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Abstract 

 
 In this paper we introduce the concept of Topological A*-algebras and prove 
every maximal ideal of a Topological A*-algebra A is closed and every T2 -
Topological A*-algebra is a Haussdorff- space. 
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                                         1. Preliminaries 
 
1.1 Definition:  An algebra (A,∧,*,(-)~,(-)π ,1)  is an A* - algebra if it satisfies : 
For a, b, c∈A 
  (i)   aπ ∨( aπ)~ = 1, ( aπ) π = aπ , where a∨b = (a~∧ b~)∼. 

(ii)  aπ∨ b π = bπ∨ aπ 
 (iii)  (aπ∨ b π )∨cπ = aπ∨ (b π ∨cπ)  

(iv)  (aπ ∧ b π )∨ (aπ ∧ (b π)~) = aπ 
(v)   (a ∧ b )π = aπ∧ b π ,  (a ∧ b  )# = a# ∨ b# ,where a# = (aπ ∨ a~

π)~ 
(vi)   a~

π = (aπ∨a#)~ , a~# = a# 
(vii)  (a∗b) π =  aπ, (a∗b)# = (aπ)~∧(b~

π)~ 

(viii)  a = b if and only if  aπ = bπ, a# = b#. 
 We write 0 for 1~, 2 for 0*1. 
  
1.2 Example:   3 ={0,1,2} with the operations defined below is an A* -algebra. 
 
∧ 0 1 2  ∨ 0 1 2 
0 0 0 2  0 0 1 2 
1 0 1 2  1 1 1 2 
2 2 2 2  2 2 2 2 

 
 
 

  * 0 1 2  x 0 1 2 
0 0 2 2  x~ 1 0 2 
1 1 1 1  xπ 0 1 0 
2 0 2 2      

 
 
1.3 Definition: A  3–ring is a commutative ring (R, +, .,1) with x3 =  x, 3x = 0  
                          for all x in R .        
 
  
1.4 Theorem : 

 
If If  (R, +, ., 1) is a 3-ring then (R,∧, ∗,(-)~, (-)π, 1) is an  A*-algebra,  
where 

               (i) a~ =  1–a 
               (ii) a∧b = 2 (1+a) (1+b) [1+ (1–a) (1–b)] –1 
               (iii)  aπ = 2a–a2 
               (iv) a∗b = (2a–a2) + 2(1–a)2b2

 
 
1.5Theorem  : 

 
Let (R,+, .,1) be a 3-ring and (R, ∧, ∗, (-)~ , (-)π, 1) be the  
associated A*-algebra then 
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                (i) (a+b)π = (a~∧b)π ∨ (a∧b~)π ∨ (a# ∧ b#) 

 
 (a+b) # = (a∧b) π ∨ (a# ∧ b~

π) ∨ (a~
π ∧ b#) 

                (ii) (ab) π = (a∧b) π ∨ (a# ∧ b#) 
 (ab) #  =  (aπ ∧ b#) ∨ (a# ∧bπ) 
 
 
 
1.6Theorem  

 
Let (A, ∧, ∗, (-)~, (-)π,1)  be an A*-algebra then (A, +, . ,1) is a  
3-ring where +, . are defined as follows: 
For a, b ∈ A, 
      a+b = (a+b) π ∗ (a+b)# 
         ab = (ab) π ∗ (ab) #,  Where 
  (a+b)π = (a~∧b) π ∨(a∧b~)π ∨ (a#∧b#) 
  (a+b)# = (a∧b) π ∨ (a#∧b~

π) ∨ ( a~
π∧b#) 

  (ab) π  =  (a∧b) π ∨(a#∧b#) 
  (ab)#    =   (aπ∧b#) ∨ (a# ∧ bπ). 
 

 
1.7 Definition:   Suppose (G,.) is a group. G is called a Topological group, if 
there is a Topology ℑ on  
                           G such that . : G×G→G and (-)-1: G→G are continuous. 
 
 
1.8 Note: (i) For a, b∈ G and every nbd W of ab, ∃ nbds U and V of a, b 
respectively such that UV⊆ W  

                                             where UV = {ab/a∈U,b∈V}. 
  

(ii) For every nbd W of a-1, ∃ a nbd U of a ∋ U-1 ⊆W. 
 
 

 
1.9 Definition:   A Topological Ring is a ring R which is also a Topological –
Space such that both the addition and multiplication are continuous as maps 
R×R→R, where R×R carries the  product topology. 
 
1.10 Definition: A Topological field is a field F in which a Topological ring and   
inversion is continuous, when restricted to F-{0}. 
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1.11 Definition: A Topological A*- algebra A is: an A*-algebra (A,∧,∨,∗,(-)∼ ,(-)π , 
0,1), a Topological Space (A,ℑ) such that ∧,∨,∗, (-)π  , (-) ∼ are continuous with 
respect to the Topology ℑ. 
                                                                                    
 
1.12 Example:  The A*-algebra 3 = {0, 1, 2} with discrete topology is a 
Topological A*-algebra. 
 
1.13 Note: Here after A stands for a Topological A*- algebra. 
 
 
1.14 Notations: Suppose X, Y are subsets of A. Then we define 

Xπ        = {aπ /a∈X}, 
X∼     = {a∼ / a∈X}, 

                                     X∗Y = {a∗b / a∈X, b∈Y}, 
                                    X∨Y = {a∨b / a∈X, b∈Y},      
                                     X∧Y = {a∧b / a∈X, b∈Y}. 

 
 

2. Main Results 
 

 
2.1 Theorem: The following hold in A:  
 

a) If a, b are two elements of A, then for every nbd W of a∧b, there 
exists U, V of a, b respectively such that U∧V⊆W. 

b) If a,b are two elements of A, then for every nbd W of a∨b, there 
exists U,V of a,b respectively such that U∨V⊆W. 

c) If a, b are two elements of A, then for every nbd W of a∗b, there 
exist U, V of a, b respectively such that U∗V⊆W. 

d) If a∈A, then for every nbd W of aπ ,∃ a nbd U of such that Uπ 
⊆W. 

e) If a∈A, then for every nbd W of a∼ , ∃ a nbd U of such that U∼ 
⊆W. 

         Proof:      
a) Suppose a, b∈A and W is a nbd of a∧b. 

                     ∵ ∧: A×A→A is continuous, and a,b∈A, ∃ nbds U and V of a,b 
respectively such that 

 
U×V ⊆∧-1 (W) 

   ⇒ ∧ (U×V)⊆ W 
⇒ ∧ (U×V)⊆ W 
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                                    ⇒ U∧V⊆W.                                                                      

b) Suppose a∈A and W is a nbd of a∨b. 
                       ∵ ∨ : A×A→ A is  continuous , ∃ nbds U and V of a,b 
respectively such that  
                                                                                     
 
 

U×V⊆ ∨ -1 (W) 
 
⇒ ∨ (U×V)⊆W 

   ⇒ U∨V⊆W. 
 

 
c) Suppose a,b ∈A and W is a nbd of a∗b . 

                       ∵ ∗ : A×A→ is continuous, so ∃ nbds U,Vof a,b respectively 
such that U×V⊆∗-1(W). 

 
⇒ ∗(U×V)⊆W. 

   ⇒ U∗V⊆ W. 
 
d) Suppose a∈A and W is a nbd of aπ . 
∵ π :A→A is continuous , ∃ a nbd U of a such that U⊆π -1(W) 

 
⇒    π(U)⊆W 

   ⇒    Uπ ⊆W. 
 
e) Suppose a∈A and W is a nbd of  a∼ 
∵ ∼ :A→A is continuous, ∃ a nbd U of a ∋ U ⊆  ∼-1(W) 

⇒  ∼(U) ⊆W 
              ⇒   U∼ ⊆ W. 
2.2 Theorem: Suppose A is a Topological A*- algebra and a∈A. Then the 
mappings 
 

f: A→A by f(x) = a ∨ x 
  g: A→A by g(x) = a ∧ x 
  h: A→A by h(x) = a ∗ x 
  k: A→A by k(x) =  x∼  
 l : A→A by l (x) =  xπ  are continuous. 

 
 
 Proof: Since k = ∼, l = π, so k, l are continuous. 

∵ ∧: A×A→A is continuous 
   



820                                                                                    V. Amarendra Babu et al 
                 
                       ⇒ ∧/{a} × A is continuous & g = ∧/{a}×A 
  ∴ g is continuous . 
  lly f, h are continuous. 
 
2.3 Note: In A , for a,b∈A, from 1.5 Theorem, 1.6 Theorem; 

a = aπ ∗ a# , then a# ∗ aπ is denoted by (-a) 
  ∴-a = a# ∗ aπ.  
                                                                             
 ∴(-a)π = a# , (-a)# = aπ , (-a)∼π = a∼π. 

[(a∼π ∧ bπ)∨(aπ ∧b∼π) ∨ (a#∧b#)] ∗[(aπ ∧ bπ)∨( a#∧ b∼π)∨( a∼π ∧ b#)] 
is denoted by a+b and 

  [(a∼π ∧ b#)∨(aπ ∧ b∼π)∨(a#∧ bπ)]∗[(aπ ∧ b#)∨( a#∧ b∼π)∨(a∼π ∧ bπ)] is               
denoted by a − b. 
  Clearly a − a = 0, a+b =b+a.  
  a+ a + a = 0, a + a = -a. 

[(a∧b)π ∨ (a#∧b#)] ∗ [(aπ ∧ b#)∨ (a#∧ bπ)] is denoted by ab. 
Clearly ab = ba, 1a = a, 0a = 0.     

 
2.4 Note: In A, x→ a + x, x→ ax are homeomorphisms. 
 
2.5 Theorem: If F is a closed set, U is an open set, P is any set, a is an element of 
A then a F, a+F are closed sets, PU, P+U are open sets. 
 
Proof  : Since x→ ax is a homeomorphism, so aF is a closed set.  
   Since x→ a + x is a homeomorphism, a+F is a closed set. 
   lly aU, a+U are open sets in A. 
   PU   = U

Pa
aU

∈
 is open set. 

             P+U = )(U
Pa

Ua
∈

+ is open set. 

 
2.6 Theorem: Every Topological A*- algebra is a homogeneous algebra i.e., for 
every p, q there is a continuous mapping f: A→A such that f (p) = q. 
Proof:  Define f: A→A by f(x) = (q-p) +x.  
              Then f is continuous and f (p) = q. 
 
2.7 Note: (A,∧,∨,∗,(-)∼ ,(-)π , 0,1) is an A* -algebra .Then (A, +, . ,0,1) is a 3-ring     
where +, . are as defined in 1.6 Theorem, +, .,− and ∧,∨ ,∗,(-)∼, (-)π are equivalent:  
           For a,b∈A,  
    a∼ =1−a  
 a∧b = 2(1+a) (1+b)[1+(1−a)(1−b)]−1 
             aπ = 2a −a2  
        a ∗ b =(2a −a2)+2 (1−a)2 b2. 
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2.8 Theorem: Suppose K, S are subsets of A, then  

a) KS, K+S, K∨S, K∧S, K∗S are compact sets whenever K, S are compact 
sets. 

b) K∼,Kπ are compact sets whenever K is compact set  
                                                                                   

c) KS, K+S, K∨S, K∧S, K∗S are connected sets whenever K, S are 
connected sets. 

d) K∼, Kπ are connected whenever K is connected. 
 
Proof :  

a) Since continuous image of  a compact set is compact ,  
           . : A×A →A is continuous, K, S are compact sets i.e., K×S is compact in    
A×A, so . (K×S) = KS is  compact in A. 
            lly K+S, K∨S, K∧S, K∗S are compact sets. 
 

b) Clear. 
 
c) Since continuous image of a connected set is connected ,  

           . : A×A →A is continuous, K×S is connected in A×A,  
            so, . (K×S ) = KS is connected set.  
            lly K+S, K∨S, K∧S, K∗S are connected sets. 
 

d) Clear. 
 

 
2.9 Theorem: The union of all connected sets containing 0 is a sub A*-algebra. 
 
Proof: Suppose {Ki / i∈I} is the class of all connected sets such that  
 A′ = U

Ii iK
∈

 contains 0. 

       ∵0∈A′ ⇒ 0∈ Ki for some i∈I  
∵ Ki is connected, so Ki

∼  is connected so Ki
∼ is in the class. 

 ∴ 1∈A′.  
lly 2∈A′. 

 Let a∈A′ ⇒  a∈ Ki for some i∈I 
      ⇒ a∼∈ Ki

∼ 
                           ⇒ a∼∈ A′ . 
  Suppose a, b∈ A′⇒ a∈ Ki, b∈ Kj for some i, j ∈I. 
                                                                                  

a∧b∈ Ki ∧ Kj, a ∨ b ∈Ki ∨ Kj , a∗b∈ Ki ∗ Kj,                                                
        aπ∈

πi
K , a∼ ∈Ki

∼. 
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                       ⇒ a∧b ,  a ∨ b, a∗b, aπ, a∼ ∈A′, ∵ Ki ∧ Kj ,  
               Ki ∨ Kj, Ki ∗ Kj,

πi
K , Ki

∼ are connected. 

             ∴ A′ is a sub A*- algebra of A.                      
 
2.10 Definition: A nonempty subset I of an A*-algebra A is said to be an A*-ideal 
of A if  
                             i) a,b∈ I ⇒ a ∨ b, a∗b∈ I. 

                 ii)  a∈ I⇒ aπ , a#∈ I 
                iii) a∈ I , b∈ A  ⇒ aπ bπ , a# b#∈ I  

                (Here xy = x∧y for all x,y∈B(A)) 
 
2.11 Note: (i) In 2.10 (iii), if b =0, then 0∈I. 
                  (ii) Suppose I is an ideal of A*-algebra A. For any a∈A, We define 
     Ia ={b∈A / aπ bπ∼,  aπ∼ bπ, a∼π b∼π ∼,  a∼π ∼  b∼π ∈I}. Then Ia is called a 
coset of A with respect  
                 to I generated by a and  
  I0 ={ b∈A / bπ ,b∼π ∼∈I} 
  I1 ={ b∈A / bπ∼ ,b∼π∈I}  
  I2 = {b∈A / bπ  ,b∼π∈I} and A/I = {Ia / a∈A}. 
 
 
2.12 Theorem: Suppose A is topological A*-algebra and I is closed ideal of A.  
  Then A/I = {Ia / a∈A} is a topological A*-algebra. 
         Proof :         Define ∧,∨,∗,(-)∼ ,(-)π , 0,1,2 in A/I as follows: 

                 Ia∧Ib  = Ia∧b 
                 Ia∨Ib  = Ia∨b 
                 Ia∗Ib  = Ia∗b 
                 ( Ia) π = 

πa
I  

                ( Ia) ∼ = ∼a
I  

             0 = I0, 1 = I1, 2 = I2.  Then (A/I, ∧,∨,∗,(-)∼ ,(-)π, I0, I1,I2) is an A*- 
algebra . 
         Define f: A→A /I by f(a) = Ia where a∈I. 
         Suppose a = b ⇒  Ia = Ib. 
       ∴ f is well defined and clearly f is surjective. 
        Clearly f: A→A /I is an A*- homomorphism. 
        ∴ f: A→A /I is an A*- epimorphism. 
         Suppose ℑI = {f(U) /U∈ℑ}. 
       Since I is closed, ℑI is a topology on   A /I for which ∧,∨,∗,(-)∼ ,(-)π in A /I 
are continuous. 
         ∴ A /I is a Topological A*- algebra. 
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2.13 Theorem: Suppose I is an ideal in the Topological A*-algebra A, then I  is 
also an Ideal in A. 
 
         Proof:  Suppose I is an ideal in the Topological A*-algebra A. 
 I  = {a∈A / Every nbd of a intersects I } 
               Claim: I  is an ideal. 
               Let a,b ∈ I  ⇒ Every nbd of a  and every nbd of b intersect I. 
               Let W be a nbd of a∨b.  
               Then ∃ nbds U,V of a, b respectively ∋ U∨V⊆W. 
   ∵ U, V intersect I, so U∩V intersect I, so W intersect I.  
              ∴a ∨ b∈ I .    
               lly a ∗ b ∈ I .   
        Suppose a∈ I , b∈A. 
               Every nbd of a intersects I. 

Consider a nbd W of aπ bπ. 
    ⇒ ∃ nbd U of ab ∋ Uπ ⊆W  
                ⇒ ∃ nbds V, G of a,b ∋ V∧G ⊆U 
               ⇒ (V∧G)π ⊆ Uπ  
               i.e., Vπ∧Gπ ⊆Uπ ⊆ W. 
               ∵ V intersects I so Vπ intersects I, so Vπ ∩ Gπ . 
               ∴ W intersects I, ∵ Vπ ∧Gπ ⊆G. 
               ∴ aπ bπ ∈ I . 
               lly a# b#∈ I  . 
               Clearly a∈ I ⇒ aπ ,a# ∈ I . 

∴ I  is an ideal. 
 

 
2.14 Theorem: Every maximal ideal M of a Topological A*-algebra A is closed. 
Proof : Clearly M⊆M . 
               But  M  is an ideal of A. 
    ∴ M =M ,  ∵ M is maximal. 
              ∴M is closed. 

 

 
2.15 Note: Na is nbd of a iff Na – a is a nbd of 0 (Na – a = Na – {a} ) . 
 

 
2.16 Theorem: If a Topological A*-algebra A is T2 space then it is a  
                   Hausdorff Space.. 
 

                                                                                   
 
              Proof: Let a, b∈ A and a ≠ b. 
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 ∵ A is T2-Space,∃ Na, Nb nbds of a,b respectively ∋ a ∉ Nb,  b∉Na . 
                Suppose Na ∩ Nb ≠φ.  
                       Let V = Na∩Nb. 

                                  Let C∈ V and C ≠ 0. 
                       Then U = V−C is a nbd of 0. 
  Let Ua = U+a, Ub = U+b then Ua, Ub are nbds of a,b respectively and Ua∩ Ub = φ 
. 
                      ∴ A is a Hausdorff Space. 
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