have that, in the above expression,

Fk−1

(
Fk−2Sk−2,k−2 + Sk−1,k−1Π

−1
k−1Tk−1,k−2

)
Π−1

k−2Ψ
T
k,k−2

= −Sk,k + Pk/k−1H
T
k Θp

k, k ≥ 3.

Therefore, the innovation covariance matrix verifies

Πk = Kθ
k,k ◦ (HkEkH

T
k ) + Rk − Θp

kHkPk/k−1H
T
k Θp

k + Θp
kHkSk,k

+ ST
k,kH

T
k Θp

k − Ψk,k−2Π
−1
k−2

(
I + T T

k−1,k−2Π
−1
k−1Tk−1,k−2Π

−1
k−2

)
ΨT

k,k−2, k ≥ 3,

Π2 = E[θ2θ
T
2 ] ◦ (H2E2H

T
2 ) + R2 − T2,1Π

−1
1 T T

2,1,

Π1 = E[θ1θ
T
1 ] ◦ (H1E1H

T
1 ) + R1.

(18)

where I denotes the identity matrix of appropriate dimensions.

Finally, the proposed linear filtering algorithm is constituted by equations
(6), (7) and (13)-(18).

4 LS quadratic estimation problem

This section is concerned with the problem of deriving a recursive algorithm
for the LS quadratic estimator of xk based on the observations until time k,
that is, the quadratic filter x̂q

k/k.
To obtain this estimator, the following augmented state and observation

vectors are defined

Xk =

(
xk

x
[2]
k

)
∈ R

n+n2

, Yk =

(
yk

y
[2]
k

)
∈ R

m+m2

.

Clearly, the n-dimensional space of linear transformations of Y1, . . . ,Yk is
equal to the n-dimensional space of linear transformations of y1, . . . , yk and
y

[2]
1 , . . . , y

[2]
k . Therefore, as mentioned in Section 2, the LS quadratic estimator

of xk is the LS linear estimator of xk based on Y1, . . . ,Yk, which is obtained
by extracting the first n entries of the LS linear estimator of Xk based on
Y1, . . . ,Yk.

To address this problem, we consider the centered vectors Xk = Xk−E[Xk]
and Yk = Yk − E[Yk], which verify the following system [1]:

Xk = Fk−1Xk−1 + Wk−1, k ≥ 1,

Yk = DΘ
k HkXk + Vk, k ≥ 1

(19)

with

Fk =

(
Fk 0

0 F
[2]
k

)
, Hk =

(
Hk 0

0 H
[2]
k

)
, DΘ

k =

(
Θk 0

0 Θ
[2]
k

)
,
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Wk =

(
wk

(I + K)((Fkxk) ⊗ wk) + w
[2]
k − vec(Qk)

)
,

Vk =

(
vk

(I + K)((ΘkHkxk) ⊗ vk) + v
[2]
k − vec(Rk)

)
+ (DΘ

k − Dp
k)HkE[Xk],

where Dp
k = E[DΘ

k ], vec(·) denotes the ‘vec’ or ‘stack’ operator, which vectori-
zes a matrix (i.e. given a matrix A = ((aij))i=1,... ,n

j=1... ,m
, vec(A) = (a11, . . . , an1,

. . . , a1m, . . . , anm)T ) and K denotes the commutation matrix of appropriate
dimensions (K(v ⊗ u) = u ⊗ v, for any vectors u, v). See [7] for details and
properties of the ‘vec’ operator and commutation matrix.

Next, some relevant statistical properties of the initial condition, X0, and
the noises involved in the augmented system (19) are presented; these proper-
ties are necessary to derive the linear filtering algorithm for this system.

Proposition 1. The initial state X0 is a zero-mean random vector with
covariance matrix given by

P ∗
0 =

(
P0 P

(3)
0

P
(3)
0 P

(4)
0

)
.

Proposition 2. The noise {Wk; k ≥ 0} is a zero-mean white noise process
with

E[WkW
T
k ] = QW

k =

(
Qk Q

(3)
k

Q
(3)T
k Q22

k

)
,

where Q22
k = (I + K)((FkDkF

T
k ) ⊗ Qk)(I + K) + Q

(4)
k .

The reader is referred to [1] for complete proof of propositions 1 and 2.

Proposition 3. The noise {Vk; k ≥ 1} is a zero-mean process with

i) E[VkV
T
s ] = 0, |k − s| �= 0, 2.

ii) E[VkV
T
k ] = RV

k,k = Rk + Cov[CΘ
k ] ◦

(
HkE[Xk]E[X T

k ]HT
k

)
.

iii) E[VkV
T
k−2] = RV

k,k−2 = Cov[CΘ
k , CΘ

k−2] ◦
(
HkE[Xk]E[X T

k−2]HT
k−2

)
,

where

Rk =

(
Rk R

(3)
k

R
(3)
k R22

k

)
, CΘ

k =
(
θT

k , θ
[2]T
k

)T
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with R22
k = (I + K)

((
E[θkθ

T
k ] ◦

(
HkDkH

T
k

))
⊗ Rk

)
(I + K) + R

(4)
k .

Proof. Obviously, E[Vk] = 0, ∀k ≥ 0. Next, denoting

Vk =

(
vk

(I + K)((ΘkHkxk) ⊗ vk) + v
[2]
k − vec(Rk)

)
,

we can write Vk = Vk + (DΘ
k − Dp

k)HkE[Xk].

Taking into account Hypothesis 5, we have E[Vk

(
(DΘ

s − Dp
s)HsE[Xs]

)T
] =

0, ∀k, s and therefore

E[VkV
T
s ] = E[VkVT

s ] + E[
(
(DΘ

k − Dp
k)HkE[Xk]

) (
(DΘ

s − Dp
s)HsE[Xs]

)T
].

Considering hypotheses 4 and 5, Property 1 and the Kronecker product
properties [7], we obtain that E[VkVT

s ] = Rkδk,s, where δ denotes the Kronecker
delta function and Rk is a matrix whose blocks are given by:

R
11

k = E[vkv
T
k ] = Rk

R
12

k = E[(ΘkHkxk)
T ⊗ vkv

T
k ](I + K) + E[vkv

[2]T
k ]

=
(
Θp

kE[(Hkxk)
T ] ⊗ E[vkv

T
k ]
)
(I + K) + R

(3)
k = R

(3)
k

R
22

k = (I + K)
(
E[ΘkHkxkx

T
k HT

k Θk] ⊗ E[vkv
T
k ]
)
(I + K)

+ E[(v
[2]
k − vec(Rk))(v

[2]
k − vec(Rk))

T ]

+ (I + K)
(
E[ΘxHkxk] ⊗ E[vk(v

[2]
k − vec(Rk))

T ]
)

+ E[(ΘxHkxk)
T ] ⊗ E[(v

[2]
k − vec(Rk))v

T
k ](I + K)

= (I + K)
(
E[θkθ

T
k ] ◦ E[Hkxkx

T
k HT

k ] ⊗ E[vkv
T
k ]
)
(I + K) + R

(4)
k = R22

k .

Finally, from Property 1, we have that

E[
(
(DΘ

k − Dp
k)HkE[Xk]

) (
(DΘ

s − Dp
s)HsE[Xs]

)T
]

= Cov[CΘ
k , CΘ

s ] ◦
(
HkE[Xk]E[X T

s ]HT
s

)
,

where Cov[CΘ
k , CΘ

s ] = 0 for |k − s| �= 0, 2.

So, the proposition is proven. �

Proposition 4.
a) The initial state X0 and the noises {Wk; k ≥ 0} and {Vk; k ≥ 1} are
uncorrelated.

b) The matrix DΘ
k is independent of (X0, {Wk; k ≥ 0}, V1, . . . , Vk−3, Vk−1).
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Proof. Taking into account Hypothesis 5 and the Kronecker product proper-
ties, the uncorrelation between X0, {Wk; k ≥ 0} and {Vk; k ≥ 1} is obtained.
Moreover, since

(X0, {Wk; k ≥ 0}, V1, . . . , Vk−3, Vk−1) is a function of
(x0, {wk; k ≥ 0}, {vj; j ≤ k − 3, j = k − 1}, {θj; j ≤ k − 3, j = k − 1}) ,

and DΘ
k is a function of θk, the model independence assumptions guarantees

that the matrix DΘ
k is independent of (X0, {Wk; k ≥ 0}, V1, . . . , Vk−3, Vk−1),

and the proof is concluded. �

Linear filtering algorithm for the augmented system. From the proper-
ties established in the previous propositions and reasoning similarly to Section
3, the following recursive algorithm for the LS linear estimator X̂k/k is derived.

The filter state is given by the following relation

X̂k/k = X̂k/k−1 + Gk,kΛ
−1
k Ik, k ≥ 1; X̂0/0 = 0,

where the predictor, X̂k/k−1, is given by

X̂k/k−1 = Fk−1X̂k−1/k−1, k ≥ 1.

The innovation process satisfies

Ik = Yk − Dp
kHkX̂k/k−1 − Υk,k−2Λ

−1
k−2

(
Ik−2 − T T

k−1,k−2Λ
−1
k−1Ik−1

)
, k ≥ 3,

I2 = Y2 − T2,1Λ
−1
1 Y1,

I1 = Y1,

where

Υk,k−2 = Cov[CΘ
k , CΘ

k−2] ◦
(
HkFk−1Fk−2Ek−2HT

k−2

)
+ RV

k,k−2, k ≥ 3,

Ek = Fk−1Ek−1FT
k−1 + QW

k−1, k ≥ 1; E0 = P ∗
0 ,

Tk,k−1 = Dp
kHkFk−1Gk−1,k−1 − Υk,k−2Λ

−1
k−2T T

k−1,k−2, k ≥ 3,

T2,1 = Dp
2H2F1E1HT

1 Dp
1.

The innovation covariance matrix is specified by

Λk = Cov[CΘ
k ] ◦

(
HkEkHT

k

)
+ RV

k,k − Dp
kHkΣk/k−1HT

k Dp
k + Dp

kHkGk,k

+ GT
k,kHT

k Dp
k − Υk,k−2Λ

−1
k−2

(
I + T T

k−1,k−2Λ
−1
k−1Tk−1,k−2Λ

−1
k−2

)
ΥT

k,k−2, k ≥ 3,

Λ2 = E[CΘ
2 CΘT

2 ] ◦
(
H2E2HT

2

)
+ RV

2,2 − T2,1Λ
−1
1 T T

2,1,

Λ1 = E[CΘ
1 CΘT

1 ] ◦
(
H1E1HT

1

)
+ RV

1,1.
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The matrix Gk,k is determined by

Gk,k = Σk/k−1HT
k Dp

k

− Fk−1

(
Fk−2Gk−2,k−2 − Gk−1,k−1Λ

−1
k−1Tk−1,k−2

)
Λ−1

k−2Υ
T
k,k−2, k ≥ 3,

G2,2 = E2HT
2 Dp

2 − F1E1HT
1 Dp

1Λ
−1
1 T T

2,1,

G1,1 = E1HT
1 Dp

1

with

Σk/k−1 = Fk−1Σk−1/k−1FT
k−1 + QW

k−1, k ≥ 1,

Σk/k = Σk/k−1 − Gk,kΛ
−1
k GT

k,k, k ≥ 1, Σ0/0 = P ∗
0 .

5 Numerical simulation example

To illustrate the effectiveness of the proposed estimation algorithms, we con-
sider the same system as in [1] but, according to the current theoretical study,
now the variables modelling the uncertainty of the observations are assumed
to be correlated at sampling times that differ two units of time.

This system consists of a scalar first-order autoregressive model,

xk = 0.95xk−1 + wk−1, k ≥ 1,

where x0 is a zero-mean Gaussian variable with variance P0 = 1 and the process
{wk; k ≥ 0} is a zero-mean white Gaussian noise with variances Qk = 0.1,
∀k ≥ 0. The scalar uncertain observations come from two sensors and are
perturbed by zero-mean white noise processes {vi

k; k ≥ 1}, i = 1, 2,

yi
k = θi

kxk + vi
k, k ≥ 1, i = 1, 2.

These noises have the following probability distributions:

P [v1
k = −8] =

1

8
, P [v1

k =
8

7
] =

7

8
, ∀k ≥ 1,

P [v2
k = 1] =

15

18
, P [v2

k = −3] =
2

18
, P [v2

k = −9] =
1

18
, ∀k ≥ 1,

and variances given by R1
k = 64/7 and R2

k = 19/3, ∀k ≥ 1, respectively.

The variables modelling the uncertainty of each sensor, θi
k, are defined

from two independent sequences of independent Bernoulli random variables,
{γi

k; k ≥ 0}, i = 1, 2 with P [γi
k = 1] = γi. Specifically, the uncertainty

variables are defined by the following relation

θi
k = 1 − γi

k+2(1 − γi
k), i = 1, 2.
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Note that if θi
k = 0, then γi

k+2 = 1 and γi
k = 0, and hence, θi

k+2 = 1. This fact
guarantees that, at each sensor, no more than two consecutive observations
consisting of noise only can be transmitted.

Since the variables γi
k and γi

s are independent, θi
k and θi

s are also indepen-

dent for |k−s| �= 0, 2. The mean of these variables is given by θ
i
= 1−γi(1−γi)

and

E[(θi
k − θ

i
)(θi

s − θ
i
)] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 si |k − s| �= 0, 2

−(1 − θ
i
)2 si |k − s| = 2

θ
i
(1 − θ

i
) si |k − s| = 0

To illustrate the effectiveness of the proposed linear and quadratic filtering
estimators, both algorithms have been implemented in Matlab using different
values of the probabilities γ1 and γ2, which provide different values of the

probabilities θ
1

and θ
2
. Since the values of θ

i
are the same if 1 − γi is used

instead of γi, only the case γi ≤ 0.5 has been considered (note that, in such

case, the probability of transmitting only noise at the ith sensor, 1 − θ
i
, is an

increasing function of γi).

In all the cases considered, the filtering error variances generally present
insignificant variation from a certain iteration onwards; therefore, only the
error variances at a fixed iteration (namely, k = 50) are displayed here in
order to show more clearly the error variance evolution with respect to the
values of γ1 and γ2.

Figure ?? shows the linear and quadratic filtering error variances at k = 50
versus γ1 (for constant values of γ2) and Figure ?? presents these variances
versus γ2 (for constant values of γ1). Both figures show that, as the values γ1

and γ2 increase (which means that the probability of transmitting only noise
increases), the filtering error variances also increase and, therefore, the filtering
estimates are worse. In addition, we also observe that the error variances of the
quadratic filter are always significantly smaller than those of the linear filter,
confirming the higher accuracy of the quadratic estimator over the linear one.

6 Conclusion

Linear and quadratic state estimation problems have been addressed for un-
certain observations coming from multiple sensors and featuring correlation
in the uncertainty at instants that differ two units of time. The observation
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Figure 1: Linear and quadratic filtering error variances at k = 50 versus γ1

with γ2 varying from 0.1 to 0.5

model considered covers those situations where sensors can fail and transmit
only noise, but no more than two consecutive observations without information
on the system state can be transmitted by the same sensor. Simulation results
confirm that, as expected, if the probability of transmitting only noise at one
of the sensors increases, worse estimations are obtained. It must be noticed
that the current correlation model of the variables describing the uncertainty
can be generalized by considering variables correlated at instants that differ m
units of time (m ≥ 2).
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