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Abstract

In this paper, the least-squares linear and quadratic filtering pro-
blems are studied in discrete-time linear stochastic systems with un-
certain observations coming from multiple sensors, when the variables
describing the uncertainty in the observations are correlated at instants
that differ two units of time. The least-squares linear filter is obtained
by using an approach based on innovations. The least-squares quadratic
estimation problem is solved by defining an appropriate augmented sys-
tem, whose state linear filtering estimate provides the quadratic filtering
estimate of the original state vector. A numerical simulation example
shows the effectiveness of the proposed estimation algorithms.
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1 Introduction

The state estimation problem in discrete-time linear systems using observa-
tions which are linear functions of the state and are perturbed by additive
Gaussian white noise has been widely studied. Although different techniques
have been used to address this problem, one of the major contributions has
been the well-known Kalman filter, a recursive solution to the least-squares
(LS) optimal filtering problem in Gaussian linear systems. However, in many
practical situations, the widely used assumption of Gaussian noises cannot be
accepted as a realistic statistical description of the processes involved (see for
instance [11]). In these non-Gaussian systems, the Kalman filter only provides
the LS linear estimator and, generally, determining the optimal estimator in
these cases involves severe computational difficulties, thus being necessary to
look for suboptimal estimators which are easier to obtain, such as linear es-
timators or, even, polynomial estimators which improve the commonly used
linear ones.

Signal estimation problems in the presence of non-Gaussian noises have
been widely studied. De Santis et al. [3] were the first who proposed a
quadratic estimator, that is more accurate than the commonly used linear
one and retains the features of easy computability and recursivity. A gen-
eralization of this study is proposed in [2], where a recursive algorithm for
arbitrary degree polynomial estimators is proposed.

On the other hand, there exists a large number of situations where some
observations may not contain information about the system state, thus being
only noise (uncertain observations). In these cases, the observation equation
includes not only additive noises, but also a multiplicative noise, which is mo-
delled by a sequence of Bernoulli random variables, whose values —one or zero—
indicate the presence or absence of the state in the observation, respectively.
Even if the state and the additive noises are gaussian processes, this multi-
plicative noise component makes the joint distribution of the system state and
observations be non-gaussian and, consequently, the optimal estimator of the
signal is not easily obtainable.

The LS linear and polynomial estimation problems in systems with uncer-
tain observations have been studied by several authors under different hypothe-
ses on the variables modelling the uncertainty of the observations. Among
others, in [10] the linear estimation problem is addressed when the uncertainty
is modelled by independent variables. A more general model is considered in
[8], where polynomial estimation algorithms are proposed using observations
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affected by non-independent uncertainty; this model covers those systems with
different transmission channels, where the signal is randomly transmitted by
one of them and there exists a different probability of uncertainty at each cha-
nnel. More recently, other models have been studied to cover situations where
the maximum number of consecutive observations without information on the
signal is bounded; for example, in [9] the polynomial filtering and smoothing
problems are addressed assuming that the variables describing the uncertainty
are correlated at consecutive sampling times, and this model is applied to
situations where the signal cannot be missing in two consecutive observations.

In all the mentioned papers it is assumed that the observations available
for the estimation come either from a single sensor or from multiple sensors
with identical uncertainty characteristics. In the last years, motivated by the
increasing development of sensor networks for data acquisition and signal pro-
cessing, several authors have generalized this study to cases in which there
are multiple sensors featuring different uncertainty characteristics (see e.g. [4]
for independent variables modelling the uncertainty in the observations, and
[5],[1] for situations where the uncertainty in each sensor is modelled by vari-
ables correlated at consecutive sampling times).

In this paper, the LS linear and quadratic filtering problems with uncertain
observations coming from multiple sensors is addressed, when the Bernoulli
variables modelling the uncertainty in the observations are correlated in ins-
tants that differ two units of time. Hence, the current study provides an
extension of the results established in [1] where Bernoulli variables correlated
at consecutive instants are considered. The aim of this extension is to cover
more general practical situations, for example, signal transmission problems
where no more than two consecutive observations without information of the
signal can be transmitted by the same sensor (this occurs e.g. in sensor net-
works where sensor failures may occur and a failed sensor is replaced not
immediately, but two sampling times after having failed). Finally, the be-
haviour of the proposed estimators is illustrated by a numerical simulation
example where a signal generated by a first-order autoregressive model is esti-
mated from uncertain observations coming from two sensors. The linear and
quadratic estimators are compared in terms of their error covariance matrices
and the performance of both estimators is analyzed for different values of the
uncertainty probabilities.

2 Model description

Consider a discrete-time linear stochastic system with uncertain observations
coming from multiple sensors, whose mathematical modelling is accomplished
by the following equations.
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The state equation is given by
v = Fpxp +wp—y, k2>1, (1)

where {zy; k > 0} is an n-dimensional stochastic process representing the
system state, {wy; kK > 0} is a white noise process and Fy, for k > 1, are
known deterministic matrices.

We consider scalar uncertain observations {yi; k > 1}, i = 1,...,m,
coming from m sensors and perturbed by noises whose statistical properties
are not necessarily the same for all the sensors. Specifically, we assume that,
at each time k, the observation yi from the i-th sensor is perturbed by an
additive noise vector v} and by a multiplicative Bernoulli variable 6:; that is

v = O o+, k21 i=1..,m, (2)

where H}, for k > 1 and i = 1,... ,m, are known deterministic matrices of
appropriate dimensions. When 0! = 1, which occurs with known probability

92, the state xj, is present in the observation yi coming from the i-th sensor
at time k, whereas if 6 = 0 such observation only contains additive noise v,
with probability 1 — 6.

Denoting yx = (Y, .-y, v = (v}, ..., o), Hy = (HT, ..., H'D)T
and Oy = Diag(0;, ... ,07), equation (2) is equivalent to the following stacked
observation equation

Y = @kafk + v, k Z 1. (3)

The LS linear and quadratic estimation problems of the state z, given
by (1) from the observations yi,... ,yx given by (3) have been addressed in
[1] assuming correlation at consecutive time instants between the Bernoulli
variables that model the presence or absence of the state in the observations
coming from each sensor. Our aim in this paper is to generalize the results
obtained in [1] to the case where these variables are correlated in instants that
differ two units of time. Specifically, the following hypothesis is assumed:

Hypothesis 1. For i = 1,...,m, {6i; k > 1} is a sequence of Bernoulli
random variables with P[fi = 1] = @,. The variables 6., and 6/ are independent
for |k —s| #0,2,4,7=1,...,m, and Cov[f:, 6] are known for |k — s| = 0, 2.
Defining 6, = (6},...,07)", the covariance matrices of 5 and 6, will be
denoted by Kg}s.

On the other hand, the LS linear estimator of x; based on yq, ..., ys,
i.e. the linear filter of x, is the orthogonal projection of x; onto the space
of n-dimensional random variables obtained as linear transformations of the
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observations 1, ... , yr, which requires the existence of the second-order mo-
ments of such observations. The LS quadratic estimator of z, based on
Y1, ..., Y, is obtained as the orthogonal projection of x; onto the space of n-
dimensional random variables obtalned be linear transformations of vy, ..., yx

and their second-order powers, y1 ,---,Yg , defined by the Kronecker product,

yz[ I = = 1; ®y;. Hence, the existence of the second-order moments of the vectors

y?], e ,y,[f] is required to address the LS quadratic estimation problem.
To assure the existence of such moments, the following hypotheses are
assumed:

Hypothesis 2. The initial state Zo 1S a random vector with zero mean and
Covlzy) = Py, Cov|xg,x [2]] C’ov[ ] Pé4).

Hypothesis 3. The process {wk, k > 0} is a zero-mean white noise with
Covlwg] = Q, C’ov[wk,w,[f]] 23) and Cov|w [2]] = Q,(:L).

Hypothesis 4. The noise {vx; k > 1} is a zero-mean white process with
Covlvg] = Ry, C’ov[vk,v,&]] R(3) and Cov[v [2]] = R,(f).

Finally, we assume the following hypothesis on the independence of the
initial state and noises:

Hypothesis 5. The initial state zy and the noise processes {wy; k > 0},
{vg; k> 1} and {0;; k > 1} are mutually independent.

3 LS linear estimation problem

Our aim in this section is to obtain the LS linear filter of x; from a recursive
algorithm. For this purpose, an approach based on innovations is used. This
approach consists of transforming the observation process {yx; k& > 1} into
an equivalent one (innovation process) of orthogonal vectors {vx; k > 1},
equivalent in the sense that each set {v4,... 1} generates the same linear
subspace as {y1,... , Yy} (see [6]).

The innovation at time k is defined as vy, = yr — Yk/k—1, Where ¥/, is the
one-stage LS linear predictor of y,. Using the orthogonal projection lemma,
the predictor can be expressed as a linear combination of innovations

k-1
Uk /h—1 = ZTk,iH;ll/ia k>2; ¥i0=0, (4)

i=1

where T, = Ely,v]| and II; = E[yv]] is the covariance of v;.
Similarly, since the innovation is a white process, the state linear filter,
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Tr/k, and the state one-stage linear predictor, Ty ,—1, satisfy
L
@/Lzzsk,iﬂfllfu k>1, L=k, k-1, (5)
i=1

where Si; = Elzivl].
So, the following expression for the filter in terms of the predictor is imme-
diate:

Tk = Trpho1 + Skl v, k>1; To =0, (6)

To derive a recursive linear filtering algorithm, it is necessary to give an
expression for each element of equation (6). Next, an equation for the state
predictor Zy/,—1 in terms of the filter 7, and expressions for the innovation
Vi, its covariance matrix Il and the matrix Sy are obtained.

State predictor Ty ,_1. From hypotheses 3 and 5, it is immediate that the
filter of the noise wy_1 is Wy_1/5—1 = Ewig_1] = 0 and hence, taking into
account equation (1), we have

Trjk—1 = Fr1Tpo1p—1, k2> 1 (7)

Innovation vy,. Since the innovation process is given by vy = yp — Yr/k—1, it
is enough to get an expression for the one-stage predictor of the observation,

Yk /k—1-

From the model hypotheses, it follows that Ty, = O} HySy,, for k > 3,
i < k—2, where ©} = E[O]. From (4) and after some manipulations, we
obtain

k—1

Uk /-1 = Z @ﬁHkSk,inlVi + (Ty k-2 — OV H Sk —2) H;;ing-fz (8)
i=1

+ (Ty k-1 — OF HpSkp—1) I vp .

Denoting Wy, o = Tj x—2 — O} HpSk x—2 and taking into account equation
(3), we obtain:

Uy hoo = E[(O) — O}) Hpxp )]
= E[(8) — O}) Hyzwyy_o] — E[(Or — O7) HyxiJf ok _3)-

From hypotheses 1 and 5, Oy is independent of the innovation v;, for i < k— 3;
hence, E[(©; — ©7F) Hk$k@\g,2/k,3] = 0, and using again (3) for yx_s, we obtain

Ui ho = E[(Or — OF) Hywpry_oHi_,O% ). (9)
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To obtain the above expectation, we use the following property [1]:

Property 1. The random matrices O satisfy the equality E[O;GxmOs] =
E[01,0T) 0 E[G yxm) for any random matrix Gy, x.,, independent of {Oy; k > 1},
where o denotes the Hadamard product ([4 o B);; = A;;Bi;).

Then, from (9), we have
Upnoo = K}y g0 (HiElzpzl o H{ ;).
Now, if we denote Ej = F[zz}], from equation (1) it is clear that
Upko= K} o0 (HiFx1Fy By oHy ) (10)
and Fj can be obtained recursively by
Ep=F By FL +Qpy, k>1; Ey=Dh. (11)
Analogously,

Tk,k—l — @inSka_l = E[(@k — @i) Hkxkylzll]
= K/f,kfl © (HkE[xkngl]leLl) — E[(©), — @g) Hkxkgl?fl/kfﬂ'

Since K,f’kfl = 0 and Yp_1/p—2 = Zi:f Tk_l,iHi_lVi + Tk_l’k_QH];E2Vk_2, we
have:
Ty g1 — OpHySp 1 = —EB[(©) — 6}) Hyawvy oI s

_ (12)
= _\Ijk,k72ﬂki2TlcT—1,kf2'

Next, substituting (10) and (12) in (8) and using (5) for L = k — 1, it is
concluded that
~ o p ~ —1 T —1
Ursk-1 = O HyZy i1 — Vi goodLly (ko — Ty oIl i vi1) s k>3,
Yoy = T2,1Hflyla
Y10 =0
(13)
where Uy, o is given in (10) with Ej, recursively obtained from (11).
Finally, using (12) and taking into account that, from (1), Sk x—1 = Fr—15k—1k-1,
the matrices T 1 in (13) are recursively obtained from
Thog—1 = O HyFoo1Sk—1 -1 — Vol 1 o, k>3,

14
TQ,l - @gHgFlElHiT@Il) ( )

Matriz Si. Since v, = yp — Yr/k—1, we have Sy = Elagr] = Elagyi]| —
E [xk@\g/k_l]. Next, we calculate these expectations.
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On the one hand, from (3) we have that Elzyyl] = E HL O}, Vk> 1.

On the other, from (13) we obtain
E[sz@?/k—ﬂ = E[xk/fZ/k—l]HkT@i
+ (Sk,k72 — Sk,kflﬂlz_llTk—l,kfﬁ H,;_lgklff,k,g, k>3,

El259;,,] = FLE\H] O ' T3 .

Now, the orthogonal projection lemma assures that E[:L‘k?fg/kil] = Ej —
Pyjp—1, where Pyjp_1 = E[(xx — Zpjp—1)(@x — Tr—1)"] is the prediction error
covariance matrix.

Then, using again that Sk,kfl = kalsk,Lk,l and Sk’k,Q = kale72Sk»727k72,
the following expression for Sy is derived

Sie = Pejp_1H O
— Fio1 (FeeaSk—ah—2 — Sk—1p—1 1 Tom1,5-2) H,;EQ\IIZ,k_Q, k>3,
Sap = ExHj ©f — FE H{ O ' Ty,
8171 - ElHlT@Il)
(15)

Finally, from (1), the prediction error covariance matrix P, is recur-

sively calculated from

Pijir = Fyoo1Poijpr By 4 Qrer, k> 1 (16)

with Pyx = E[(z, — Zyk) @k — Tiyr)?], the filtering error covariance matrix,
verifying

Py = Prjr—1 — Sk,kH?SkT,k, kE>1, Pyp=hH. (17)

Covariance matriz of the innovation I, = E[v,vT]. From the orthog-
onal projection lemma, the covariance matrix of the innovation is obtained as
I, = Elyxyi) — E[Jk/k-195 ). From (3) and using Property 1, we have that

Elywyr] = E0x05] o (HyEyHY) + Ry, k> 1.

On the other hand, taking into account (13), a similar reasoning to that
used to derive the matrix Sy leads to the following expression, for k > 3,

E[@k/kﬂ@?ﬂg,ﬂ = glﬁz o (Hk (Ek - pk/kfl) HkT) + \Ifk,kfzﬂ,j_lg\lff,k,g
+ ‘Ifk,k—zﬂlz,lngz—1,k—2H,;12\1/£k_2
+ OV H Iy (Fk72Sk72,k72 + Skfl,k—lﬂig_llkal,k—” H,;_lgklff,k,g
+ [O7HiFi—1 (Fi—2Sk—2—2 + Sk—1k-111;, 1 Too1,5-2) H,;_lQ\If{,k,g}T.
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Next, from (15) we have that, in the above expression,

Froo1 (Fre2Sk-26-2 4+ Sk-1p-1 150 Thm 1 —2) I W 4o
= =Sk + P H{O), k>3

Therefore, the innovation covariance matrix verifies

I, = K}, o (HLEH{ ) + Ry — OV Hy,Pyji—1 H. O} + O Hy S
+ SkT,kaT@Z = Wpall ([ + TkT—l,kﬁHi;—llkaka?Hl;—lQ) \I/ZJ%Q, k=3,
Iy = E[6203] o (HyExHy ) + Ry — To 1T
I, = E[6,67) o (HE\HT) + R;.
(18)
where I denotes the identity matrix of appropriate dimensions.

Finally, the proposed linear filtering algorithm is constituted by equations
(6), (7) and (13)-(18).

4 LS quadratic estimation problem

This section is concerned with the problem of deriving a recursive algorithm
for the LS quadratic estimator of x; based on the observations until time k,
that is, the quadratic filter z7 , .

To obtain this estimator, the following augmented state and observation
vectors are defined

Xy = T € Rn+n2, Vi = Yk c R+
2] 2]
L, Y
Clearly, the n-dimensional space of linear transformations of )y, ..., Y is
equal to the n-dimensional space of linear transformations of yy,... vy and
y?], e ,y,[f]. Therefore, as mentioned in Section 2, the LS quadratic estimator
of x; is the LS linear estimator of z; based on )y,..., s, which is obtained

by extracting the first n entries of the LS linear estimator of X} based on

yla"' 7yk-

To address this problem, we consider the centered vectors Xj = X, — E[X%]
and Yy, = Vx — E[Vk], which verify the following system [1]:

Xp = Fp1Xp1 + Wi, k21,
Vi =DPHp Xy + Vi, kE>1

Fp 0 H, 0 6 (O 0
f pu— p— D p—
k (O Fk[;z]) , Hg ( 0 HE]) ; k ( 0 @E] ;

(19)

with
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_ Wk
W= ((I + K)((Fray) © wy) +wp — UGC@k)) ’

Vg

_ .
e ((I + K)((OrHyar) ® vg) + v — Uec(Rk)) +(Dy = DY He B[],

where DY = E[Df)], vec(+) denotes the ‘vec’ or ‘stack’ operator, which vectori-

zes a matrix (i.e. given a matrix A = ((a;;))i=1,....n, vec(A) = (ai1,... ,an1,
j=1l...m
RN/ T ,anm)T) and K denotes the commutation matrix of appropriate

dimensions (K (v ® u) = u ® v, for any vectors u, v). See [7] for details and
properties of the ‘vec’ operator and commutation matrix.

Next, some relevant statistical properties of the initial condition, Xy, and
the noises involved in the augmented system (19) are presented; these proper-
ties are necessary to derive the linear filtering algorithm for this system.

Proposition 1. The initial state Xy is a zero-mean random vector with

covariance matrix given by
p_ (P R
0 Pé?’) Pé4) :

Proposition 2. The noise {WWy; k > 0} is a zero-mean white noise process
with

r_ow_ [ QO QF
E[Wka ] = Qk = 3)T 29 9
k k
where Q2 = (I + K)(FDo ) @ Q) (I + K) + QY.
The reader is referred to [1] for complete proof of propositions 1 and 2.

Proposition 3. The noise {Vj; k > 1} is a zero-mean process with
i) E[ViVI] =0, |k—s|#0,2.
it) E[ViVi'] = RY}, = R + Cov[CP] o (Hp E[X]E[XTHE) .
iit) E[ViViE,] = Ry, 5 = Cov[CP,CP,) o (Hu E[XWE[XE JJHT ),

where

3)
= _ [’ R o_ (g7 gAr\"
Rk‘(g,@ 3'22)’ cf = (61.627)
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with R2 = (I + K) ((E[0x6F) o (HyDyHT)) ® Ry) (I + K) + R,
Proof. Obviously, E[V)] =0, Vk > 0. Next, denoting

UV,

Vi = ((I + K)((OpHxy) @ vg) + UE] - %C(Rk)) ’

we can write Vi, = Vj, + (DY — DYYHLE[X).
Taking into account Hypothesis 5, we have E[V, ((D® — DPYHE [Xs])T] =
0, Vk, s and therefore

EV,VT] = EVVT + E[((DP — DYYHLE[X]) (D€ — DPYHLE[X.]) .

Considering hypotheses 4 and 5, Property 1 and the Kronecker product
properties [7], we obtain that E[V,V!] = Ry0y s, where ¢ denotes the Kronecker
delta function and Ry is a matrix whose blocks are given by:

ﬁ,lﬁl = Elvvi] = Ry
ﬁ,lf = B[(OpHyzr)" @ vpvf (I + K) + E[vkvl[f]T]
— (62E[(Hyzr)") ® Elugol]) (I + K) + RY = RY
R, = (I + K) (E[6xHyaxal HTO)) @ Elugol]) (I + K)
+ E[(U][f] — vec(Rk))(v,[f] —vec(Ry))T]
+ (I + K) <E[@kaxk] ® E[vk(vl[f] - vec(Rk))TD
+ E[(0,Hpry,)"] © E[(v — vee(Ry)vE)(I + K)
= (I + K) (E646]] 0 B[Hyapal HY) @ Eloeo]]) (I + K) + R = B2,

Finally, from Property 1, we have that

E[((Df — D)YHE[X,)) ((DE — DYYH,E[X,])]
= Cov[Cy, 00 o (HkE[Xk]E[XsT]HST) ,

where Cov[CP,CE] = 0 for |k — s| # 0, 2.
So, the proposition is proven. O

Proposition 4.

a) The initial state Xy and the noises {Wj; & > 0} and {V}; k& > 1} are
uncorrelated.

b) The matrix DY is independent of (Xo, {Wy; k >0}, Vi,..., Vi s, Vi1).
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Proof. Taking into account Hypothesis 5 and the Kronecker product proper-
ties, the uncorrelation between Xy, {Wj; k£ > 0} and {Vj; k > 1} is obtained.
Moreover, since

(Xo, {Wg; k >0}, Vi,...,Vi_3, Vi) is a function of

and DP is a function of 6, the model independence assumptions guarantees
that the matrix DY is independent of (X, {Wg; k> 0}, Vi,..., Vis, Vii1),
and the proof is concluded. O

Linear filtering algorithm for the augmented system. From the proper-
ties established in the previous propositions and reasoning similarly to Section
3, the following recursive algorithm for the LS linear estimator X}, , is derived.

The filter state is given by the following relation
)A(k:/k: = )A(k/k—l + Grily ' T, k> 1 )A(O/o =0,
where the predictor, )A(k/k,l, s given by
)?k/kfl = sz—l)?kfl/kflu k> 1
The innovation process satisfies
Ty = Vi = DYHuXipir — Thnoh s (Lo = T oA L D), k23,

Iy =Y5 — 7271/\1_13/1,
Il = }/17

where

T2 = Cov[CY, Cpy] o (HypFu1Fn-oEn—2Hp_s) + Rl jg, k>3,

& =Tl Fr + Q. k=1, &=DF;,

Tig—1 = DY HeFr-1Gr—1p-1 — Tk,ksz;;_lg'];T,Lk,g, k>3,

To1 = DSHoF1E HT DY,
The innovation covariance matrix is specified by
Ap = Cov[CP] o (HREHY) + RY), — DY HSkm—1Hy DY + DY HyGry

+ g]Z:kHZDZ - Tk,k72A];,12 (I + ,];1;1’]@_2‘/\];,117;971&72‘/\];,12> Tik—Qa k 2 37

Ay = E[CPCS" ] 0 (HabsHY) + Ry, — Toa ATV T,
A = BICPCY" ) o (Hi&sHT) + RY,.
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The matriz Gy, is determined by

Gk = Siyr—1Hy DY

— Fie1 (FacoGro2 -2 — Gro1 1M Tt —2) A;;_lgT{,k,g, k>3,
Gop = EHy DY — F1EHT DYAT'TL,
Gi1=EHI DY

with

Skt = Feo1Srm1po1F g + @y, k> 1,
Yk = Lg/k-1 — gk,kAlzlg]Z:k, k>1, Xo0=0F;.

5 Numerical simulation example

To illustrate the effectiveness of the proposed estimation algorithms, we con-
sider the same system as in [1] but, according to the current theoretical study,
now the variables modelling the uncertainty of the observations are assumed
to be correlated at sampling times that differ two units of time.

This system consists of a scalar first-order autoregressive model,
T = 0.95$k_1 + Wg—1, k Z 1,

where xg is a zero-mean Gaussian variable with variance Py = 1 and the process
{wy; k > 0} is a zero-mean white Gaussian noise with variances @ = 0.1,
Vk > 0. The scalar uncertain observations come from two sensors and are
perturbed by zero-mean white noise processes {vi; k > 1},i=1,2,

yp =i, +vl, k>1, i=12.

These noises have the following probability distributions:

1 8 7
[Uk 8] 87 [Uk‘ 7] 8’ Vk— ’
P[v2—1]——15 13[112——3]_3 P[UQ_—9]_i vk =1
TS B 18’ T e

and variances given by R} = 64/7 and Ri = 19/3, Vk > 1, respectively.

The variables modelling the uncertainty of each sensor, 6i, are defined
from two independent sequences of independent Bernoulli random variables,
{vi; k > 0}, i« = 1,2 with P[y, = 1] = ~;. Specifically, the uncertainty
variables are defined by the following relation

O =1—p(l—"%), i=12



900 I. Garcia-Garrido et al

Note that if 0}, = 0, then 7}, = 1 and 7} = 0, and hence, 6}, = 1. This fact
guarantees that, at each sensor, no more than two consecutive observations
consisting of noise only can be transmitted.

Since the variables 7} and 7 are independent, 6}, and 6 are also indepen-

dent for |k —s| # 0,2. The mean of these variables is given by 6 = 1—~,;(1—~;)
and

0 si |k —s|#0,2

Bt —8)0,—0)) = —(1—0)* silk—s| =2

0(1-0) silk—s/=0

To illustrate the effectiveness of the proposed linear and quadratic filtering
estimators, both algorithms have been implemented in Matlab using different
values of the probabilities v, and ~,, which provide different values of the
probabilities 0 and 0°. Since the values of @ are the same if 1 — v; is used
instead of ~;, only the case 7; < 0.5 has been considered (note that, in such

case, the probability of transmitting only noise at the ith sensor, 1 — 01, is an
increasing function of ;).

In all the cases considered, the filtering error variances generally present
insignificant variation from a certain iteration onwards; therefore, only the
error variances at a fixed iteration (namely, & = 50) are displayed here in
order to show more clearly the error variance evolution with respect to the
values of v, and ~s.

Figure 7?7 shows the linear and quadratic filtering error variances at k = 50
versus 7, (for constant values of v9) and Figure 7?7 presents these variances
versus s (for constant values of ;). Both figures show that, as the values 7,
and 7 increase (which means that the probability of transmitting only noise
increases), the filtering error variances also increase and, therefore, the filtering
estimates are worse. In addition, we also observe that the error variances of the
quadratic filter are always significantly smaller than those of the linear filter,
confirming the higher accuracy of the quadratic estimator over the linear one.

6 Conclusion
Linear and quadratic state estimation problems have been addressed for un-

certain observations coming from multiple sensors and featuring correlation
in the uncertainty at instants that differ two units of time. The observation
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Figure 1: Linear and quadratic filtering error variances at £k = 50 versus v,
with 7, varying from 0.1 to 0.5

model considered covers those situations where sensors can fail and transmit
only noise, but no more than two consecutive observations without information
on the system state can be transmitted by the same sensor. Simulation results
confirm that, as expected, if the probability of transmitting only noise at one
of the sensors increases, worse estimations are obtained. It must be noticed
that the current correlation model of the variables describing the uncertainty
can be generalized by considering variables correlated at instants that differ m
units of time (m > 2).
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