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Abstract
In this paper we introduce the concept of Topological A™-algebras and prove

every maximal ideal of a Topological A™-algebra A is closed and every T, -
Topological A -algebra is a Haussdorff- space.
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1. Preliminaries

1.1 Definition: An algebra (A,A,*,(-),(-)= ,1) is an A* - algebra if it satisfies :
Fora, b, ceA
(1) av(ay) =1,(ay)=a; whereavh=(a Ab)".
(i) apv b =byva;,
(i) (@xv b p)ver=azv (b rVvCy)
(V) (@Abr)v(@n(br))=2az
(v) (arb).=a.nb,, (@arb) =a"vb* wherea’=(a,va,)
(vi) ax=(ava’) ,a"=a"
(vii) (a*b) = a, (a*b)" = (ax) A(b ™)~
(viii) a=b ifand only if a,=b,, a"=b".
We write 0 for 17, 2 for 0«1.

1.2 Example: 3={0,1,2} with the operations defined below is an A* -algebra.

A | 0 1 2 v | 0 1 2

0 0 0 2 0 0 1 2

1 0 1 2 1 1 1 2

2 2 2 2 2 2 2 2

* |0 1 2 x | 0 1 2
0 0 2 2 X 1 0 2
1 1 1 1 Xy ‘ 0 1 0
2 0 2 2

1.3 Definition: A 3-ring is a commutative ring (R, +, .,1) with x}= x, 3x =0
forallxinR.

14 Theorem: IfIf (R, +,.,1)isa3-ring then (R,A, *,(-)7, (-)r, 1) is an A*-algebra,

where
(i) a= l-a
(ii) anb = 2 (1+a) (1+b) [1+ (1-a) (1-b)] -1
(iii) a, = 2a-a’

(iv) axb = (2a—a?) + 2(1-a)’h?

1.5Theorem : Let (R,+, .,1) be a 3-ring and (R, A, *, (-)~, (-)7, 1) be the
associated A*-algebra then
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(i) (a+h), = (@~Ab): v (arb) v (@" A bY)

(a+b)* = (anb) . v (@* Ab7) v (8% A b
(ii) (ab) » = (anb) . v (@ A b¥)
(ab)* = (ax A b%) v (@ Aby)

1.6Theorem Let (A, A, %, ()7, (-)r,1) be an A*-algebrathen (A, +,.,1)isa
3-ring where +, . are defined as follows:
Fora, b € A,

ath = (a+h) , * (a+b)”
ab = (ab) , * (ab) ¥, Where
(a+b), = (a"Ab)  v(aab), v (a*Ab%)
(a+b)* = (anb) x v (@*Ab ™) v (2 xAb%)
(ab) . = (anb)  v(a*Ab%)
(ab)* = (azAb®) v (@" A by).

1.7 Definition: Suppose (G,.) is a group. G is called a Topological group, if
there is a Topology 3 on
G such that . : GxG—G and (-)™*: G—G are continuous.

1.8 Note: (i) For a, be G and every nbd W of ab, 3 nbds U and VV of a, b
respectively such that UVc W
where UV = {ab/acU,beV}.

(i)  Foreverynbd Wofa®, 3anbdUofa>U*cW.

1.9 Definition: A Topological Ring is a ring R which is also a Topological —
Space such that both the addition and multiplication are continuous as maps
RxR—R, where RxR carries the product topology.

1.10 Definition: A Topological field is a field F in which a Topological ring and
inversion is continuous, when restricted to F-{0}.
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1.11 Definition: A Topological A’- algebra A is: an A™-algebra (A,A,v,*,(-)™,(-)x,
0,1), a Topological Space (A,3) such that A,v,*, (-); , (-) ~ are continuous with
respect to the Topology 3.

1.12 Example: The A’-algebra 3 = {0, 1, 2} with discrete topology is a
Topological A -algebra.

1.13 Note: Here after A stands for a Topological A™- algebra.

1.14 Notations: Suppose X, Y are subsets of A. Then we define
X. ={a:laeX},
X~ ={a laeX},
XxY ={a*b/aeX, beY},
XvY ={avb/aeX, beY},
XAY ={anb/aeX, beY}.

2. Main Results

2.1 Theorem: The following hold in A:

a) If a, b are two elements of A, then for every nbd W of aAb, there
exists U, V of a, b respectively such that UAVcW.

b) If a,b are two elements of A, then for every nbd W of avb, there
exists U,V of a,b respectively such that UvVcW.

c) Ifa, bare two elements of A, then for every nbd W of a=b, there
exist U, V of a, b respectively such that UxVcW.

d) Ifa€A, then for every nbd W of a, ,3 a nbd U of such that U,
cW.

e) IfaeA, then for every nbd W of a~, 3 a nbd U of such that U™
cW.

Proof:
a) Suppose a, be A and W is a nbd of anb.

" AT AxA—A is continuous, and a,beA, 3 nbds U and V of a,b
respectively such that

UxV ca™t (W)
= A (UxV)c W
= A (UxV)c W
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= UAVCW.
b) Suppose acA and W is a nbd of avb.

v i AxA— Ais continuous , 3 nbds U and V of a,b
respectively such that

UxVc v ™ (W)

= v (UxV)cW
= UvVcW.

c) Suppose a,b €A and W is a nbd of a*b .

" * . AxA— is continuous, so 3 nbds U,Vof a,b respectively
such that UxVcx(W).

= *(UxV)cW.
= UxVc W.

d) Suppose acA and W is a nbd of a, .
" 1 :A—>A is continuous , 3 a nbd U of a such that Ucr (W)

= U)W
= U,cW.

e) Suppose acA and W is anbd of a~

" ~:A>A is continuous, 3anbd U ofa> U = ~(W)
= ~(U)cW
= U c<cW.
2.2 Theorem: Suppose A is a Topological A™- algebra and acA. Then the
mappings

f: A>A Dby f(x)=av x
g: A>Abyg(x)=aAX
h: A>A by h(x) =a * X
k: A>A by k(x) = X~
I : A>A byl (x)= X, are continuous.

Proof: Since k =~, | ==, so k, | are continuous.
" AL AxA—A is continuous
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= Al{a} x Ais continuous & g = A/{a}xA
.. g is continuous .
Ily f, h are continuous.

2.3 Note: In A, for a,beA, from 1.5 Theorem, 1.6 Theorem;
a=a;*a ,thena’ = a, is denoted by (-a)
s-a=a *a,.

(=2, (-A) =ar, (@) =2

[(@x A b)v(ax Ab™) v (@°AbM)] *[(ax A b)v(a’A b )v(ax A b)]
is denoted by a+b and

[(@x A b)Vv(az A b7 )v(@ A b)]*[(ax A B)V( @A b)v(@: A by)] is

denoted by a — b.

Clearlya—a=0, a+b =b+a.

ata+a=0a+a=-a

[(anb): v @*Ab%)] = [(ax A b*)v (a’A by)] is denoted by ab.

Clearly ab =ba, la=a, 0a=0.

2.4 Note: In A, Xx— a + X, X— ax are homeomorphisms.

2.5 Theorem: If F is a closed set, U is an open set, P is any set, a is an element of
A then a F, a+F are closed sets, PU, P+U are open sets.

Proof : Since x— ax is a homeomorphism, so aF is a closed set.
Since x— a + x is a homeomorphism, a+F is a closed set.
Ily aU, a+U are open sets in A.
PU = (JaU isopen set.
aeP
P+U= (a+U)is open set.
aeP

2.6 Theorem: Every Topological A™- algebra is a homogeneous algebra i.e., for
every p, g there is a continuous mapping f: A—A such that f (p) =q.
Proof: Define f: A—A by f(x) = (g-p) +x.

Then f is continuous and f (p) = Q.

2.7 Note: (AAv,%,(-)7,(-)x, 0,1) is an A" -algebra .Then (A, +, . ,0,1) is a 3-ring
where +, . are as defined in 1.6 Theorem, +, .,—and A,v ,*,(-)", (-), are equivalent:
Fora,beA,
a =1-a
anb = 2(1+a) (1+b)[1+(1-a)(1-b)]-1
a,=2a-a’
a * b =(2a —a%)+2 (1-a)* b>
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2.8 Theorem: Suppose K, S are subsets of A, then
a) KS, K+S, KvS, KAS, K=S are compact sets whenever K, S are compact
sets.
b) K"K, are compact sets whenever K is compact set

c) KS, K+S, KvS, KAS, K*S are connected sets whenever K, S are
connected sets.
d) K7, K, are connected whenever K is connected.

Proof :
a) Since continuous image of a compact set is compact ,
.- AxA —A is continuous, K, S are compact sets i.e., KxS is compact in
AxA, s0 . (KxS) =KS is compact in A.
Ily K+S, KvS, KAS, K*S are compact sets.

b) Clear.

¢) Since continuous image of a connected set is connected ,
.- AxA —A is continuous, KxS is connected in AxA,
S0, . (KxS) = KS is connected set.

Ily K+S, KvS, KAS, K*S are connected sets.

d) Clear.

2.9 Theorem: The union of all connected sets containing 0 is a sub A™-algebra.

Proof: Suppose {K;/iel} is the class of all connected sets such that
A= | K; contains 0.
iel

""0eA = 0e K; for some iel
"." Kj is connected, so K;~ is connected so K;™ is in the class.
So1eA.
lly 2€A’.
LetacA = ac K; for someicl

=a e K

=aeA.
Suppose a, be A= ac K;, be K;for some i, j el.
anbe Kian Kj, av b eKiv Kj, axbe Kj* K;,

a < Ki ,aeKy.
T
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=anb, avh,a*h, a, a” €A, " KirK;,
Kiv K, K * K;, Ki , Ki™ are connected.
VA
. A'isasub A’- algebra of A.

2.10 Definition: A nonempty subset | of an A -algebra A is said to be an A™-ideal
of A if
i)abe | =avhb,axbe l.
i) ac lI=>a;,a" e |
iiiae |, be A = a.,b,,a b'el
(Here xy = xay for all x,yeB(A))

2.11 Note: (i) In 2.10 (iii), if b =0, then Oel.
(i) Suppose | is an ideal of A™-algebra A. For any acA, We define
lo={beAla,b,, a, b,a,b"~, a,~ b’ el} Then l,is called a
coset of A with respect
to | generated by a and
lo={beA/b; b "el}
I, ={beA/b; b el}
l,={beA /b, ,brel}and A/l = {l,/ acA}.

2.12 Theorem: Suppose A is topological A -algebra and I is closed ideal of A.
Then A/l = {l./ acA} is a topological A”-algebra.

Proof : Define A,v,*,(-)",(-)x, 0,1,2 in A/l as follows:
lanlb = lawp
lavlp = law
|a*|b = |a*b
( Ia)n = Ia
T
()™ =1 _
a

0=1lp, 1=11,2=15 Then (A/l, AV,%(),()m lo, 11,12) isan A™-
algebra .
Define f: A—>A /I by f(a) = 1, where ael.
Supposea=b= l,=1,.
.. fis well defined and clearly f is surjective.
Clearly f: A>A /I is an A"~ homomorphism.
. f. A>A/lis an A”- epimorphism.
Suppose 3, = {f(U) /lUeT}.
Since I is closed, 3, is a topology on A/l for which A,v,*,(-)7,(-)z in A/l
are continuous.
. Allis a Topological A’- algebra.
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2.13 Theorem: Suppose | is an ideal in the Topological A™-algebra A, then I is
also an Ideal in A.

Proof: Suppose | is an ideal in the Topological A™-algebra A.
I ={aeA/Every nbd of a intersects | }
Claim: 1 is an ideal.

Letab e | = Every nbd of a and every nbd of b intersect I.
Let W be a nbd of avb.

Then 3 nbds U,V of a, b respectively > UvVcW.
.~ U, Vintersect I, so UNV intersect I, so W intersect I.
~avbel.
llya*bel.
Suppose ac | , beA.
Every nbd of a intersects I.
Consider a nbd W of a, b;.
= 3dnbdUofab>U,cW
= 3dnbds V, Gofab>VAG cU
= (VAG), c U,
i.e., V.AGcU,cW.
" Vintersects | so Vintersects I, so V. N G, .
- Wintersects I, . V AG, cG.
Coag by e 1.
lly a* bPe 1 .
Clearlyacl = a,a’ el .

-1 isanideal.

2.14 Theorem: Every maximal ideal M of a Topological A™-algebra A is closed.
Proof : Clearly McM .

But M is an ideal of A.
~ M=M, " Mis maximal.
.M is closed.

2.15 Note: Ny is nbd of a iff N,—aisanbd of 0 (N,.—a=N,—{a}).

2.16 Theorem: If a Topological A™-algebra A is T space then itis a
Hausdorff Space..

Proof: Leta, be Aanda=Db.
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" Ais To-Space,3 N,, Np nbds of a,b respectively >a ¢ Ny, beN, .
Suppose Na N Np #¢.
Let V = NanNp,
LetCe Vand C =0.
Then U =V-C is anbd of 0.
Let U, = U+a, Uy = U+b then U,, Uy, are nbds of a,b respectively and U,n Uy = ¢

.. A'is a Hausdorff Space.
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