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Abstract

We study the relations among preorders, extensional systems, D-
operators and J-operators. In particular, we investigated the functorial
relations among them.
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1 Introduction and preliminaries

Rough set theory was introduced by Pawlak [4] to generalize the classical
set theory. Rough approximations are defined by a partition of the universe
which is corresponding to the equivalence relation about information. Jarvinen
et.al.[3] define rough approximations on preordered relations that are not nec-
essarily equivalence relations. It is an important mathematical tool for data
analysis and knowledge processing [1-6]. Yao [7,8] investigated the relation
between the operators and rough approximations.

In this paper, we introduce the D-operator and J-operator. We investi-
gated the relation between the operators and the general approximations. We
study the relations among preorders, extensional systems, D-operators and J-
operators. In particular, we investigated the functorial relations among them.

Let X be a set. A relation ex C X x X is called a preorder if it is
reflexive and transitive. If (X, ex) is a preordered set and we define a relation
(z,y) € ex iff (y,2) € ex, then (X, ey') is a preordered set.

2 Preorders and various operators

A function D : P(X) — P(X) is called a D-operator on X if it satisfies the
following conditions:
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(D1) D(A) C A<,

(D2) If A C B, then D(A) > D(B)

(D3) D(A) C D(D(A)).

The pair (X, D) is called a D-space. Let (X, Dx) and (Y, Dy ) be D-spaces.
A map f:(X,Dx) — (Y, Dy) is called a D-map if f(Dx(A)) C Dy(f(A)) for
each A € P(X). Let D; and Dy be D-operators on X. Dy is coarser than D,
it Dy C Ds.

A function J : P(X) — P(X) is called a J-operator on X if it satisfies the
following conditions:

(J1) A C J(A),

(J2) If A C B, then J(A) D J(B)

(J3) J(J(A)) C J(A)e.

The pair (X, J) is called a J-space. Let (X, Jx) and (Y, Jy) be J-spaces.
A map f: (X, Jx) — (Y, Jy) is called a J-map if f~(Jy(B)) D Jx(f~'(B))
for each B € P(Y). Let J; and J; be J-operators on X. Jy is coarser than J;
if J; C Js.

A family F C P(X) is called an eztensional system on X if AS, Ner A; € F
for each A; € F.

Theorem 2.1 Let R be a reflexive relation on X such that (z,y) € R and
(x,z) € R implies (y,z) € R. We define

[BN(A) ={z e X | (VyeY)(ye A—(z,y) € R)}.
Then [[R]] is a D-operator with [[R°]](User Ai) = Nier[[RC]])(A:) for A; C X.

Proof. (D1) If x € A, then z € A &(z,x) ¢ R® iff z € [[R°]](A)°. Hence
[R)(A) C A

(D2) It follows by the definition of [[R]].

(D3) Let x & [[RI([[RI)(A) iff = Fy)(y € [[RI(A) &(xz,y) € R) iff
F (3y)((Vz € X)(z € A — (y,2) € R°) & (z,y) € R) it - (Fy)((Vz €
X)((y,2) e R— 2z ¢ A) & (z,y) € R. Since ((y,2) € R— 2z ¢ A) & (x,y) €
R& (x,z) € R implies ((y,2) € R — 2z ¢ A) & (y,2) € R implies z ¢ A, we
have

(y,2) ER— 2 A) & (x,y) € R& (,2) ER— 2 ¢ A
(y,2) ER— 2 A) & (z,y) ER— (r,2) ER—2¢ A
By M.P., - (Vz € X)((z,2) € R — z ¢ A). Thus, z € [[R]](A).
z & [R(Uier Ai) it (Jy € Y)(y € Uier 4 & (2,9) € R)
iff GyeY)(Fiel)(ye A & (z,y) €R)
it (Jiel)(FyeY)ye A & (z,y) €R)
iff & & Mier[[R7] (A2).
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Theorem 2.2 Let (X, D) be a D-space. Define (x,y) € ep iff v € D({y})°.
Then: (1) D(D(A)) = D(A)¢ and D(D(A)¢) = D(A).

(2) D={A € L* | D(A) = A} is an extensional system.

(3) ep is a preorder on X.

(4) If D(User Ai) = Nier D(A;) for each family {A; | i € T'}, then D = [[e$)]].

Proof. (1) By (D1), D(D(A)) c D(A)“. By (D3), D(D(A)) = D(A).

Since D(A)® € D(D(A)), D(D(A)) D D(D(D(A))) D (D(D(A)))® =
D(A) and D(D(A)¢) C D(A)“.

(2) Let A; € D for all i € I'. Then D(Njer Ai) C Ujer AS. Since A; D
Nier 4i, then AS = D(A;) C D(Njer Ai)- So, Uier A € D(Nier A;). Hence
Nier Ai € D.

Let A € D. Then D(A) = A°. D(A°) = D(D(A)) = D(A)* = A. Thus
AceD.

(3) Since z € {z} € D({z})° from (D1), (z,z) € ep. Let (z,y) € ep
and (y,z) € ep. Since z € D({y})¢ and y € D({z})¢ iff D({y}) C {z}° and
?({Z)}) C {y}*, we have D({z}) = D(D({z})) € D({y}) C {z}. Thus,
T,z) €ep.

(4)

y € D(A) = D(Ugeafr}) iffy € Nyes D({z})
iff (Ve e X)(zx € A—ye D({z}))
iff (Ve e X)(z € A— (y,x) € €)
iff y € [[ep]I(A).
Hence D(A) = [[e%]](A) for each A € P(X).

Theorem 2.3 Let f: X — Y be a function and (Y, Dy) a D-space. Then

(1) f<(Dy) is the coarsest D-operator on X which f is a D-map where
FE(Dy)(A) = f(Dy (f(A))) for cach A C X.

(2) ese(r) = (f % ) Hepy).

(3) Dye(py) © £~ (Doy) = L/ (B) | Dy (B) = B},
(4) If f is onto, then Dy=(p,y = [~ (Dp, ).
()

If Dy (Uier Bi) = Nier Dy (Bi), then f<(Dy)(Uier Bi) = Nier f=(Dy)(Bi)

[(ee03)°T) = [((F x £)eny))] = FE(Dy).
Proof. (1) (D1) /=(Dy)(4) = f{(Dy(F(A)) € f(F(A)) € A7

(D2)
FEDy)((F7(Dy)(A)) = F=(Dy)((f 1Dy (£(A))))
= F Dy (F(f 1Dy (F((A))))))
> F7H(Dy(Dy (f(A))))
S FUDy(£(A)Y) = (f 1Dy (f(A)))°
S (f<(Dy)(A))".
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Since f(f<(Dy)(A)) = (/™ (Dy(f(A)))) C Dy(f(A)), then f : (X, f<(Dy)) —

(Y, Dy) is a D-map. Finally, if f : (X,D;) — (Y, Dy) is a D-map, then
f(D1(A)) C Dy (f(A)). It implies

Dy(A) C f7H(f(D1(A))) € f7H(Dy(f(A))) = [7(Dy)(A)

Hence Dy C f<(Dy).
(2) We have ep=(p,) = (f x f)"*(ep,) from:

(z,y) € ey=(ny) iff v € f<(Dy)({y})°
iff v € f<(Dy)({y})° iff f(x) € Dy (f({z}))°
iff f(z) € Dy({f(y)})° iff (f(z), f(y)) € epy

iff (x,y) € (f x f)"(epy).

€ Dy<(py). Then A° = f<(Dy)(A) = f~1(Dy(f(4))) implies
(f(A)))%). Since Dy ((Dy(f(A)))) = Dy (f(A)), A€ f~ (DDY)-
€ f~Y(Dp, ). Then there exists B € Dp, such that A = f~1(B)

A
with B¢ = Dy(B). Since f is onto, f(A) = f(f~"(B)) = B. So,
A®= f7Y(B%) = fH(Dy(B)) = fH(Dy(f(A))) = f=(Dy)(4)

Thus, A € Df<:(Dy)

(5) f=(Dy)Uier Bi) = fT (Dy(f(Uier B))) = Nier [ (Dy)(B:). By
Theorem 2.2(4), the results hold.

From Theorems 2.1 and 2.3, we can obtain the following corollary.

Corollary 2.4 Let f: X — Y be a function and Ry a reflexive relation on
Y such that (xz,y) € R and (z,2) € R implies (y,z) € R. Then
(1) f<([Rr ]]) is the coarsest D-operator on X which f is a D-map.

(2) er=qre = (f x )M RY]])-

(3) Dy=( [[R ) C T (Dyrg)-

(4) If f is onto then ch([ ey = f (Dyagy)-

(5) llefeqrepll = [[(f x )~ ([Rg ) = ([[RC]])

Example 2.5 Let X = {a,b,¢,d} and Y = {x,y, 2z} be sets and f(a) =
f(b) ==z, f(c) =y, f(d) = z. Define D : P(X) — P(Y) as follows:

D®) =Y, D({z,y}) = {z}, D({y, 2}) = D({=,2}) =0,
D({y}) = D({=z}) = {z}, D({z}) = {z,y}, D(Y) = 0.

We obtain:

€p = {(I7 ZL‘), (I7 y)? (ya I‘), (y7 y)v (27 Z)}
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Since D(U;B;) = N;D(B;), D = [[e}]]. We obtain:

fED){a}) = FH(D(f{a})) = {d} = FT(D){b}) = F=(D){c}), FT(D)(0) =Y,

FED){d}) ={a,b,ct, fE(D)({a,b}) = {d} = fT(D)({a,c}) = F(D)({b, c}),
fE(D){a,d}) =Y = fE(D)({d,d}) = f(D)({c,d}), fT(D)({a,b,c}) = {d},
f¢(D)({a’b’ d}> =0 = f‘i(D)({a,c, d}> = f¢(D)({b7 Gy d}) = f¢(D)(X)>

er=(D) = {(aa (L), (&7 b)? (&7 C): (bu @)7 (bu b)> (bu C)a (Ca @)7 (Ca b)? (Ca C)a (d7 d)}
= (f x f)!(ep).

Theorem 2.6 Let R be a reflezive relation on X such that (x,y) € R and
(x,2) € R implies (y, z) € R. We define

(R)(A) ={r e X [(Fy € X)(y € A" & (2,y) € R)}.
Then (R)¢ is a J-operator with (R)*(MN;er Ai) = Uier(R)°(A;) for A; C X.

Proof. (J1) If x € A°, then z € A° (z,z) € R. Hence z € (R)°
(J3) Let 2 € (R)‘((R)¢(A)) iff H (Fy € X)(y € ((R)°(A

R)iff - (Jy € X)((z,y) € R & (Vz € X)((y,2) € R — z € A)

(Jy € X)(Vz € X)((z,y) € R& ((y,2) € R — z € A)). Since - ((z,v)

R & (z,2) € R& ((y,2) € R— z€ A) — (y,2) € R& ((y,2) € R —
zEA))andl—((y) R & ((y,2) € R—>z€A)—>z€A),byM.P,

thenl—(( y) € € )GR—>ZEA)—>ZEA)). Hence
= ((=, )ER&((@/Z)ERHZ A) = (2) € R — =z € A). So
F(Vze)((z,2) e R— z€ A) iff v € ((R)°(A))".

r € (R)*(Mier Ai) U (3y € X)(y € (Mier Ai)° & (2,y) € R)
iff (Gz e X)Fiel)(ze Af & (z,y) € R)
iff (3i € D)(z € (RY*(A,)
iff © € User (R)“(Nier 4i)-

Theorem 2.7 Let (X, J) be a J-space. Define (x,y) € ey iff x € J({y}°).
Then (1) J(J(A)) = J(A)® and J(J(A)) = J(A).
(2) J ={A e P(X)|J(A) = A%} is an external system.
(3) ey is a preorder on X.
(4) If J(NierA;) = UserJ(A;) for each family {A; | i € T'}, then J = (e)°.
(5) Define D(A) = J(A)¢ for all A C X. Then D is a D-operator.
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Proof. (1) By (J1), J(J(4)) 5 J(AY. By (33), J(J(4)) = J(A).

Since J(A)* > J(J(A)), J(J(A)?)  J(J(J(A))) C (J(J(A)))" = J(A)
and J(J(A)) D J(A)“.

(2) Let A; € J for all i € I'. Then J(Ujer Ai) D Nier AS. Since A; C
Uier 4i, then AS = J(A;) D J(Uier 4i). So, Nier AS D J(Ujer Ai). Hence
Uier 4i € J.

Let A € J. Then J(A) = Ac. J(A°) = J(J(A)) = J(A)¢ = A. Thus
Ace J.

(3) Since x € {z} C J({z}°) from (J1), (z,z) € e;. Let (z,y) € ey
and (y,z) € ey. Since z € J({y}°) and y € J({z}°) iff x € J({y}¢) and
{y} C J({#}°), we have

v e J({y}) € J(J({=39)) = J({=}9)

Thus (z,2) € ey.
(4) Since A = Ngeac{x}®, J(A) = J(Nzeac{x}®) = UgeacJ({2}°). Thus

ye J(A) iffy € Ugear({2}°)
iff (3 € X)(z € A°& y e J({z}9))
iff 3z e X)(z € A& (y,2) € ey)
iff y € {es)°(A).

(5) (D1) D(A) = J(A°)c C A°. (D2) If A C B, then J(A°) C J(B¢). Hence
D(A) D D(B). (D3) D(D(A)) = J(J(A%)) D J(A®) = D(A)".

Theorem 2.8 Let F be an extensional system on X. Then
(1) Define D(A) = UW{F € F | F C A} for A C X. Then D is a
D-operator.

(2) Define J(A) = U{F € F | A° C F} for AC X. Then J is a J-operator.

Proof. (1) (D1) and (D2) are easily proved.

(D3) Since D(D(A)) = U{F € F | F C D(A)‘} and D(A)® € F,
D(D(A)) D D(A)“.

(2) is similarly proved as in (1).

Example 2.9 Let X = {z,y, 2z} be a set.

(1) Let R = {(z,2),(x,y), (z, 2), (y,v), (y, 2), (2, 2)} be a relation. Since
(x,2) € R and (z,y) € R, but (2,y) € R, it does not satisfy the condition of
Theorems 2.1 and 2.6. We obtain [[R°]], (R)¢: P(X) — P(X) as follows:

[RI0) = X, [RY{=}) = {w, 2}, [RNEw}) = {23 (BN, v} = {2},
(B2} = [BT({y, 2}1) = 0 = [[RI({=, 2}) = [[E]](X),
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(B)(0) = X = (R)({z}) = (R)*({y}) = (B)*({z, y}).
(B)*({y, 2}) = {=}, (B)*({z}) = (B)*({=, 2}) = {w,y}, (B)*(X) = 0.
{z} = (RN {=})" ¢ (RN |2}) =
X = R)(R)({y, z})) € (B)({y, 2})) = {v, 2}

(2) Let R = {(z,2), (y,y), (v, 2), (2,y), (2, 2)} be a relation. It satisfies the
condition of Theorems 2.1 and 2.6. We obtain D-operator and J-operator
[R]], (R)¢ : P(X) — P(X) as follows:

[RI0) = X, [R)({=}) = {y. 2}, [BN(w}) = [[BNE=2) = {a} [BI(=,9}) = 0,

[R({y, 2}) = {=}, 0 = [[R]]({z, 2}) = [[R]](X),
(B)°(0) = (B)*({y}) = (B)*({z}) = X, (RB)*({«}) = (R)*({z, y}) = {v, 2},
(B)*({y, 2}) = {=}, (B)*({w, 2}) = {y, 2}, (R)*(X) = 0.

By Theorems 2.2 and 2.7, we can obtain a preorder e = R = e(gy. and ex-
tensional system D = J = {0, X, {z}, {y, z}}. Furthermore, [[R* ]]( Uier 4;) =
Nerl[R(A:) and (R)(N,er A) = Uper(B)(Ay) for 4; € X.

(3) Since D = J = {0, X,{z},{y, z}} in (2), by Theorem 2.8, we obtain
D-operator and J-operator Dp = [[R]], J7(R)®.

Theorem 2.10 Let f: X — Y be a function and (Y, Jy) a J-space. Then
(1) f(Jy) is the coarsest J-operator on X which f is a J-map where
FUIy)(A) = [y (F(A%))) for AC X.
( ) €ra(Jy) (f X f)_l(eJY)'
(3) Tre(ay) € 71T ) ={f71(B) | B* = Jy(B)}.
(4) If f is onto, then Tra(syy = f~HT s )-
(5) If Jy(NierBi) = UierJy (B;), then f(Jy)(NierAs) = Uier f*(Jy)(As)
and

(erae))® = ((f x ) ew ) = f(Jy).

PI‘0(0f-) (1) (J1) £y )(A) = [y (f(A9)9)) D fH(f(A%)) D A
J2

P ((FACh) (A )—f<<Jy>(<f (S (f( >)
1( ( e\ ©
£

<f<<Jy§<A> |
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Since f4(Jy)(f7H(B)) = f~ (S (f(f7H(B°))9)) C [~ (Jy(B)), then f : (X, f(Jy)) —
(Y, Jy) is a J-map. Finally, if f : (X,J;) — (Y, Jy) is a J-map, then

Ji(f~YB)) C f~YJy(B)). Put B = f(A°)°. Then
Ji(A) C L(fTHFA)) C fTHIv (FA)9) = f (v )(A)
Hence J; C f (Jy)

(2) We have epe(sy = (f % f) (e, ) from:

(x,y) € epairyy itz e f2(Jy)({y})
iff 2 € f2(Jy)({y})
iff f(z) € Jy(f({z}))
1fff( ) € Sy({f(1)})

ff(f(2), 1(y)) € ey

1ff (z,y) € (f x ) (en).

(3) Let A € Tpa(sy). Then A¢ = fIU(Jy)(A) = fHJy(f(A9))) implies
' (A%)9))%). Since Jy ((Jy (F(A%)))) = Jy (f(A)%), A € [(Tn).

A= (v (f(A)°
(4) Let A € f(Jy,). Then there exists B € P(Y) such that A = f~(B)
with B¢ = Jy(

= Jy(B). Smce f is onto, f(A°)¢ = f(f~1(B°))¢= B. So,
A® = f7UBY) = [T (v (B)) = [ Iy (f(A))) = f2(Iv)(4)

ThHS, Ae jfd(JY).
(5) Since fUJy)(MierAs) = fFH Iy (f(f7H(UierA9))9)) = Uier f(Jy)(As),
by Theorem 2.7 (4), the results hold.

Example 2.11 Let X = {a,b,¢,d} and Y = {z,y, z} be sets and f(a) =
f(b) =z, f(c) =y, f(d) = z. Define J: P(Y) — P(Y) as follows:
J0) =Y, J({z,y}) ={y. 2}, J({y, 2}) ={a}, J({=, 2}) = {y. 2}.
J{y}) =Y, J({z}) ={y. 2}, J{=}) = Y, J(Y) = 0.

We obtain:
= {(z,2), (v,9), (¥, 2), (2,9), (2, 2)}.
Since J(N Ai) (A) J = (es)°. We obtain:

FANDHa}) = £ I(f{a})) =Y = £ = f(N){e}) = () @),
N =Y, fq( ){a,d}) =Y, f2(J){a,b}) = {c, d}, f(J)({a, c}) =0,
FNEb e}) =0 = f2()({b,d}), f(T)({e, d}) = {a, b},
F(N{a,b,c}) = {e,d}, f4(T){a, b,d}) = {e, d}, f(I)({a, ¢, d}) = {a, b},
FAN{b, ¢, d}) = {a, b}, f4(I)(X) = X.

€y = {(av @)7 (a7 b)> (bu @)7 (bu b)> (Ca C): (Ca d), (d7 C): (d7 d)]’
= (fx )" (es)
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From Theorems 2.6 and 2.9, we can obtain the following corollary.

Corollary 2.12 Let f : X — Y be a function and Ry a reflexive relation
on X such that (x,y) € R and (x,z) € R implies (y,z) € R. Then
(1) fY((Ry)°) is the coarsest J-operator on X which f is a J-map.
2) epa(ryy) = (f X )7 ((By)°).
3) Tre(ryy) C f (Tinyye) = {f71(B) | B* = (Ry)(B)}.
4) If f is onto, then Tparyye) = [~ (Tiryye)-
5) (ea((ry)e)) = ((f x )7 ({(By)))* = f((Ry)°).

N N N /N
— — — —
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