Topological A*-Algebras

V. Amarendra Babu

Department of Mathematics, Acharyanagarjuna University Nagarjunanagar, 522510, A.P, India amarendravelisela@ymail.com

P. Koteswara Rao

Department of Commerce&Business Admn Acharyanagarjuna University Nagarjunanagar, 522510, A.P, India

K. Moses

Department of Mathematics Andhra Christian College, Guntur, A.P, India mosesk_acc@yahoo.co.in

Abstract

In this paper we introduce the concept of Topological A^* -algebras and prove every maximal ideal of a Topological A^* -algebra A is closed and every T_2 - Topological A^* -algebra is a Haussdorff- space.

Mathematics Subject Classification: 06E05, 06B10

Keywords: A*-algebra, Compact, A*- Ideal

816

1. Preliminaries

1.1 Definition: An algebra $(A, \wedge, *, (-)^{\tilde{}}, (-)_{\pi}, 1)$ is an A^* - algebra if it satisfies :

For a, b, $c \in A$

(i)
$$a_{\pi} \lor (a_{\pi})^{\sim} = 1$$
, $(a_{\pi})_{\pi} = a_{\pi}$, where $a \lor b = (a^{\sim} \land b^{\sim})^{\sim}$.

(ii)
$$a_{\pi} \lor b_{\pi} = b_{\pi} \lor a_{\pi}$$

(iii)
$$(a_{\pi} \lor b_{\pi}) \lor c_{\pi} = a_{\pi} \lor (b_{\pi} \lor c_{\pi})$$

(iv)
$$(a_{\pi} \wedge b_{\pi}) \vee (a_{\pi} \wedge (b_{\pi})^{\tilde{}}) = a_{\pi}$$

(v)
$$(a \wedge b)_{\pi} = a_{\pi} \wedge b_{\pi}, (a \wedge b)^{\#} = a^{\#} \vee b^{\#}, \text{where } a^{\#} = (a_{\pi} \vee a_{\pi})^{\sim}$$

(vi)
$$a_{\pi}^{-} = (a_{\pi} \lor a^{\#})_{\pi}^{-}$$
, $a_{\pi}^{-} = a^{\#}$

(vii)
$$(a*b)_{\pi} = a_{\pi}, (a*b)^{\#} = (a_{\pi})^{\tilde{}} \wedge (b_{\pi}^{\tilde{}})^{\tilde{}}$$

(viii)
$$a = b$$
 if and only if $a_{\pi} = b_{\pi}$, $a^{\#} = b^{\#}$.

We write 0 for 1^{\sim} , 2 for 0*1.

1.2 Example: $3 = \{0,1,2\}$ with the operations defined below is an A* -algebra.

\wedge	0	1	2
0	0	0	2
1	0	1	2
2	2	2	2

V	0	1	2
0	0	1	2
1	1	1	2
2	2	2	2

*	0	1	2
0	0	2	2
1	1	1	1
2	0	2	2

X	0	1	2
x~	1	0	2
$X_{\boldsymbol{\pi}}$	1 0	1	0

1.3 Definition: A 3-ring is a commutative ring (R, +, ., 1) with $x^3 = x$, 3x = 0 for all x in R.

1.4 Theorem : If If (R, +, ., 1) is a 3-ring then $(R, \wedge, *, (-)\tilde{}, (-)_{\pi}, 1)$ is an A^* -algebra, where

(i)
$$\tilde{a} = 1-a$$

(ii)
$$a \wedge b = 2 (1+a) (1+b) [1+ (1-a) (1-b)] -1$$

(iii)
$$a_{\pi} = 2a - a^2$$

(iv)
$$a*b = (2a-a^2) + 2(1-a)^2b^2$$

1.5Theorem: Let (R,+,.,1) be a 3-ring and $(R,\wedge,*,(-)\sim,(-)\pi,1)$ be the associated A*-algebra then

(i)
$$(a+b)_{\pi} = (a \sim \land b)_{\pi} \lor (a \land b^{\tilde{}})_{\pi} \lor (a^{\#} \land b^{\#})$$

(ii)
$$(a+b)^{\#} = (a \wedge b)_{\pi} \vee (a^{\#} \wedge b^{\tilde{}}_{\pi}) \vee (a^{\tilde{}}_{\pi} \wedge b^{\#})$$

$$(ab)_{\pi} = (a \wedge b)_{\pi} \vee (a^{\#} \wedge b^{\#})$$

$$(ab)^{\#} = (a_{\pi} \wedge b^{\#}) \vee (a^{\#} \wedge b_{\pi})$$

1.6Theorem Let $(A, \wedge, *, (-)^{\tilde{}}, (-)_{\pi}, 1)$ be an A^* -algebra then (A, +, ., 1) is a 3-ring where +, are defined as follows:

For
$$a, b \in A$$
, $a+b = (a+b)_{\pi} * (a+b)^{\#}$ $ab = (ab)_{\pi} * (ab)^{\#}$, Where $(a+b)_{\pi} = (\tilde{a} \wedge b)_{\pi} \vee (a \wedge \tilde{b})_{\pi} \vee (\tilde{a}^{\#} \wedge b^{\#})$ $(a+b)^{\#} = (a \wedge b)_{\pi} \vee (\tilde{a}^{\#} \wedge \tilde{b}_{\pi}) \vee (\tilde{a}^{\pi} \wedge b^{\#})$ $(ab)_{\pi} = (a \wedge b)_{\pi} \vee (\tilde{a}^{\#} \wedge b^{\#})$ $(ab)^{\#} = (a_{\pi} \wedge b^{\#}) \vee (\tilde{a}^{\#} \wedge b_{\pi})$.

1.7 Definition: Suppose (G,.) is a group. G is called a Topological group, if there is a Topology $\mathfrak T$ on

G such that . : $G \times G \rightarrow G$ and $(-)^{-1}$: $G \rightarrow G$ are continuous.

1.8 Note: (i) For a, $b \in G$ and every nbd W of ab, \exists nbds U and V of a, b respectively such that $UV \subset W$

where
$$UV = \{ab/a \in U, b \in V\}.$$

- (ii) For every nbd W of a^{-1} , \exists a nbd U of $a \ni U^{-1} \subseteq W$.
- **1.9 Definition**: A Topological Ring is a ring R which is also a Topological Space such that both the addition and multiplication are continuous as maps $R\times R \rightarrow R$, where $R\times R$ carries the product topology.
- **1.10 Definition**: A Topological field is a field F in which a Topological ring and inversion is continuous, when restricted to F-{0}.

- **1.11 Definition:** A Topological A*- algebra A is: an A*-algebra $(A, \land, \lor, *, (-)^{\sim}, (-)_{\pi}, 0,1)$, a Topological Space (A,\mathfrak{T}) such that $\land, \lor, *, (-)_{\pi}, (-)^{\sim}$ are continuous with respect to the Topology \mathfrak{T} .
- **1.12 Example:** The A^* -algebra $3 = \{0, 1, 2\}$ with discrete topology is a Topological A^* -algebra.
- **1.13 Note**: Here after A stands for a Topological A*- algebra.
- **1.14 Notations:** Suppose X, Y are subsets of A. Then we define

$$\begin{array}{ll} X_{\pi} &= \{a_{\pi}/a{\in}X\},\\ X^{\sim} &= \{a^{\sim}/a{\in}X\},\\ X{*}Y = \{a{*}b/a{\in}X,b{\in}Y\},\\ X{\vee}Y = \{a{\vee}b/a{\in}X,b{\in}Y\},\\ X{\wedge}Y = \{a{\wedge}b/a{\in}X,b{\in}Y\}. \end{array}$$

2. Main Results

- **2.1 Theorem:** The following hold in A:
 - a) If a, b are two elements of A, then for every nbd W of $a \land b$, there exists U, V of a, b respectively such that $U \land V \subseteq W$.
 - b) If a,b are two elements of A, then for every nbd W of $a\lor b$, there exists U,V of a,b respectively such that $U\lor V\subseteq W$.
 - c) If a, b are two elements of A, then for every nbd W of a*b, there exist U, V of a, b respectively such that $U*V\subseteq W$.
 - d) If $a \in A$, then for every nbd W of a_{π} , \exists a nbd U of such that $U_{\pi} \subseteq W$.
 - e) If $a \in A$, then for every nbd W of a^{\sim} , \exists a nbd U of such that $U^{\sim} \subseteq W$.

Proof:

a) Suppose a, $b \in A$ and W is a nbd of $a \land b$.

 \therefore \land : $A \times A \rightarrow A$ is continuous, and $a,b \in A$, \exists nbds U and V of a,b respectively such that

$$U \times V \subseteq \wedge^{-1}(W)$$

$$\Rightarrow \wedge (U \times V) \subseteq W$$

$$\Rightarrow \wedge (U \times V) \subset W$$

$$\Rightarrow$$
 U \land V \subset W.

b) Suppose $a \in A$ and W is a nbd of $a \lor b$.

 $\because \vee : A {\times} A {\to} \, A$ is continuous , \exists nbds U and V of a,b respectively such that

$$U\times V\subset \vee^{-1}(W)$$

$$\Rightarrow \lor (U \times V) \subset W$$

$$\Rightarrow U \lor V \subseteq W$$
.

c) Suppose $a,b \in A$ and W is a nbd of a*b.

 \therefore * : A×A \rightarrow is continuous, so \exists nbds U,Vof a,b respectively such that U×V \subset * $^{-1}$ (W).

$$\Rightarrow *(U \times V) \subseteq W.$$
$$\Rightarrow U * V \subset W.$$

d) Suppose $a \in A$ and W is a nbd of a_{π} .

 $\therefore \pi : A \rightarrow A$ is continuous, \exists a nbd U of a such that $U \subseteq \pi^{-1}(W)$

$$\Rightarrow \pi(U)\subseteq W$$

$$\Rightarrow U_{\pi} \subseteq W$$
.

e) Suppose $a \in A$ and W is a nbd of a^{\sim}

∴ ~:A
$$\rightarrow$$
A is continuous, \exists a nbd U of a \ni U \subseteq ~ $^{\text{-1}}(W)$

$$\Rightarrow \sim (U) \subseteq W$$

$$\Rightarrow U^{\sim} \subset W$$
.

2.2 Theorem: Suppose A is a Topological A^* - algebra and $a \in A$. Then the mappings

f:
$$A \rightarrow A$$
 by $f(x) = a \lor x$

g:
$$A \rightarrow A$$
 by $g(x) = a \wedge x$

h:
$$A \rightarrow A$$
 by $h(x) = a * x$

$$k: A \rightarrow A \text{ by } k(x) = x^{\sim}$$

 $1: A \rightarrow A$ by $1(x) = x_{\pi}$ are continuous.

Proof: Since $k = \sim$, $l = \pi$, so k, l are continuous.

$$\therefore \land : A \times A \rightarrow A$$
 is continuous

⇒
$$\wedge$$
{a} × A is continuous & g = \wedge {a}×A
∴ g is continuous .
lly f, h are continuous.

2.3 Note: In A , for a,b \in A, from 1.5 Theorem, 1.6 Theorem;

$$a=a_{\pi}*a^{\#}$$
 , then $a^{\#}*a_{\pi}$ is denoted by (-a)
 \therefore -a = $a^{\#}*a_{\pi}.$

$$\begin{array}{c} \therefore (-a)_{\pi} = a^{\#} \;,\; (-a)^{\#} = a_{\pi} \;,\; (-a)^{\tilde{}}_{\;\;\pi} = a^{\tilde{}}_{\pi}. \\ \qquad \qquad [(a^{\tilde{}}_{\;\pi} \wedge b_{\pi}) \vee (a_{\pi} \wedge b^{\tilde{}}_{\;\pi}) \vee (a^{\#} \wedge b^{\#})] \; *[(a_{\pi} \wedge b_{\pi}) \vee (\; a^{\#} \wedge \; b^{\tilde{}}_{\;\pi}) \vee (\; a^{\tilde{}}_{\;\pi} \wedge \; b^{\#})] \\ \text{is denoted by a+b and} \end{array}$$

$$[(a^{\widetilde{}}_{\pi} \wedge b^{\#}) \vee (a_{\pi} \wedge b^{\widetilde{}}_{\pi}) \vee (a^{\#} \wedge b_{\pi})] * [(a_{\pi} \wedge b^{\#}) \vee (a^{\#} \wedge b^{\widetilde{}}_{\pi}) \vee (a^{\widetilde{}}_{\pi} \wedge b_{\pi})] \text{ is denoted by } a - b.$$

Clearly
$$a - a = 0$$
, $a + b = b + a$. $a + a + a = 0$, $a + a = -a$. $[(a \land b)_{\pi} \lor (a^{\#} \land b^{\#})] * [(a_{\pi} \land b^{\#}) \lor (a^{\#} \land b_{\pi})]$ is denoted by ab. Clearly $ab = ba$, $1a = a$, $0a = 0$.

- **2.4 Note**: In A, $x \rightarrow a + x$, $x \rightarrow ax$ are homeomorphisms.
- **2.5 Theorem:** If F is a closed set, U is an open set, P is any set, a is an element of A then a F, a+F are closed sets, PU, P+U are open sets.

Proof: Since $x \rightarrow ax$ is a homeomorphism, so aF is a closed set.

Since $x \rightarrow a + x$ is a homeomorphism, a+F is a closed set.

lly aU, a+U are open sets in A.

 $PU = \bigcup aU$ is open set.

 $a \in P$

P+U =
$$\bigcup (a+U)$$
 is open set.
 $a \in P$

2.6 Theorem: Every Topological A^* - algebra is a homogeneous algebra i.e., for every p, q there is a continuous mapping f: $A \rightarrow A$ such that f(p) = q.

Proof: Define f: A \rightarrow A by f(x) = (q-p) +x.

Then f is continuous and f(p) = q.

2.7 Note: $(A, \land, \lor, *, (-)^{\sim}, (-)_{\pi}, 0, 1)$ is an A^* -algebra .Then (A, +, .., 0, 1) is a 3-ring where +, . are as defined in 1.6 Theorem, +, .,– and $\land, \lor, *, (-)^{\sim}, (-)_{\pi}$ are equivalent:

For
$$a,b \in A$$
,
 $a^{\sim} = 1-a$
 $a \wedge b = 2(1+a) (1+b)[1+(1-a)(1-b)]-1$
 $a_{\pi} = 2a - a^{2}$
 $a * b = (2a - a^{2}) + 2 (1-a)^{2} b^{2}$.

- **2.8 Theorem:** Suppose K, S are subsets of A, then
 - a) KS, K+S, K \vee S, K \wedge S, K*S are compact sets whenever K, S are compact sets.
 - b) K^{\sim}, K_{π} are compact sets whenever K is compact set
 - c) KS, K+S, K \lor S, K \land S, K*S are connected sets whenever K, S are connected sets.
 - d) K^{\sim} , K_{π} are connected whenever K is connected.

Proof:

- a) Since continuous image of a compact set is compact,
- .: $A \times A \to A$ is continuous, K, S are compact sets i.e., $K \times S$ is compact in $A \times A$, so . $(K \times S) = KS$ is compact in A.

lly K+S, K \vee S, K \wedge S, K*S are compact sets.

- b) Clear.
- c) Since continuous image of a connected set is connected,
 .: A×A →A is continuous, K×S is connected in A×A,
 so, . (K×S) = KS is connected set.
 lly K+S, K∨S, K∧S, K*S are connected sets.
- d) Clear.
- **2.9 Theorem:** The union of all connected sets containing 0 is a sub A*-algebra.

Proof: Suppose $\{K_i \, / \, i {\in} I\}$ is the class of all connected sets such that

$$A' = \bigcup_{i \in I} K_i$$
 contains 0.

 $\because 0{\in}A^{'} \Longrightarrow 0{\in}\ K_{i}\ \text{for some }i{\in}I$

: K_i is connected, so K_i^{\sim} is connected so K_i^{\sim} is in the class.

lly
$$2 \in A'$$
.

Let
$$a \in A' \Rightarrow a \in K_i$$
 for some $i \in I$
 $\Rightarrow a \in K_i$
 $\Rightarrow a \in K_i$
 $\Rightarrow a \in A'$.

Suppose $a, b \in A \Rightarrow a \in K_i, b \in K_j$ for some $i, j \in I$.

$$a \land b \in K_i \land K_j$$
, $a \lor b \in K_i \lor K_j$, $a * b \in K_i * K_j$, $a_{\pi} \in K_i$, $a^{\sim} \in K_i^{\sim}$.

$$\begin{split} & \Rightarrow a \wedge b \;,\; a \vee b,\, a*b,\, a_{\pi},\, a^{\tilde{\ }} \in A^{'}, \; \vdots \; K_{i} \wedge K_{j} \;, \\ & K_{i} \vee K_{j},\, K_{i}*K_{j}, K_{i} \atop \pi \;,\; K_{i}\tilde{\ } \; \text{are connected.} \end{split}$$

∴ A' is a sub A*- algebra of A.

2.10 Definition: A nonempty subset I of an A*-algebra A is said to be an A*-ideal of A if

i)
$$a,b \in I \Rightarrow a \lor b$$
, $a*b \in I$.
ii) $a \in I \Rightarrow a_{\pi}$, $a^{\#} \in I$

iii)
$$a \in I$$
, $b \in A \implies a_{\pi} b_{\pi}$, $a^{\#} b^{\#} \in I$

(Here $xy = x \land y$ for all $x,y \in B(A)$)

2.11 Note: (i) In 2.10 (iii), if b = 0, then $0 \in I$.

(ii) Suppose I is an ideal of A*-algebra A. For any $a \in A$, We define $I_a = \{b \in A \ / \ a_\pi \ b_\pi^-, \ a_\pi^- \ b_\pi^-, \ a_\pi^- \ b_\pi^-, \ a_\pi^- \ b_\pi^- \in I\}$. Then I_a is called a coset of A with respect

to I generated by a and

$$\begin{split} &I_0 = \!\! \{ \ b \! \in \! A \ / \ b_\pi \ , \! b^{^{\sim}}_\pi \, ^{^{\sim}} \! \in \! I \} \\ &I_1 = \!\! \{ \ b \! \in \! A \ / \ b_\pi \, ^{^{\sim}}_\pi , \! b^{^{\sim}}_\pi \! \in \! I \} \\ &I_2 = \!\! \{ b \! \in \! A \ / \ b_\pi \ , \! b^{^{\sim}}_\pi \! \in \! I \} \ \text{and} \ A \! / \! I = \!\! \{ I_a \ / \ a \! \in \! A \}. \end{split}$$

2.12 Theorem: Suppose A is topological A*-algebra and I is closed ideal of A.

Then $A/I = \{I_a / a \in A\}$ is a topological A^* -algebra.

Proof: Define $\wedge, \vee, *, (-)^{\sim}, (-)_{\pi}, 0, 1, 2$ in A/I as follows:

$$I_{a} \wedge I_{b} = I_{a \wedge b}$$

$$I_{a} \vee I_{b} = I_{a \vee b}$$

$$I_{a} * I_{b} = I_{a * b}$$

$$(I_{a})_{\pi} = I_{a}_{\pi}$$

$$(I_{a})^{\sim} = I_{a}^{\sim}$$

 $0 = I_0, \ 1 = I_1, \ 2 = I_2.$ Then $(A/I, \land, \lor, *, (-)^{\sim}, (-)_{\pi}, \ I_0, \ I_1, I_2)$ is an A^* -

algebra.

Define f: $A \rightarrow A / I$ by $f(a) = I_a$ where $a \in I$.

Suppose
$$a = b \implies I_a = I_b$$
.

: f is well defined and clearly f is surjective.

Clearly f: $A \rightarrow A /I$ is an A^* - homomorphism.

 \therefore f: A \rightarrow A /I is an A*- epimorphism.

Suppose $\mathfrak{I}_I = \{ f(U) / U \in \mathfrak{I} \}.$

Since I is closed, \mathfrak{T}_I is a topology on A /I for which $\land,\lor,*,(-)^{\sim},(-)_{\pi}$ in A /I are continuous.

∴ A /I is a Topological A*- algebra.

823

2.13 Theorem: Suppose I is an ideal in the Topological A*-algebra A, then \overline{I} is also an Ideal in A.

Proof: Suppose I is an ideal in the Topological A*-algebra A.

 $\overline{I} = \{a \in A \mid \text{Every nbd of a intersects I }\}$

Claim: \overline{I} is an ideal.

Let $a,b \in \overline{I} \Rightarrow$ Every nbd of a and every nbd of b intersect I.

Let W be a nbd of avb.

Then \exists nbds U,V of a, b respectively \ni U \lor V \subseteq W.

 \therefore U, V intersect I, so U \cap V intersect I, so W intersect I.

$$\therefore$$
 a \vee b $\in \overline{I}$.

lly
$$a * b \in \overline{I}$$
.

Suppose $a \in I$, $b \in A$.

Every nbd of a intersects I.

Consider a nbd W of $a_{\pi} b_{\pi}$.

$$\Rightarrow \exists \text{ nbd } U \text{ of ab } \ni U_{\pi} \subseteq W$$

$$\Rightarrow \exists \text{ nbds } V, G \text{ of a,b } \ni V \land G \subset U$$

$$\Rightarrow (V \land G)_{\pi} \subseteq U_{\pi}$$

i.e.,
$$V_{\pi} \land G_{\pi} \subseteq U_{\pi} \subseteq W$$
.

 \because V intersects I so V_{π} intersects I, so $V_{\pi} \cap G_{\pi}$.

 $\therefore \text{ W intersects I, } \because V_{\pi} \land G_{\pi} \subseteq G.$

$$\therefore a_{\pi} b_{\pi} \in \overline{I}$$
.

lly
$$a^{\#}b^{\#} \in \overline{I}$$
.

Clearly $a \in \overline{I} \Rightarrow a_{\pi}, a^{\#} \in \overline{I}$.

 \vec{I} is an ideal.

2.14 Theorem: Every maximal ideal M of a Topological A*-algebra A is closed.

Proof: Clearly $M \subset \overline{M}$.

But \overline{M} is an ideal of A.

- \therefore M = \overline{M} , \therefore M is maximal.
- ∴ M is closed.
- **2.15 Note:** N_a is nbd of a iff $N_a a$ is a nbd of 0 ($N_a a = N_a \{a\}$).
- **2.16 Theorem:** If a Topological A*-algebra A is T₂ space then it is a Hausdorff Space..

Proof: Let a, $b \in A$ and $a \neq b$.

 \therefore A is T₂-Space, \exists N_a, N_b nbds of a,b respectively \ni a \notin N_b, b \notin N_a.

Suppose $N_a \cap N_b \neq \emptyset$.

Let $V = N_a \cap N_{b.}$

Let $C \in V$ and $C \neq 0$.

Then U = V - C is a nbd of 0.

Let $U_a = U + a$, $U_b = U + b$ then U_a , U_b are nbds of a,b respectively and $U_a \cap U_b = \phi$

∴ A is a Hausdorff Space.

References

- 1. V.I.Arnantov, M.I.Vodinchar & A.V.Michalev, "Introduction to the theory of Topological Rings and Modules", *Krishnev*, 1981.
- 2. N.Bourbaki, "Topological Vector Spaces", Springer (1987).
- 3. J.V.Deshpande, "Introduction to Topology", *Tata McGraw Hill Company*, New Delhi.
- 4. P.Koteswara Rao, "A* -algebras and If –Then –Else Structures", Unpublished *Ph. D. Thesis*, Nagarjuna University (1994), Andhra Pradesh, India.
- 5. P.Koteswara Rao, and Venkateswara Rao J, "Boolean algebras and A* -algebras", *Journal of Pure Math.*, Vol.20 (2003), Pp.33-38.
- 6.P.Koteswara Rao, and Venkateswara Rao J, "Prime Ideals and Congruences in A* -algebras", *Southeast Asian Bulletin of Mathematics*, Vol. 28 (2004), Pp.1099-1119.
- 7. A.I. Maltsoev, "The Meta Mathematics of Algebraic Systems" Collected Papers (1936-1937).
- 8. L.S. Pontryagin, "Topological Groups", Princeton University Press (1958).

Received: August, 2011