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Abstract. In this paper, we introduce the notion of cat'-complexes as a suitable generalization
of the cat'-groups through embedding the category of cat'-groups in the category of Cat'-
complexes as a subcategory ( via isomorphism of categories). It was shown that the category of
Cat'-complexes is equivalent to the category of crossed modules of complexes as well as the
couple of two covariant functors used to show the equivalence between these two categories are
represent an adjoint pair of functors.
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1. Introduction

Crossed modules of groups were originally introduced by J.H.C. Whitehead [6] 1949. A
crossed module of groups ( c.f. [1] and [2] for a more detailed treatment) (C, G, d) is a group
homomorphism 0d: C— G together with an action of G on the left of C satisfying
(CM1) d(8c)=gd(c)g™ and (CM2) %€c, = cycpc, ™ forall ¢, ¢y, ¢, € C and g€ G. A morphism
of crossed modules of groups (u,1):(C,G,3)—(D,H, &) is a pair of group homomorphisms
u:C— D and 1:G— H such that Sy =719 and u(8c)="®u(c) for all cEC and gEG.
Crossed modules of groups and morphisms as defined above form a category, CModGrps.

Loday [4] defines cat'-groups and showed that the category of crossed modules of groups is
equivalent to the category of cat'-groups. Recall that a cat'-group (G, s, t) consists of a group G
and two endomorphisms s,t:G— G  satisfying (CAT1) ts=s, st=t and
(CAT2) [kers, kert] = {1;}. A morphism of cat'-groups f:(G,s,t)— (GUJ,s],t0) is a
group homomorphism f:G — G[I such that sUf = fs ,tlf = ft. Cat'-groups and
morphisms as defined above form a category, Cat’-Grps.
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The main aim of this paper is to extend the notion of cat'-groups by replacing complexes
instead of groups and introduce the notion of Cat'-complexes. Since the group involved in the
definition of a cat'-group is in general nonabelian, we shall assume throughout this paper that
the groups which are involved in the construction of a complex not required to be abelian
groups, i.e. a complex (G,,n,) is a sequence of groups and homomorphisms

Mn+1 Nn
> G > G, > Gy —>

such that 1, 7,,41=0 (i.e. Imn,,1EKern,) for all n € Z. If G, is an abelian group for all
n € Z, we shall call (G,,n,) an abelian complex. In this case an abelian complex is precisely a
chain complex (as in the literature), for more information on chain complexes we refer the
reader to [5].

We call (G,,n.) a subcomplex of a complex (G,,n,) if G, is a subgroup of G, and
Nn=Nn|Gy is the restriction of 7, on G, for all n€ Z. A subcomplex (G,,n,) of a complex
(G,,7,) is called normal subcomplex if G, is a normal subgroup of G, all n€ Z. Let (C,, u1,)
and (G,,n,) be complexes if k,=C,xG, and y,=u,xn,, for all n€ Z, therefore (K,,y,) is a
complex, which we call the direct product of complexes (C,, 4,) and (G,, n,) and which denotes
by (C.xG,, p.xn,).

Kamil [3] generalized the direct product of complexes, as defined above, as follows. Let
Gy, has a left action on C,, (Vn€ Z), then we can form the semidirect product of groups, C,XG,,
which is a group under the binary operation defined by (c,,,8,,) (¢,1.87)=(Cy, &7C,1. 8187 for all
(Cn-8n)s(Crgn)EC,XG,. We should remark here that g, X 1,:Cp X Gy = Cpog X Gp_q
which is defined by (nX 1) (€nsgn)=(tn(c) M (gn)) for all c € Cy, g€ G, is not
necessarily a group homomorphism, while as each of (C,, u,) and (G,,7,) is a complex, we
deduce that (tn> 1) (n+1> Nn41)= Unbns1X Naln+1=0. Kamil [3] gave a sufficient and
necessary condition for which (u,> 1,,) becomes a group homomorphism, and he defined the
semidirect product of complexes as follow. Let (C,, u,) and (G,, n,) be complexes such that G,
has a left action on C,, (Vn€ Z). The semidirect product of (C,, u,) and (G,,n,), denoted by
(C,, )x(G,,m,), is defined to be the complex (C,XG,, u, X 1,),

Hn+1XMn41 HnXMn
e Cpy1N¥ G ———» ¥ G, —» Cp X Gy ————

If, and only if, p,(énc,) = ™mEy, (c,) forall ¢, € C,,gnE Gy. (#)

The idea of extension from cat'-groups to cat'-complexes is given as follow. It is obvious
that each group G can be viewed as a length zero complex;

G, ——————) ——»G——P 0 ——>———

and vice-versa. This shows that the category of groups, Grps, is isomorphic to the category of
length zero complexes, Comp©, i.e. Grps =~ Comp©® . Accordingly, each Cat'-group (G, s, t)
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can also be viewed as a pair of two chain maps s,, t,: G, — G, from a length zero chain
complex G, into itself,

Go ___ 4,0 .G 0 .
G, -—-- >0 > G —») ——> ———

o

Which we shall call it in this paper a cat'- length zero complex (G,, s,, t,) (in the sense that
each pair of vertical homomorphisms of (%) is a cat'- group and each homomorphism in the top
arrow (or in the bottom arrow) of (%) is a morphism of cat'- groups (i.e. all cat'-group
information are encoded in the above diagram). In this case, the category of cat'-groups is
isomorphic to the category of cat'-length zero complexes, Cat'-Comp®, i.e.
Cat'-Grps ~ Cat'- Comp©®,

Kamil [3] extended the definition of a crossed module of groups by replacing complexes
instead of groups and introduced the concept of a crossed module of complexes.

Recall that a crossed module of complexes ((C*,u*),(G*,n*)ﬁ:{an}) is a chain map 0:C,—G,

such that ,:C,—G, is a crossed module of groups and p,( &nc,)="Ey, (c,) for allne Z. A
morphism of a crossed modules of

complexes (f=(f}=(1}:((C. 1.).(6.0).3-(8})~ (€., ). 6,100, s a pair of chain maps
f:C,— C, and l: G,— G, such that (f,,1,): (Cy, Gy, 0,)—(Cy, Gy, 3,) is a morphism of crossed
modules of groups for all n € Z. Crossed modules of complexes and morphisms as defined
above form a category, CModComp.

In the next section, we introduce a suitable generalization of cat'-groups namely cat'-
complexes through embedding the category of cat'-groups in the category of cat'- complexes,
Cat’-Comp. In this paper we will show that the two categories CModComp and Cat’-Comp
are equivalent.

2. Cat'-complexes
DEFINITION 2.1. A cat'- complex is a triple ((C.,(.),s = {s,},t = {t,,}) such that

(C,, ) is a complex and s, t: C, — C, are chain maps satisfying
(1) ts=s, st=t
(i1) [Kers,, Kert,] = {1Gn} foralln € Z

Here is the picture of a cat'- complexes in unabbreviated form.

HUn+1 Un
- > Cn+1 tcn > Cn—l—V———

Sn+ﬂtn+1 Sn utn Sn—lMtn—l
1%

Hn+1 n
-_—— —> Cn+1 Emm— Cn _ Cn_l—b———
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In other words ((C., ), s = {s,}, t = {t,,}) is called cat'-complex if (Cy, sy, t,) is a cat'-
group and fiy: (Cy, Sy, tn) = (Cpeqy Spy, tn_1) is @ morphism of cat'- groups for all n € Z.

DEFINITION 2.2. A morphism f={f,}: ((C., u.), s={s,}, t={t,})=((G., n.), u={u,}, v={v,}) of
cat'-complexes is a chain map f={f,}: (C,, 1) = (G,,n,) such that f,: (Cy, Sy, tn) = (Gp, Up, V) s
a morphism of cat'-groups for all n € Z.

It is clear that if I;:(C,, u.)—(C,, p.) is the identity chain map on (C, ) then
I(C*,S’tf]c*:((C*, 1), s={s,}, t={tn})—>((C*,y*),s={sn}, t={tn}) is a morphism of cat'-complexes.
Also, if f={f}:((Co).5.6)— ((CL ), 5 t) and =L} (€ ), 50¢) = ((C ), ) are
morphisms of cat'-complexes, then their composition If={l,, ﬁl}:((C*, IL), S, t)—> ((C*", iw),s" t”) is a
morphism of cat'- complexes.

Taking objects and morphisms as defined above, we obtain the category Cat’-Comp of
cat'-complexes. Note that, Cat'- Comp©¢c Cat'-Comp, and since
Cat’-Grps = Cat'- Comp©®, we deduce that Cat’-GrpsS Cat’-Comp, i.e. the category of cat'-
groups is embedding in the category of cat'- complexes (via isomorphism of categories).

EXAMPLES 2.3.. (1) Any complex (C, u,) may be regarded as a cat'-complex
((C*, w), I ={lc }, IC*={ICH}). Accordingly Comp is a full subcategory of Cat’-Comp.

(3) Let (Z,+) be the additive group of integers and (C,,u,) , (G,,1.) be two complexes
defined as follows.

0 if miseven f2 if miseven

Cn=L=Gy, Ppam= and  Npym= >
f2 if misodd 0 if misodd

where f5:Z - 7Z is a group homomorphism defined by f,(x) = 2x. The following
commutative diagram thus represents a cat'-complex.

0Xf; f2X0 0Xf; f>%x0
NCLEN ANy SR L NG BB NG IR (NG S

u|l v S| |t u| v S| |t

0Xf; f2%0 0Xf; f>%x0
RCLEN A SR Ll AN /B LEN A SR AV S

Where w,v,s,t:ZXZ—ZXZ are defined as u(x,y)=s(x,y)=t(x,y)=(0,y) and
v(x,v)=(0,2x + y) forall (x,y) EZXZ.

3. Equivalence between CModComp and Cat'-Comp

LEMMA 3.1. There are two covariant functors;

(1) The functor T: CModComp— Cat’-Comp is defined by:
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() T((C.o ), (610, 9(6,3) = (€3G, 30 1.), 5={57, t=(t2) where
s, t: (C,X1G,, X n,)—(C,XG,, u,xn,)are  defined by  s,(cp, gn)=(1cn,gn), and
t,(Cn, gn)=(1cn, 0,(cp)gy) for all (c,, g,)EC,XG, and all n€ Z.

(i) T(f, D=L, Forall (f={f,}, 1={1,}): ((C., ), (G.,m.), 0=(0,}) —

((H*, a,), (D, B.), /1={/1n}) in CModComp.

(2) The functor R: Cat’-Comp— CModComp is defined by:

(i) R((C., ), s={s0}, t={t})= ((K ers., i), (Ims,, i), t|Kers, ) for all
((C., 1), s={s,}, t={ta})EObCat’-Comp, where w, is the restriction p,|Kers,, uy is the
restriction p,|Ims,, and Ims,, acts on Kers, by conjugations for all n € Z.

@R =(f,f) for all  f={£}((C, ), s={sn), t={td)=((Gon.) usun} v={1}) ~ in
Cat’-Comp.

THEOREM 3.2. The two categories Cat’-Comp and CModComp are equivalent.

Poof. From lemma (3.1), we need only to show that RoT=Icyoacomp and ToR=lcari— comp-
Define a function @: ReT —— Icpyoqcomyp as follows:
LetA = ((C., 1), (G.,1.),d = {3,}) € ObCModComp ,

@ (4): ((Kers., (uxa.)), (ms., (ux.) ), tKers. ) —((C., ), (G.on.), 0=(0,))

such that (D(A)=(T[C*, nG*), where T[C*:{T[Cn}: (Kers,, (u,x1,))—(C., u,) and nG*={7TGn}: (Ims,, (u,
n.))—(G.,1.) are chain maps defined by; m¢ (cy 1 )=c, and mg (1c,,8n)=gn, for all
(cn, IGn)EKersn, (1Cn, gn)E Ims, and all n€ Z. Note that (nc*,n(;*) is indeed a morphism of
crossed modules of complexes since m; andm; are chain maps, dm;=m; (t|Kers,) and

T, ((16"'gn)(cn, 1Gn)) :nG"(lcn‘g”)nCn (cn 1Gn) for all neZ.  Now, for any

(F={h =D A=((C., 1), (G.n.), 0 = {8,}) —B=((H., @.), (D., B.), A={A,}),
RoT(f, D)=((f»0)', (fxD"):((Kers., (w.xn.)"), (Ims,, (w.xn.)"), t|Kers.)

((Keru*, (a,xp,)"), Imv,, (a,xB,)"), v|Keru*)

To show that @ is a natural transformation, it is enough to show the commutativity of the
following diagram:

! I LD(A)
((Kers,, (. % 0,)"),(Ims., (. x 1.)"), tKers.) — " ((C,,1.),(G.,7.),9)

((F =D, (f=D)") )

((Kerw,, (@. % B.)"),(Im.,(a.% B.)"),v|Kerw, ) L ((H,, a.),(D., B.), 2)

Note that (f, )@ (A)=(f, ) (nc*, nG*)=(fnC*, Img,). On the other hand;
D(B)((f> 1) (> D)'")=(my,, mp, ) ((f> 1) (0 )" )=(rey, (fx D) smp (f 1)),
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Since (fyx 1) =fuX(ln|Kers,) and (fx 1) "=fX(ly|Imsy,), therefore fyme =my (fr>il,)'
and [, =mp (fyxl,)". Thus @ is natural transformation. Now define a function
¥:Iemoacomp = ReT as follows: let A=((C., ), (G.,n.), 8={8,})EOBCModComp,

Y(A): ((C., 1.),(G.,n.),0=(0,})~((Kers., (wx1.)),(Ims., (.x 7.)"),t|Kers,) such that
Y(A)=(ngt m;t), where (ng'={n;'},ng*={n;'}) is a morphism of crossed modules of
complexes defined by: 7' (c,)=(cn, 16,) and 5 (g,)=(1c,, &») for all c,€ C,, g,€ G, and
alln€ Z. By using a similar argument as above, one can show that ¥ is also a natural
transformation according to the commutativity of the following diagram;

IP(A) I "
(Com)Gn),0) ——— 5 ((Kers., (1. x 1.)),(Ims., (1. x 1.)"), t|Kers.)

) ((F 2D, (f=D)")

((H., @)D, B.), 2) &, ((Kerw,, (@, % B.)"),(Im, (a.% B.)"),v|Keru, )

Now, we need only to show that ¥¢p = Ig.r and ¢¥ =1, dComp"
LetA = ((C*,u*), (G,,n,),0 = {an}) € Ob CModComp, therefore

llU(A)QS(A) = (nal'ng*l)(nc*»n&) = (IKers*'IIms*) = I(Kers*,lms*,ﬂl(ers*) = Iror (4).
Therefore ¥¢ = Ipop. Similarly, since mg m;' =1, and mg ;' = Ig therefore
¥ =1, dComp and hence RoT=l¢moacomp -

Finally, we need to show that ToR=l¢41comp. To do this, define a function
@": ToR — I gt comyp as follows;

let A=((C., ), s={sn}, t={t,})€ ObCat*-Comp

9" (A) :((Kers,» Ims,, 1 3 ), 525, E={8a)) = (.o p)s=(520.6=(83)

such that ¢'(A)=¢;,, where Scc*:{fcn} is a chain map defined by &¢ (an, by)=anb, for all
(n, by)E Kers,x Ims,, and all n € Z. Note that &_is indeed a morphism of cat'-complexes,

for SEC*:fc*E and t{c*zfc*f.

For any f={f,}: A=((C., .),s={s, }.t={t})=B=((G., 1.).u={u, }.v={v,}),
ToR(f) = f'x f": ((Kers* X Ims,, (1,¥4,),5 = {s,},t = {fn}) —
((Keru* X Imu*,n’*xﬁ’*),ﬁ ={u,},v= {in}).

We shall show that ¢’ is natural transformation. It is enough to
show the commutativity of the following diagram:
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¢1(4)

((Kers* X Ims,, py X 1), S, f) » ((Cop)s,t)
fruf f

¢(B)

((Keru., x Imu,,n. X n),u,v) » ((G.n.)wv)

Note that f ¢'(4) = f&, and '(B)(f' % ") = &,(f' > ). Clearly, folg, = &, () ¥ fi')

for all n€Z. Thus ¢' is natural transformation. Similarly, define a function

Y lcar—comp — ToR as follows;
Let4 = ((C., i), s = {s,},t = {t,}) € ObCat*-Comp,
IIUI(A):((C*, u*),s={sn},t={tn})—>((Kers* X Ims,, w, ¥ 1)), 5={s,}, f={fn}) such that

P’ (A)=¢;", where £ is indeed a morphism of Cat'-complexes, for &'={¢z'} is a chain
map defined by &;'(c))=(cnsn(cy?), sn(cn)) forall c, €C,, alln€Z, &'s =5
and &5t =t .

For any f={fn}:A=((C*,u*),S={sn},t={tn})—>B=((G*,n*),u={un},v={vn}), to show that ¥’ is
natural transformation, it is enough to show the commutativity of the following diagram:

(€., ), s,1)

wi(A)

. ((Kers* X Ims,, . ¥ p),s, E)

f fl x fll

Yi1(B)

((G.m.) u,v) » ((Keru, x Imu,,n. X n),u,v)

Note that (f' » f)¥'(A) = (f' x f")ézt and P’ (B)f = &1

Since ¢, 8,(cyt) € Kersy, s,(c,) € Ims,, , fi) = fu|Kersy, fi' = f,|Ims, and f is a morphism of
cat'-complexes, therefore (f; » fn”)fc‘n1 = Ec‘nl f, foralln € Z.

Thus ¥’ is a natural transformation. Furthermore, as fc_nlfcn = Ixersyxims, We have ¥'¢’ =
Ir.gandasép &' = I , wehave ¢'¥' = /-
Thus TeR=lcqpi-comp and ReT=Icyogcomp. Hence CModComp and Cat'-Comp are

equivalent. ¢

THEOREM 3.3. T:CModComp - Cat-Comp is a left adjoint functor of
R: Cat*-Comp - CModComp.

Proof. We shall show  that  there is a  natural isomorphism
®: Morcge1.comp (T—) —)— MoTemoacomp (— R—), where
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Mot cas1-comp (T=, =)y MOTcuogcomp (=R —):CModComp®Px Cat'-Comp—S  are bifunctors,
where S denotes the category of sets and CModComp®P denotes the opposite (dual) category of
CModComp. These bifunctors are defined respectively by the following compositions;

T0p1a1_0 Ecati-co
CModComp°xCat*-Comp oy, Cat'-Comp®PxCat-Comp ——% S, and

IemodcompoP ¥R EcModcom
CModComp°xCat*-Comp M, CModComp"”XCModCompLdC,p
Define a function @:Mor¢q41.comp (T — ;=) —=>MO0Tey0acomp (—>R—) as follows;

For all A= (((C*,u*),(G*,n*),a)Op,((H*, a*),s,t)) €0bCModComp®xCat'-Comp,
DAMOTG1 o ( (€0 Gt ) TG ELEN) () ) )] ——
MoTewodcomp (((C*, 1),(G.,n.).0=(0,}),((Kers,, al), (Ims,, al') t|K ers*)), is defined

by o@WM=(1, 1), for all () Moregr com (((C*NG*, w01, 5)((Ha).s, t)), where
Z={Zn}: (C,,n)—(Kers,,a;) and U*={l}}: (G,,n.)—(Ims,, a)') are chain maps defined by
1, (cy)=ly (Cp) 1g,) and l;(gn)=l,(1¢,, gn) for all c,€Cy, gnEG, and for each n € Z. Note
that (Z,l*):((C*,u*),(G*,n*),a)—»((Kers*, a.),(Ims,, a,ﬁ’),t|Kers*) is indeed a morphism of

crossed modules of complexes since 1 and I* are chain maps, (t|K ers*)in=l;§6n and

= n(gn) - .
L, (8ncy)= @ L, (c,) for all ¢,€C,, g,€G, and all n€Z. We turn now to show that @ is a

natural transformation, let ((f, k)P ,%)EMoT cyoacompor«catt-comp (A B), Where

A= (€ 1), 6.,10,8)”, ((H, 0.),5,t)) and B=(((D,,.), (1, 6,2) ™, ((X., £.),u,v)) It is enough to
show the commutativity of the following diagram:

=7 Cb(A) ! "
A Mor cp1.comp (((C*MG*, 1Xn,),s, t) ,U>—> MoTzmoacomy (] ,((K ers,, ay),(Ims,, a;),t|K ers*))

((f; k)OP,/a) ECatl-Comp((f X k)OP‘ k) ECModComp ((f; k)op, (kl’ ku))

— ®(B) ) "
B MOTCatl-Comp (((D*)G Y*r T,X 5*),U,V),W)—}MOTCMOdC0mp (Q’((Keru*: ﬂ*),(lmu*r ﬂ* ),U|K€TU*))

Where U:((H*Sa*)’ S’t)’]:((c*l H*)’(G*F n*),a)’ W:((X*’ ﬁ*)’u’v)’ Q:((D*,T*),(Y*,a*),l)-
Let l={ln}EMorCat1_ComP (((C*XIG*, wXn,),s, f) ,((H*, a,),s, t)) Therefore

ECModComp((f: k)Opa(’k" ’k”))(p(A)(l):ECModComp((f' k)‘)p,(/a', ’k”))(zw l*)
=&, &)L U)(f, k)=(#'1f, " I* k). On the other hand,

& (B)E gart-comp (f X 1), £) (1) = BY(&L(f % k) = (RL(F = b), (RL(f = k).
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According to the definition of [ and I*, we have £ [ (f X k) = £’ f and (RL(f k))* =
2"k, respectively. Also, define a function
Y:Moreyoacomp (—R=) = Morcqe1_comp (T — ,—) as follows;

for all C= (((C*,u*),(G*,n*),a)OP,((H*,a*),s,t)) €0bCModComp®xCat*-Comp,
lIJ(C):IWOr(,‘MOdComp (((C*hu'*)’(a*ﬂ U*),a:{an})’((l(ers*. (X;),(Ims*, a;,))therS*)) —_—>
MorCatl-Comp (((C*XG*' i X1, 5=y} E:{En}) a((H*; @.), s={sp}, t:{tn}));

is defined by W(C)(p,8) = (px0)*, for all

(p:{pn}ﬁ:{en})EMorCModComp (((C*‘ ﬂ*)a(G*! n*)aa)9((KerS*) a’l),(lmS*, a,ﬁ’),t|Ke1”S*))
where  (px6)*: ((C*XG*, wXn,),5={5,}, f={fn}) —((H, @), s={s,} t={t,}) is  defined by

(pux0,)* (¢, 8)=pn(c)0,(g,) for all (c,, g,)EC,XG, and all n€ Z. Clearly (p,x60,)* is a
homomorphism and a,(p, ¥ 8,,)*=(p,_1% 8,—1)* (uyx m,) which implies that (px8)* is a chain
map. Note that (px6)* is also a morphism of cat'-complexes. We turn now to show that
Y is a natural transformation. Let ((f,k)°P,£)€ Mo cyoacompop«catt-comp (C:D), Where

C= (((C*,u*),(G*,n*),a)OP,((H*,a*),s,t)) and D = (((D*, 1), (¥, 6,), A)Op, (X, B.)u, v)) . It is enough to
show the commutativity of the following diagram:

y(C) o
C Morewoacomp (],((Kers*,a,l),(lms*, a,ﬁ’),t|Kers*)>—> Mor cap1.gomp (((C*MG*, 1Xn,),s, t) ,U)
((f' k)OP, k) ECModComp((fr k)OP‘ (k,: %H)) ECatl-Comp((f X k)op, k)

¥Y(D) __
D Morewodcomp (Q,((Keru*, B.),(Imu,, ﬁ,,”),v|1(eru*))__> Mor gar.comy (((D*xl Y, 1,4 6*),u,v),W)

Let (p, 6)EMorg0acomy (((C,,, w),(G.,m.), 8)((Kers,, a.), (Ims,, a.)), t|K ers*))Therefore
ECatl-Comp((f X k)op:’&)qj(c)(pae): ECatl-Comp((f A k)Op’ ’&)(p A 9)#
=£ (px0)* (fxk). On the other hand,

Y(D)Ecmoacomy (f, k)P, (£, £"))(p, 0) = ¥(D)((£, £")(p, O)(f, k)
=WD)(k'p f, 4" 0 k)

— (B'pf b Ok
Let (dn,yn) €Dy XYy, As pr, fo(dn)EKersy,, Opky (V)€ Imsy, £n=fy|Kers,, An=ky|imsy,,
and from the definition of (Pux6,)", we have

(fenpp fo X o Oy kn)#(dn; Yn)=Hen (pn X en)#(fn X ky)(dy, Yn)- Therefore
Rpfxh" k) =4£(x0)"(fxk).
Finally, we shall prove that $¥=lyr 0,04 Comp(=R=) and Yo=ly,r

Cat- Comp T=-)

Let 4=(((C...).(6..).0)" ((H..c.) 5.t) ) €0bCModComp®PxCat*-Comp

We need to show the commutativity of the following diagram:
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=7 ¢(A) ! "
MoT cor-comp (((C*” o), 5 E) U )—> MOtzssoacoms (1 ((Kers., ), (ms, a!)tIKers,))

(r--)(4) (4)

I
MorCatl-Comp

MorCatl-Comp (((C*XG*! ‘U*XT’*), E, E) ,U)

Let | € MoTcort_comp (((C* X G, [, X 1,),5, f) , ((H*, a,),s, t)) Therefore

- - # - #
YA =L, 1) =(Ix1"), where (I, x ;) =1, on C, %G, foralln€ Z.
Thus (P(A)pA)) (D) = (’Morcml.a,mp (- (D) . Now, let

A= (((C*,,u*),(G*,n*),a)OP,((H*,a*),s,t)) €0bCModComp°?xCat*-Comp. We need to show
the commutativity of the following diagram:

! n l{J(A) -7
MoTgyoacomp (],((Kers*, a;),(Ims,, a; ),t|Kers*))—> Mor gagr.comp (((C*XG*,u*xn*), S, t) ,U)

IMOTCModComp(_rR_) (A) (D(A)

Moreyoacomp (] ((Kers,, al),(Ims,, &) t|K ers*))

For any (p,0)€Moreyoacomp (((C*,y*),(G*,n*),d),((K ers*,a,ﬁ),(lms*,a,ﬁ’),t|Kers*)), we have
(DY (A)(p,0) = p(A)((px 6)*) = ((P x 0)*, ((p x 9)#)*)-

In fact (p,, ¥ 6,)* = p, on C,, and ((p, » 6,)*)* =6, on G, foralln € Z.
Therefore ¢ (A)¥ (4)(0, 8) = (Iuoreyogcomy(-a-) (A)) (0, 6).

Thus @: Mot ¢g41.comp (T— —)—=Morcyoacomp(— R—) 18 a natural isomorphism, and hence
T: CModComp—Cat*-Comp is a left adjoint functor of R: Cat*-Comp —» CModComp. ¢
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