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Abstract

In this paper, we have obtained higher moments of order statistics
from doubly truncated exponential distribution which generalize the
work done by Joshi (1978) and Balakrishnan and Joshi (1984).
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1 INTRODUCTION

Let the random variable X have a doubly truncated exponential distribution

with probability density function (pdf)

-

and cumulative distribution function (cdf)
0 s for <@y
F(z)= 1—]?_—@—% cfor Q1 <z <P (1.2)
1 ;T > Pl

where @1 = —log(1—-Q), P, = —log(1—P) and @ and 1— P are the proportions
of truncation on the left and right of the standard exponential distribution.

The proportion Q and P, with () < P, are assumed to be known.

Let Xi., < Xs., < ... < X,,., represent an ordered sample of size n from the
doubly truncated exponential distribution given in (1.1) and X,,., < X,,., <
... < X,,.n be the corresponding sub-sample order statistics. Let us denote
the single moments E(XE ) by ,ugk%(l < r < n) and the product moments of k
order statistics, viz. E(X/1, X2 ... X} )by pliz i) (1 <)<y <L <
rr <nand iy, ig, ... i =0,1,2....).

Joshi (1978, 1982) derived some recurrence relations for single and product
moments of order statistics from standard exponential distribution and also
for right truncated exponential distribution. Balakrishnan and Gupta (1992)
extended these results for standard exponential distribution as well as for right
truncated exponential distribution and derived relations that will enable one
to find the moments and cross moments (of order up to 4) of order statistics.
Saleh, Scott and Junkins (1975) derived exact (but somewhat cumbersome)
explicit expressions for the first two single moments and the product moments
of order statistics. Joshi (1979) and Balakrishnan and Joshi (1984) derived
several recurrence relations satisfied by the single and the product moments of
order statistics from doubly truncated exponential distribution. Khan, Yaqub
and Parvez (1983) tabulated these quantities for some value of P, Q, and n

from doubly truncated exponential distribution.
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From (1.1) and (1.2) we observe that the characterizing differential

equations for the doubly truncated exponential distribution are

f(x) = Q2 — F(z) (1.3)
and
f(z) =P+ [1 - F(z)], (1.4)

where Q3 = (1 — Q)/(P — Q) and P, = (1 — P)/(P — Q). In this paper,
we shall use equations (1.3) and (1.4) to establish several recurrence relations
satisfied by higher moments of order statistics from doubly truncated expo-
nential distribution defined in (1.1), thus generalizing the work of Joshi (1978,
1982, 1979) and Balakrishnan and Joshi (1984) for standard exponential and

truncated exponential distributions.

2 RECURRENCE RELATIONS

The joint density function of X, ., Xppim, ..., and X, (1 <1 <rg < ... <
r, < n) is given by

fn,rg,...,rk:n(xla e 7]716) = Crl,rg,..‘,rk:n L) [F(lﬁ)]hil[F(mQ) - F(xl)]mirlil v

[F (@) = Fap-y)]* 1 = Fag)]" " f21) f(2) -

Qi <z <...<x, < Py,
(2.1)

where

o n!
T2 TR (ri =D rg —ry — DV (rpg — e — D (n— 1)

(cf. David and Nagaraja (2003), p.12), and f(z) and F(z) are as given in
equations (1.1) and (1.2). Then by making use of the characterizing differential
equations in (1.3) and (1.4), we establish recurrence relations for the product

moments of k order statistics.

f(l'k),
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Theorem 2.1. For 1 <z <xzy < ...<x <nand iy,19,...,1 > 0,
(i1+1lsdg,hik) g (i1,12,... (i1+i2+1,r3,.. ,ik)
lu1,277‘3,... TR (Zl + 1)1“1 12,13, rk n nQ2 Hq ,r3—1,...rg—1m—1
i1+l (42,03, sik) (i14i2+1,... ,iy)
1 M1, e—tin—1 T M5 rpm (2.2)
and for 1 <xy <o < ...<xp <n andiy,19,... 1 > 0,79 > 3,
(t1+1yi2,0 i) /s (11,82, (i1+1,i2,.. k)
Ko, i - (21 + 1)“1 T2, rk n nQQ IU/I sro—1,r3— 1 Sre—1lin—1
Z1+1 (42,13, Zk) (i1+1i2,... ,ix)
/‘Lrg 1,r3—1,...,rg—1lin—1 +N’2,r2,r3,..‘,r‘k:n (23>

Proof: Relations in (2.2) and (2.3) may be proved by following exactly the

same steps as those in proving Theorem 2.2, which is presented here.

Theorem 2.2. Forl1 <uz; <xz9<...<x <n,i1,ls,...,5 >0, and
T2:T1—|—1,

T

- /'L(iﬁ—l’i%m i) rkflsnfl}i| + M(il+i2+17i3p” ) (24)

ri—1,r1,r3—1,..., r1+1,73,... ,rgn

(i1+17i27"'7ik) _ 1 N (7‘17127 k: (Zl+i2+17i37"'7ik)
L ST I r_l (Z1+1)ur1,r1+1 T3yeee Tkt _nQQ Hopy rs—1,... ri—1in—1

and, forry —r; > 2,

(i1+177"27"'7ik) _ 1 . (’L1,7,27 ,Ll+1 127 k)
/’Lrl—f—l,rg,...,rk:n - E - (21 + 1)“1”1 T2, rk n + nQ :u“rl ro—1,. rk—lzn—l

_ M(i1+17i27---7ik) }i| + M(i1+17i27---'7ik) (25>

ri—1,ro—1,...,rp—1in—1 71,7200 , Tk

Proof: From equation (2.1), we have for 1 <z <ay < ... <z <n

Py xg

111’7(“111,7;22,7 ::)n = 7’1,7"2, o // / xlllxg . ‘xzk[F(l'l)]Tl_l[F(xg) o F(Il)]m—rl—l

Q1 G Q1
AL = F(ap)]" " f(xr) f(22) - .. f(xg)dordey . .. day

P1 Tk
= Criraper // /$?$?...$?[F(x3)_F(xQ)]TST21”'
Q1 Q1 Q1

A1 = Fap)]" " I (xe) f(x2) . .. f(zg)dxs . . . dzg, (2.6)
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where

I(w2) = /x?[F(xl)]”l[F(flfz) — F(x)]? 7" f (21)das. (2.7)
@

Making use of characterizing differential equation (1.3), we have
Z2

[(.1'2) = Qg/x? [F(l'l)]m*l[p(xg) _ F(xlﬂrgfnfldml

Q1
- [ FEP ) - Far
Q1
= Q2 E(72,1) — E(x2,0), (2.8)

where

2
Blas, k) = / S P P () — Fla)? " "l k= 0,1 (2.9)
Q1
Integrating by parts, treating ! for integration and rest of the integrand for

differentiation, we get for ro —r; > 2,

2

E(xy, k) = — / :1; 1{(7’1 — k)[F (1)) () — ()] 777 f (1) diry
Q1

— (ry — 11 = V)[F (1)) *[F(22) — F(21)]"* "7 f (1) das }

and, for ro =r; + 1,

T2

Bl ) = 5 [ PG = (= ) [ 2Pl fad].
@1

Upon substituting for E(xs,0) and E(xq,1) in (2.8) and then substituting the
resulting expression for I(xs) in equation (2.6) and simplifying, we derive the
relations in (2.4) and (2.5).

Proceeding on similar lines, one can derive the following recurrence relation.
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Theorem 2.3. For1 <z <xy<...<xp <N, Tp >Tp_1+ 2,

11,8 Ak—1,0 1 . 11,8 G150
p Y = ey Lt DI
— Pyl et o deniet) i i) ]
(2.10)
Proof: From equation (2.1), we have
P Py
Ry Iy / eha (P [P () — Fla)
Q1 x1 Tp_
L= F(-Tk)]nfrkf(xl)f(%) o fog)drgdrg—y - . . dxaday
PP
S / P S P P = Fla)o e
Q1 x1 Th_
T(@p—1) f(@1) f(22) .. f(@po1)dppos . . . day, (2.11)
where
P
Haes) = [ (Plan) = Pla )l = P f(anda.
Tp—1
(2.12)
Using the characterizing differential equation (1.4) in (2.12), we get
Py
I(zp_q) = Py / T [Fxy) — Fzp_1)]™ 7 1 — F(a)]" " day
Tr—1
Py
+ / T [F(g) — Fap_y)]* 171 — F ()] " day,
Tp-1
= PQE(xk,l, O) - E(.]Z‘k,l, 1) (213)
where
P

E(z_q,t) = / T [F(ag) — Fzp_1)]* 71— F(ag)]" " Hday 5 t =0, 1.

Tk—1
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Integrating by parts, treating xﬁf for integration and rest of the integrand for

differentiation, we have

Py
n—rp+t i o S
st = O [ ) = Pl R e
Th—1
1yt
e — Th1 — ; e -
_ ( k Zk:ll ) / xkk‘f'l[F(.I'k) — F(xkfl)] k 2[1 o F(-Tk>] +tf(l'k)dxk
Th—1

Upon substituting for E(x;_1,0) and E(xk_1,1) in (2.13) and then substituting
the resulting expression in (2.11) and simplifying, we derive the relation in
(2.10).

Likewise, one can easily derive the recurrence relations given in the

following theorem.

Theorem 2.4. For 1 <z <z <...<xp <N, Tp =71+ 1,

(7:177"27"' 7ik717ik+1) 1 . (i17i27"' 7ik717ik)
2 1in — (Zk + 1)“ 1:
71,72, Tk—1,Tk—1F+1n (n/——rk~+-1) 71,7250, Tk—1,Tk—1+1m
(i17i27"'7ik—17ik+1) (i17i27"'7ik—1+ik+1) (il,iQ,...,ik_1+’ik+1)
_nPQ{:url,rg,...,rk,l,rk,lJrl:nfl = Priro,eorp_1in—1 + /‘Ln,rg,..‘,rk,l:n

(2.14)
and, for rp =n,

(i1,i2,e sik—1,i5+1) _ (i + 1) (i1 iz yik—1sik) np2{plik+llu(i1,i2,.”,ik,l)

:url,rg,.” Th—1,NN :url,rg,.” Th—1,MN 1,72, T—1:1—1

1,72, ,T_1,m—1in—1 + :url,rg,... Tr—1,n—Llin’

(114820 ik —1ik+1) } (11120 sig—1,ik+1) (2.15)

Remark 1: By using recurrence relations given in equations (2.4), (2.5),
(2.10), (2.14) and (2.15) in a simple recursive way, one can easily obtain all
the single, double (product) and higher moments of any order of all order

statistics for any sample size from doubly truncated exponential distribution.

Remark 2: Recurrence relations for the single and double (product) moments
of order statistics from doubly truncated exponential distribution can be ob-
tained as special cases of the above derived results. Some of the results, so

obtained, are in agreement with the results of Joshi (1979) and Balakrishnan
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and Joshi (1984).

Remark 3: By letting both the proportions of truncation Q and 1 — P — 0
(= Qs — 1, P, — 0) in Theorems 2.1-2.4, we deduce the corresponding re-
sults for standard exponential distribution. Recurrence relations for single and
double (product) moments of order statistics from standard exponential dis-
tribution can be obtained as particular cases of these results. These results
are also in agreement with results of Joshi (1978) for standard exponential

distribution.
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