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Abstract

In this paper, the peakons of a generalized CH-KP equation are stud-
ied by using bifurcation and simulation methods. The representations
of peakons are given, and their planar graphs are showed. These results

are supplement to investigate CH-KP equation.
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1 Introduction and main results

Wazwaz [1] considered the following water wave equations given by

[ws + 2Kty — Uyt — QU Uy) 5 + Uy = 0, (1.1)
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and

[ + 2Kty — Uggr + au™(U") ]z + Uy = 0, (1.2)

where a > 0, k € R and n is called the strength of the nonlinearity. Eqs. (1.1)
and (1.2) are called CH - KP equations. Lai et al. [2] studied the generalized
forms of CH - KP, which are written by

[we + 2k, — (U™) gzt — QU Ug]y + Uy = 0, (1.3)

and

[we 4+ 2kuy — (™) gt + au™ (U") ]z + wyy = 0. (1.4)

and derived families of exact travelling wave solutions of Eqs. (1.3) and (1.4).
Biswas [3] obtained an exact 1 - soliton solution of (1.3) and (1.4) by the soli-
tary wave ansatze. Zhang et al. [4] showed that Eq. (1.3) has some smooth
and non-smooth travelling wave solutions by using the bifurcation theory of
planar dynamical systems, and also obtained the expressions of solitons, com-
pactons and periodic solutions, under some especial conditions. However, it
is usually difficult to solve gCH - KP for arbitrary m or n, so we study the
peakon solutions of following gCH - KP.

[ur + 2k, — (U?)par — autLy), + Uy, = 0. (1.5)

In this paper, by using bifurcation and simulation methods [5-7], the peakons
of Eq. (1.5) are studied for a < 0. The explicit expressions of peakons are
given.

In order to state our main results conveniently, for given constant a < 0, ¢ #

—c —c+1)2-2q
0and g # 0, let g1 = (2k—26a+1)2’ go = 4(2k;2+1)2 and g = 2k—ct1£ (i’f +1)2—2ag

for g > g1(c).
Proposition 1. If k < —%,c <2k+1,9=gg ork > %,c < 0,9 = g2, then
the Eq. (1.5) has a peakon solution (see Fig. 1 (a)) as follows:

u(w,y,1) = 941~ exp(— o 4y — ct])] (16)
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Proposition 2. Ifk < —3,2k+1 < ¢ < 0,9 = g2, then Eq. (1.5) has a
peakon solution (see Fig. 1 (b)) as follows:

u(w,y, 1) = p-[L— exp(—/ o 4y — ct])] (1.7)

Example 1. Lettinga = —1,k = —2,¢c = —5, then gy = —2 and g, = —1#96.

Taking g = —%, we have ¢_ = —% and ¢, = —%. Substituting these data into
(1.6), on £ —u plane we draw a peakon graph as Fig.1 (a), where £ = x4y —ct.

Example 2. Letting a = —1,k = —4,¢ = —1, then ¢4 = —18 and
g2 = —16. Taking g = —16, we have ¢_ = 8 and ¢, = 4. Substituting these
data into (1.7), on £ — u plane we draw a peakon graph as Fig.1 (b), where

E=x+y—ct

2 Preliminary

For a < 0, making the transformation u(x,y,t) = (&) with § = z+y —ct
in Eq. (1.5), we have:

[(2k — )¢’ + c(¢?)" — ap’] + " =0, (2.1)

where ¢ is the wave speed. We note that time t is lost as ¢ = 0, so we just
discuss the case ¢ # 0.
Integrating (2.1) once with respect to & and neglecting integral constant,

we have the following ordinary differential equation:
(2k —c+ 1)y — apy’ + c(¢?)" = 0. (2.2)
Integrating (2.2) once, we have the following travelling wave equation:
2k —c+1)p — %902 +c(¢?)" =g, (2.3)

where ¢ is integral constant. Zhang et al. [4] have studied the case g = 0, so

we just discuss the case g # 0.
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Let ¢’ = z, Eq. (2.3) becomes the following two dimensional system:

d_SO =z
a2 o e (2.4)
dz __ 3% (2k—c+1)p+g—2cz*

d¢ 2cp

which is called travelling wave system.

Let
d¢ = 2cpdr, (2.5)
then system (2.4) becomes:
de _
ar = 20 . (2.6)
E =502k —c+1)p+g— 22

Thus systems (2.4) and (2.6) have same fist integral

a , 22k—c+1) 4

2
-+ - = h. 2.7
480 3 ¥ —g¥ (2.7)

H(yp, 2) = 2cp®2* —

Using the dynamical system theory of planar systems, we know that the
singular points of system (2.6) have following properties.

(1) When gc > 0, (0, j:\/%) are two saddle points.

(2) When g = gy, (%, 0) is a degenerate saddle point.

(3) When g > 0and k < —3,¢>0or k> —1,¢> 0, (¢-,0) and (p4,0)
are two center points.

(4) When g > 0 and k < —%,c <0ork> —%,c <0, (p_,0) and (¢4,0)
are two saddle points.

(5) When ¢; < g < 0,c<0and 2k —c+1>0, (p_,0) is a center point,
(p+,0) is a saddle point.

(6) When ¢; < g < 0,¢ < 0and 2k —c+1 <0, (¢_,0) is a saddle point,
(p4,0) is a center point.

(7) When ¢; < g < 0,¢>0and 2k —c+1 >0, (¢_,0) is a saddle point,
(p+,0) is a center point.

(8) When ¢ < g < 0,¢>0and 2k —c+1 <0, (p_,0) is a center point,
(p4,0) is a saddle point.

According to the above analysis, we draw the some bifurcation phase por-

traits of (2.4) and (2.6) which are show in Fig. 2.
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3  The proof of main results

Based on the above analysis, we compute the peakon wave solutions of Eq.
(1.5). From (2.7), because a cusp wave correspond a non-smooth close orbit,
therefore we can get a cusp wave solution integrating along a non-smooth close
orbit.

Case 1 k < —%,c<2k+1,g:g2 or k> %,c<0,g:g2.
In this case, the orbit of system (2.6) which passes through (¢4,0) is a

non-smooth close orbit (see Fig. 2 (a) I'}), it has expression as follows:
/5P — s (3.1)
z= —(p— .
Substituting (3.1) into fl—“g = z and integrating it along I';, we have
o1 0
/ ds — / JLds, for £ <0, (3.2)
p 5= Pt ¢ V8¢
e 1 ¢ [a
/ ds = / JLds, for £>0. (3.3)
0 S— Yt o V8¢

From (3.2) and (3.3), we obtain a peakon solution u(z,y,t) = ¢(&§) as

where ¢, < 0.

and

follows:
a
p(€) = 941 — exp(— [ Ze])]. (34
Here we complete the proof of Proposition 1.
Case 2. k < —%,Qk—l—l <c<0,9 =g
In this case, the orbit of system (2.6) which passes through (¢_,0) is a

non-smooth close orbit (see Fig. 2 (b) I'y), it has expression as follows:

a

z=+ Q(s&— — ), (3.5)

where p_ > 0.

Substituting (3.5) into %29 = z and integrating it along I'y, we have

e 1 ¢ [a
/ ds = / JLds, for €30, (3.6)
0 Y_—S8 o V38
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and

0 1 0 ra
/ ds:/ JLds, for £ <o0. (3.7)
p P—— S 13 8¢

From (3.6) and (3.7), we obtain a peakon solution u(x,y,t) = ¢(§) as

follows:

p(€) = p-[1 — exp(—/ = IeD)] (38)

Here we complete the proof of Proposition 2.

4  Conclusion

In this paper, the bifurcation and global behavior a CH - KP equation
have been studied, and the conditions that peakons appear, and their repre-
sentations are obtained. Their planar graphs are simulated under the some

parameters (see Fig. 1).

Fig. 1. The peakons of Eq.(1.5) with a = —1. (a) k = —2,c= —5,9 = —%, (b)
k=—-4,c=-1,g = —16.
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andg:ggorkZ%,c<0andg:gg. (b) k < —
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Fig. 2. The bifurcation phase portraits of (2.4) and (2.6). (a) k < —%,¢ < 2k+1

)
%,2k+1<c<0andg:gQ.
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