Equivalence between the Category of Cat¹-Complexes

and the Category of Crossed Modules of Complexes

Ra'ad S. Mahdi and Ihssan A. Fadhel

Dept. of Math., College of Science, Univ. of Basra, Iraq raadalzurkani64@yahoo.com, ihssan7791@yahoo.com

Abstract. In this paper, we introduce the notion of cat¹-complexes as a suitable generalization of the cat¹-groups through embedding the category of cat¹-groups in the category of Cat¹-complexes as a subcategory (via isomorphism of categories). It was shown that the category of Cat¹-complexes is equivalent to the category of crossed modules of complexes as well as the couple of two covariant functors used to show the equivalence between these two categories are represent an adjoint pair of functors.

Keywords. (chain) complex; Cat¹-complex; crossed module; Adjoint functors

1. Introduction

Crossed modules of groups were originally introduced by J.H.C. Whitehead [6] 1949. A crossed module of groups (c.f. [1] and [2] for a more detailed treatment) (C, G, ∂) is a group homomorphism $\partial: C \to G$ together with an action of G on the left of C satisfying (CM1) $\partial({}^gc)=g\partial(c)g^{-1}$ and (CM2) $\partial({}^{c}c_1)c_2=c_1c_2c_1^{-1}$ for all c, c_1 , $c_2 \in C$ and $g \in G$. A morphism of crossed modules of groups (μ , η):(C, G, ∂) \to (D, H, ∂) is a pair of group homomorphisms $\mu:C\to D$ and $\eta:G\to H$ such that $\partial\mu=\eta\partial$ and $\mu({}^gc)={}^{\eta(g)}\mu(c)$ for all $c\in C$ and $g\in G$. Crossed modules of groups and morphisms as defined above form a category, CModGrps.

Loday [4] defines cat¹-groups and showed that the category of crossed modules of groups is equivalent to the category of cat¹-groups. Recall that a cat¹-group (G, s, t) consists of a group G and two endomorphisms $s, t: G \rightarrow G$ satisfying (CAT1) ts = s, st = t and (CAT2) $[kers, kert] = \{1_G\}$. A morphism of cat¹-groups $f: (G, s, t) \rightarrow (G \square, s \square, t \square)$ is a group homomorphism $f: G \rightarrow G \square$ such that $s \square f = fs$, $t \square f = ft$. Cat¹-groups and morphisms as defined above form a category, $Cat^{l}-Grps$.

The main aim of this paper is to extend the notion of cat¹-groups by replacing complexes instead of groups and introduce the notion of Cat¹-complexes. Since the group involved in the definition of a cat¹-group is in general nonabelian, we shall assume throughout this paper that the groups which are involved in the construction of a complex not required to be abelian groups, i.e. a complex (G_*, η_*) is a sequence of groups and homomorphisms

$$--- \longrightarrow G_{n+1} \xrightarrow{\eta_{n+1}} G_n \xrightarrow{\eta_n} G_{n-1} \longrightarrow ---$$

such that $\eta_n \eta_{n+1}=0$ (i.e. $Im\eta_{n+1}\subseteq Ker\eta_n$) for all $n\in Z$. If G_n is an abelian group for all $n\in Z$, we shall call (G_*,η_*) an abelian complex. In this case an abelian complex is precisely a chain complex (as in the literature), for more information on chain complexes we refer the reader to [5].

We call (G'_*, η'_*) a subcomplex of a complex (G_*, η_*) if G'_n is a subgroup of G_n and $\eta'_n = \eta_n | G'_n$ is the restriction of η_n on G'_n for all $n \in Z$. A subcomplex (G'_*, η'_*) of a complex (G_*, η_*) is called normal subcomplex if G'_n is a normal subgroup of G_n all $n \in Z$. Let (C_*, μ_*) and (G_*, η_*) be complexes if $k_n = C_n \times G_n$ and $\gamma_n = \mu_n \times \eta_n$ for all $n \in Z$, therefore (K_*, γ_*) is a complex, which we call the direct product of complexes (C_*, μ_*) and (G_*, η_*) and which denotes by $(C_* \times G_*, \mu_* \times \eta_*)$.

Kamil [3] generalized the direct product of complexes, as defined above, as follows. Let G_n has a left action on C_n ($\forall n \in Z$), then we can form the semidirect product of groups, $C_n \rtimes G_n$, which is a group under the binary operation defined by $(c_n,g_n)(c_n',g_n')=(c_n \ ^{g_n}c_n',g_ng_n')$ for all $(c_n,g_n),(c_n',g_n')\in C_n\rtimes G_n$. We should remark here that $\mu_n\rtimes \eta_n\colon C_n\rtimes G_n\to C_{n-1}\rtimes G_{n-1}$ which is defined by $(\mu_n\rtimes \eta_n)(c_n,g_n)=(\mu_n(c_n),\eta_n(g_n))$ for all $c_n\in C_n,g_n\in G_n$ is not necessarily a group homomorphism, while as each of (C_*,μ_*) and (G_*,η_*) is a complex, we deduce that $(\mu_n\rtimes \eta_n)(\mu_{n+1}\rtimes \eta_{n+1})=\mu_n\mu_{n+1}\rtimes \eta_n\eta_{n+1}=0$. Kamil [3] gave a sufficient and necessary condition for which $(\mu_n\rtimes \eta_n)$ becomes a group homomorphism, and he defined the semidirect product of complexes as follow. Let (C_*,μ_*) and (G_*,η_*) be complexes such that G_n has a left action on C_n ($\forall n\in Z$). The semidirect product of (C_*,μ_*) and (G_*,η_*) , denoted by $(C_*,\mu_*)\rtimes (G_*,\eta_*)$, is defined to be the complex (C_*,μ_*) η_*),

$$--- \longrightarrow C_{n+1} \rtimes G_{n+1} \xrightarrow{\mu_{n+1} \rtimes \eta_{n+1}} C_n \rtimes G_n \xrightarrow{\mu_n \rtimes \eta_n} C_{n-1} \rtimes G_{n-1} \longrightarrow ---$$

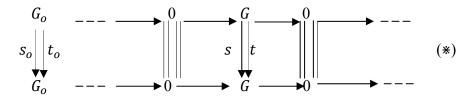
If, and only if,
$$\mu_n(g_nc_n) = \eta_n(g_n)\mu_n(c_n)$$
 for all $c_n \in C_n$, $g_n \in G_n$. (#)

The idea of extension from cat¹-groups to cat¹-complexes is given as follow. It is obvious that each group G can be viewed as a length zero complex;

$$G_0 \longrightarrow G \longrightarrow 0 \longrightarrow ---$$

and vice-versa. This shows that the category of groups, Grps, is isomorphic to the category of length zero complexes, $Comp^{(0)}$, i.e. $Grps \approx Comp^{(0)}$. Accordingly, each Cat¹-group (G, s, t)

can also be viewed as a pair of two chain maps $s_o, t_o: G_o \to G_o$ from a length zero chain complex G_o into itself,



Which we shall call it in this paper a cat¹- length zero complex (G_o, s_o, t_o) (in the sense that each pair of vertical homomorphisms of (*) is a cat¹- group and each homomorphism in the top arrow (or in the bottom arrow) of (*) is a morphism of cat¹- groups (i.e. all cat¹-group information are encoded in the above diagram). In this case, the category of cat¹-groups is isomorphic to the category of cat1-length zero complexes, Cat1-Comp(0), i.e. Cat^{1} - $Grps \approx Cat^{1}$ - $Comp^{(0)}$.

Kamil [3] extended the definition of a crossed module of groups by replacing complexes instead of groups and introduced the concept of a crossed module of complexes.

Recall that a crossed module of complexes $((C_*,\mu_*),(G_*,\eta_*),\partial=\{\partial_n\})$ is a chain map $\partial:C_*\to G_*$ such that $\partial_n: C_n \to G_n$ is a crossed module of groups and $\mu_n({}^{g_n}c_n) = {}^{\eta_n(g_n)}\mu_n(c_n)$ for all $n \in \mathbb{Z}$. A morphism of a crossed modules of complexes $(f = \{f_n\}, l = \{l_n\}): ((C_*, \mu_*), (G_*, \eta_*), \partial = \{\partial_n\}) \rightarrow ((C_*', \mu_*'), (G_*', \eta_*'), \partial' = \{\partial_n\})$ is a pair of chain maps $f: \mathcal{C}_* \to \mathcal{C}_*'$ and $l: \mathcal{G}_* \to \mathcal{G}_*'$ such that $(f_n, l_n): (\mathcal{C}_n, \mathcal{G}_n, \partial_n) \to (\mathcal{C}_n', \mathcal{G}_n', \partial_n')$ is a morphism of crossed modules of groups for all $n \in \mathbb{Z}$. Crossed modules of complexes and morphisms as defined above form a category, CModComp.

In the next section, we introduce a suitable generalization of cat¹-groups namely cat¹complexes through embedding the category of cat¹-groups in the category of cat¹- complexes, Cat'-Comp. In this paper we will show that the two categories CModComp and Cat'-Comp are equivalent.

2. Cat¹-complexes

DEFINITION 2.1. A cat¹- complex is a triple $((C_*, \mu_*), s = \{s_n\}, t = \{t_n\})$ such that (C_*, μ_*) is a complex and $s, t: C_* \to C_*$ are chain maps satisfying

- $\begin{array}{ll} \text{(i)} & ts = s \text{ , } st = t \\ \text{(ii)} & [Kers_n, Kert_n] = \left\{1_{G_n}\right\} \text{ for all } n \in Z \end{array}$

Here is the picture of a cat¹- complexes in unabbreviated form.

$$C_{n+1} \xrightarrow{\mu_{n+1}} C_n \xrightarrow{\mu_n} C_{n-1} \xrightarrow{\mu_n} C_n$$

$$S_{n+1} \downarrow t_{n+1} \qquad S_n \downarrow \downarrow t_n \qquad S_{n-1} \downarrow \downarrow t_{n-1}$$

$$C_{n+1} \xrightarrow{\mu_{n+1}} C_n \xrightarrow{\mu_n} C_{n-1} \xrightarrow{\mu_n} C_n$$

In other words $((C_*, \mu_*), s = \{s_n\}, t = \{t_n\})$ is called cat¹-complex if (C_n, s_n, t_n) is a cat¹-group and $\mu_n: (C_n, s_n, t_n) \to (C_{n-1}, s_{n-1}, t_{n-1})$ is a morphism of cat¹- groups for all $n \in \mathbb{Z}$.

DEFINITION 2.2. A morphism $f = \{f_n\}: ((C_*, \mu_*), s = \{s_n\}, t = \{t_n\}) \rightarrow ((G_*, \eta_*), u = \{u_n\}, v = \{v_n\})$ of cat¹-complexes is a chain map $f = \{f_n\}: (C_*, \mu_*) \rightarrow (G_*, \eta_*)$ such that $f_n: (C_n, s_n, t_n) \rightarrow (G_n, u_n, v_n)$ is a morphism of cat¹-groups for all $n \in \mathbb{Z}$.

It is clear that if $I_{C_*}: (C_*, \mu_*) \to (C_*, \mu_*)$ is the identity chain map on (C_*, μ_*) then $I_{(C_*, S, t)} = I_{C_*}: ((C_*, \mu_*), s = \{s_n\}, t = \{t_n\}) \to ((C_*, \mu_*), s = \{s_n\}, t = \{t_n\})$ is a morphism of cat¹-complexes. Also, if $f = \{f_n\}: ((C_*, \mu_*), s, t) \to ((C_*', \mu_*'), s', t')$ and $I = \{I_n\}: ((C_*, \mu_*), s', t') \to ((C_*', \mu_*'), s'', t'')$ are morphisms of cat¹-complexes, then their composition $I = \{I_n f_n\}: ((C_*, \mu_*), s, t) \to ((C_*', \mu_*'), s'', t'')$ is a morphism of cat¹-complexes.

Taking objects and morphisms as defined above, we obtain the category Cat'-Comp of cat'-complexes. Note that, Cat^1 - $Comp^{(0)} \subseteq Cat'$ -Comp, and since Cat'- $Grps \approx Cat^1$ - $Comp^{(0)}$, we deduce that Cat'- $Grps \subseteq Cat'$ -Comp, i.e. the category of cat'-groups is embedding in the category of cat'- complexes (via isomorphism of categories).

EXAMPLES 2.3. (1) Any complex (C_*, μ_*) may be regarded as a cat¹-complex (C_*, μ_*) , $I_{C_*} = \{I_{C_n}\}$, $I_{C_*} = \{I_{C_n}\}$. Accordingly *Comp* is a full subcategory of Cat^1 -Comp.

(3) Let $(\mathbb{Z}, +)$ be the additive group of integers and (C_*, μ_*) , (G_*, η_*) be two complexes defined as follows.

$$C_n = \mathbb{Z} = G_n, \ \mu_{n+m} = \begin{cases} 0 & \text{if m is even} \\ \\ f_2 & \text{if m is odd} \end{cases} \quad \text{and} \quad \eta_{n+m} = \begin{cases} f_2 & \text{if m is even} \\ \\ 0 & \text{if m is odd} \end{cases},$$

where $f_2: \mathbb{Z} \to \mathbb{Z}$ is a group homomorphism defined by $f_2(x) = 2x$. The following commutative diagram thus represents a cat¹-complex.

Where $u, v, s, t: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ are defined as u(x, y) = s(x, y) = t(x, y) = (0, y) and v(x, y) = (0, 2x + y) for all $(x, y) \in \mathbb{Z} \times \mathbb{Z}$.

3. Equivalence between CModComp and Cat1-Comp

LEMMA 3.1. There are two covariant functors:

(1) The functor T: $CModComp \rightarrow Cat^{1}$ -Comp is defined by:

(i)
$$T((C_*, \mu_*), (G_*, \eta_*), \partial = \{\partial_n\}) = ((C_* \rtimes G_*, \mu_* \rtimes \eta_*), s = \{s_n\}, t = \{t_n\})$$
 where $s, t: (C_* \rtimes G_*, \mu_* \rtimes \eta_*) \rightarrow (C_* \rtimes G_*, \mu_* \rtimes \eta_*)$ are defined by $s_n(c_n, g_n) = (1_{C_n}, g_n)$, and $t_n(c_n, g_n) = (1_{C_n}, \partial_n(c_n)g_n)$ for all $(c_n, g_n) \in C_n \rtimes G_n$ and all $n \in \mathbb{Z}$.

(ii) $T(f, l) = f \rtimes l$, For all $(f = \{f_n\}, l = \{l_n\}) : ((C_*, \mu_*), (G_*, \eta_*), \partial = \{\partial_n\}) \longrightarrow ((H_*, \alpha_*), (D_*, \beta_*), \lambda = \{\lambda_n\})$ in $CModComp$.

(2) The functor $R: Cat^l - Comp \rightarrow CModComp$ is defined by:

(i) $R((C_*, \mu_*), s = \{s_n\}, t = \{t_n\}) = ((Kers_*, \mu_*'), (Ims_*, \mu_*''), t | Kers_*)$ for all $(C_*, \mu_*), s = \{s_n\}, t = \{t_n\}) \in ObCat^l - Comp$, where μ_n' is the restriction $\mu_n | Kers_n, \mu_n''$ is the restriction $\mu_n | Ims_n$ and Ims_n acts on $Kers_n$ by conjugations for all $n \in \mathbb{Z}$.

(ii) $R(f) = (f', f'')$ for all $f = \{f_n\} : ((C_*, \mu_*), s = \{s_n\}, t = \{t_n\}) \rightarrow ((G_*, \eta_*), u = \{u_n\}, v = \{v_n\})$ in $Cat^l - Comp$.

THEOREM 3.2. The two categories Cat¹-Comp and CModComp are equivalent.

Poof. From lemma (3.1), we need only to show that $R \circ T \approx I_{CModComp}$ and $T \circ R \approx I_{Cat'-Comp}$. Define a function $\Phi: R \circ T \longrightarrow I_{CModComp}$ as follows: Let $A = ((C_*, \mu_*), (G_*, \eta_*), \partial = \{\partial_n\}) \in ObCModComp$,

$$\Phi(A): \Big((Kers_*, (\mu_* \rtimes \eta_*)'), (Ims_*, (\mu_* \rtimes \eta_*)''), t | Kers_*\Big) \rightarrow \Big((C_*, \mu_*), (G_*, \eta_*), \partial = \{\partial_n\}\Big)$$
 such that $\Phi(A) = (\pi_{C_*}, \pi_{G_*})$, where $\pi_{C_*} = \{\pi_{C_n}\}$: $(Kers_*, (\mu_* \rtimes \eta_*)') \rightarrow (C_*, \mu_*)$ and $\pi_{G_*} = \{\pi_{G_n}\}$: $(Ims_*, (\mu_* \rtimes \eta_*)') \rightarrow (G_*, \eta_*)$ are chain maps defined by; $\pi_{C_n}(c_n, 1_{G_n}) = c_n$ and $\pi_{G_n}(1_{C_n}, g_n) = g_n$, for all $(c_n, 1_{G_n}) \in Kers_n$, $(1_{C_n}, g_n) \in Ims_n$ and all $n \in \mathbb{Z}$. Note that (π_{C_*}, π_{G_*}) is indeed a morphism of crossed modules of complexes since π_{C_*} and π_{G_*} are chain maps, $\partial \pi_{C_*} = \pi_{G_*}(t | Kers_*)$ and $\pi_{C_n}((1_{C_n,g_n})(c_n, 1_{G_n})) = \pi_{G_n}(1_{C_n,g_n})\pi_{C_n}(c_n, 1_{G_n})$ for all $n \in \mathbb{Z}$. Now, for any $(f = \{f_n\}, l = \{l_n\})$: $A = ((C_*, \mu_*), (G_*, \eta_*), \partial = \{\partial_n\}) \rightarrow B = ((H_*, \alpha_*), (D_*, \beta_*), \lambda = \{\lambda_n\})$, $R \circ T(f, l) = ((f \rtimes l)', (f \rtimes l)'') : ((Kers_*, (\mu_* \rtimes \eta_*)'), (Ims_*, (\mu_* \rtimes \eta_*)''), t | Kers_*)$ $((Keru_*, (\alpha_* \rtimes \beta_*)'), (Imv_*, (\alpha_* \rtimes \beta_*)''), v | Keru_*)$

To show that Φ is a natural transformation, it is enough to show the commutativity of the following diagram:

Note that
$$(f, l)\Phi(A) = (f, l)(\pi_{C_*}, \pi_{G_*}) = (f\pi_{C_*}, l\pi_{G_*})$$
. On the other hand; $\Phi(B)((f \bowtie l)', (f \bowtie l)'') = (\pi_{H_*}, \pi_{D_*})((f \bowtie l)', (f \bowtie l)'') = (\pi_{H_*}(f \bowtie l)', \pi_{D_*}(f \bowtie l)'')$.

Since $(f_n \rtimes l_n)' = f_n \rtimes (l_n | Kers_n)$ and $(f_n \rtimes l_n)'' = f_n \rtimes (l_n | Ims_n)$, therefore $f_n \pi_{C_n} = \pi_{H_n} (f_n \rtimes l_n)'$ and $l_n \pi_{G_n} = \pi_{D_n} (f_n \rtimes l_n)''$. Thus Φ is natural transformation. Now define a function $\Psi: I_{CModComp} \to R \circ T$ as follows: let $A = ((C_*, \mu_*), (G_*, \eta_*), \partial = \{\partial_n\}) \in ObCModComp$, $\Psi(A): ((C_*, \mu_*), (G_*, \eta_*), \partial = \{\partial_n\}) \to ((Kers_*, (\mu_* \rtimes \eta_*)'), (Ims_*, (\mu_* \rtimes \eta_*)''), t | Kers_*)$ such that $\Psi(A) = (\pi_{C_*}^{-1}, \pi_{G_*}^{-1})$, where $(\pi_{C_*}^{-1} = \{\pi_{C_n}^{-1}\}, \pi_{G_*}^{-1} = \{\pi_{C_n}^{-1}\})$ is a morphism of crossed modules of complexes defined by: $\pi_{C_n}^{-1}(c_n) = (c_n, 1_{G_n})$ and $\pi_{G_n}^{-1}(g_n) = (1_{C_n}, g_n)$ for all $c_n \in C_n$, $g_n \in G_n$ and all $n \in Z$. By using a similar argument as above, one can show that Ψ is also a natural transformation according to the commutativity of the following diagram;

$$((C_*, \mu_*), (G_*, \eta_*), \partial) \xrightarrow{\Psi(A)} ((Kers_*, (\mu_* \times \eta_*)'), (Ims_*, (\mu_* \times \eta_*)''), t | Kers_*)$$

$$\downarrow ((f, l)) \qquad \qquad \downarrow ((f \times l)', (f \times l)'')$$

$$((H_*, \alpha_*), (D_*, \beta_*), \lambda) \xrightarrow{\Psi(B)} ((Keru_*, (\alpha_* \times \beta_*)'), (Imv_*, (\alpha_* \times \beta_*)''), v | Keru_*)$$

Now, we need only to show that $\Psi\phi=I_{R\circ T}$ and $\phi\Psi=I_{I_{CModComp}}$. Let $A=\left((C_*,\mu_*),(G_*,\eta_*),\partial=\{\partial_n\}\right)\in Ob\ CModComp$, therefore $\Psi(A)\phi(A)=\left(\pi_{C_*}^{-1},\pi_{G_*}^{-1}\right)\left(\pi_{C_*},\pi_{G_*}\right)=\left(I_{Kers_*},I_{Ims_*}\right)=I_{(Kers_*,Ims_*,t|Kers_*)}=I_{R\circ T}(A)$. Therefore $\Psi\phi=I_{R\circ T}$. Similarly, since $\pi_{C_n}\pi_{C_n}^{-1}=I_{C_n}$ and $\pi_{G_n}\pi_{G_n}^{-1}=I_{G_n}$ therefore $\phi\Psi=I_{I_{CmodComp}}$ and hence $R\circ T\approx I_{CmodComp}$.

Finally, we need to show that $T \circ R \approx I_{Cat^1\text{-}comp}$. To do this, define a function $\phi': T \circ R \longrightarrow I_{Cat^1\text{-}comp}$ as follows;

let $A=((C_*,\mu_*),s=\{s_n\},t=\{t_n\})\in ObCat^1\text{-}Comp$ $\phi'(A):((Kers_*\bowtie Ims_*,\mu_*'\bowtie \mu_*''),\overline{s}=\{\overline{s}_n\},\overline{t}=\{\overline{t}_n\})\rightarrow ((C_*,\mu_*),s=\{s_n\},t=\{t_n\})$ such that $\phi'(A)=\xi_{C_*}$, where $\xi_{C_*}=\{\xi_{C_n}\}$ is a chain map defined by $\xi_{C_n}(a_n,b_n)=a_nb_n$ for all $(a_n,b_n)\in Kers_n\bowtie Ims_n$ and all $n\in Z$. Note that ξ_{C_*} is indeed a morphism of cat -complexes, for $s\xi_{C_*}=\xi_{C_*}\overline{s}$ and $t\xi_{C_*}=\xi_{C_*}\overline{t}$.

For any
$$f = \{f_n\}$$
: $A = ((C_*, \mu_*), s = \{s_n\}, t = \{t_n\}) \rightarrow B = ((G_*, \eta_*), u = \{u_n\}, v = \{v_n\}),$

$$T \circ R(f) = f' \rtimes f'' : ((Kers_* \rtimes Ims_*, \mu_* \rtimes \mu_*), \overline{s} = \{\overline{s}_n\}, \overline{t} = \{\overline{t}_n\}) \longrightarrow$$

$$((Keru_* \rtimes Imu_*, \eta_* \rtimes \eta_*), \overline{u} = \{\overline{u}_n\}, \overline{v} = \{\overline{v}_n\}).$$

We shall show that ϕ' is natural transformation. It is enough to show the commutativity of the following diagram:

$$\begin{pmatrix} (Kers_* \rtimes Ims_*, \mu'_* \rtimes \mu''_*), \overline{s}, \overline{t} \end{pmatrix} \xrightarrow{\phi'(A)} \begin{pmatrix} (C_*, \mu_*), s, t \end{pmatrix}$$

$$\downarrow f' \rtimes f'' \qquad \qquad \downarrow f$$

$$\begin{pmatrix} (Keru_* \rtimes Imu_*, \eta'_* \rtimes \eta''_*), \overline{u}, \overline{v} \end{pmatrix} \xrightarrow{\phi'(B)} \begin{pmatrix} (G_*, \eta_*), u, v \end{pmatrix}$$

Note that $f \phi'(A) = f\xi_{C_*}$ and $\phi'(B)(f' \rtimes f'') = \xi_{G_*}(f' \rtimes f'')$. Clearly, $f_n\xi_{C_n} = \xi_{G_n}(f'_n \rtimes f''_n)$ for all $n \in Z$. Thus ϕ' is natural transformation. Similarly, define a function $\Psi': I_{Cat^1-Comp} \longrightarrow T \circ R$ as follows; Let $A = ((C_*, \mu_*), s = \{s_n\}, t = \{t_n\}) \in ObCat^1-Comp$, $\Psi'(A): ((C_*, \mu_*), s = \{s_n\}, t = \{t_n\}) \longrightarrow ((Kers_* \rtimes Ims_*, \mu'_* \rtimes \mu''_*), \overline{s} = \{\overline{s}_n\}, \overline{t} = \{\overline{t}_n\})$ such that $\Psi'(A) = \xi_{C_*}^{-1}$, where $\xi_{C_*}^{-1}$ is indeed a morphism of Cat^1 -complexes, for $\xi_{C_*}^{-1} = \{\xi_{C_*}^{-1}\}$ is a chain

 $\Psi'(A):\left((C_*,\mu_*),s=\{s_n\},t=\{t_n\}\right)\to\left((Kers_*\rtimes Ims_*,\mu_*'\rtimes\mu_*''),\overline{s}=\{\overline{s}_n\},\overline{t}=\{\overline{t}_n\}\right)\quad\text{such that}\\ \Psi'(A)=\xi_{C_*}^{-1},\text{ where }\xi_{C_*}^{-1}\text{ is indeed a morphism of }Cat^1\text{-complexes, for }\xi_{C_*}^{-1}=\{\xi_{C_n}^{-1}\}\text{ is a chain}\\ \text{map defined by }\xi_{C_n}^{-1}(c_n)=\left(c_ns_n(c_n^{-1}),s_n(c_n)\right)\quad\text{for all }c_n\in C_n,\quad\text{all }n\in Z,\quad\xi_{C_*}^{-1}s=\overline{s}\xi_{C_*}^{-1}\\ \text{and }\xi_{C_*}^{-1}t=\overline{t}\xi_{C_*}^{-1}.$

For any $f = \{f_n\}$: $A = ((C_*, \mu_*), s = \{s_n\}, t = \{t_n\}) \rightarrow B = ((G_*, \eta_*), u = \{u_n\}, v = \{v_n\})$, to show that Ψ' is natural transformation, it is enough to show the commutativity of the following diagram:

Note that $(f' \rtimes f'')\Psi'(A) = (f' \rtimes f'')\xi_{C_*}^{-1}$ and $\Psi'(B)f = \xi_{C_*}^{-1}f$.

Since $c_n s_n(c_n^{-1}) \in Kers_n$, $s_n(c_n) \in Ims_n$, $f_n' = f_n | Kers_n$, $f_n'' = f_n | Ims_n$ and f is a morphism of cat¹-complexes, therefore $(f_n' \rtimes f_n'') \xi_{C_n}^{-1} = \xi_{C_n}^{-1} f_n$ for all $n \in \mathbb{Z}$.

Thus Ψ' is a natural transformation. Furthermore, as $\xi_{C_n}^{-1}\xi_{C_n}=I_{Kers_n\rtimes Ims_n}$ we have $\Psi'\phi'=I_{I_{Cat^1-Comp}}$

Thus $T \circ R \approx I_{Cat^1-Comp}$ and $R \circ T \approx I_{CModComp}$. Hence CModComp and Cat^1-Comp are equivalent.

THEOREM 3.3. T: $CModComp \rightarrow Cat^1$ -Comp is a left adjoint functor of $R: Cat^1$ - $Comp \rightarrow CModComp$.

Proof. We shall show that there is a natural isomorphism $\Phi: Mor_{Cat^1-Comp}(T-,-) \to Mor_{CModComp}(-,R-)$, where

 $Mor_{Cat^1\text{-}Comp}(T\text{--},\text{--})$, $Mor_{CModComp}(\text{--},R\text{--})$: $CModComp^{op} \times Cat^1\text{-}Comp \rightarrow S$ are bifunctors, where S denotes the category of sets and $CModComp^{op}$ denotes the opposite (dual) category of CModComp. These bifunctors are defined respectively by the following compositions;

For all $A = \left(\left((C_*, \mu_*), (G_*, \eta_*), \partial\right)^{op}, \left((H_*, \alpha_*), s, t\right)\right) \in ObCModComp^{op} \times Cat^1\text{-}Comp,$ $\Phi(A): Mor_{Cat^1\text{-}Comp} \left(\left((C_* \bowtie G_*, \mu_* \bowtie \eta_*), \overline{s} = \{\overline{s}_n\}, \overline{t} = \{\overline{t}_n\}\right), \left((H_*, \alpha_*), s = \{s_n\}, t = \{t_n\}\right)\right) \longrightarrow$ $Mor_{CModComp} \left(\left((C_*, \mu_*), (G_*, \eta_*), \partial = \{\partial_n\}\right), \left((Kers_*, \alpha_*'), (Ims_*, \alpha_*''), t | Kers_*\right)\right), \quad \text{is} \quad \text{defined}$ by $\Phi(A)(l) = (\overline{l}, l^*)$, for all $l = \{l_n\} \in Mor_{Cat^1\text{-}Comp} \left(\left((C_* \bowtie G_*, \mu_* \bowtie \eta_*), \overline{s}, \overline{t}\right), \left((H_*, \alpha_*), s, t\right)\right)$, where $\overline{l} = \{\overline{l}_n\}: (C_*, \mu_*) \longrightarrow (Kers_*, \alpha_*') \text{ and } l^* = \{l_n^*\}: (G_*, \eta_*) \longrightarrow (Ims_*, \alpha_*'') \text{ are chain maps defined by } \overline{l}_n(c_n) = l_n(c_n, 1_{G_n}) \quad \text{and } l_n^*(g_n) = l_n(1_{C_n}, g_n) \text{ for all } c_n \in C_n, g_n \in G_n \text{ and for each } n \in Z. \text{ Note}$ that $(\overline{l}, l^*): \left((C_*, \mu_*), (G_*, \eta_*), \partial\right) \longrightarrow \left((Kers_*, \alpha_*'), (Ims_*, \alpha_*''), t | Kers_*\right) \text{ is indeed a morphism of crossed modules of complexes since } \overline{l} \text{ and } l^* \text{ are chain maps, } (t | Kers_*) \overline{l}_n = l_n^* \partial_n \text{ and } \overline{l}_n(g_n) = l_n^*(g_n) \overline{l}_n(c_n) \text{ for all } c_n \in C_n, g_n \in G_n \text{ and all } n \in Z. \text{ We turn now to show that } \Phi \text{ is a natural transformation, let } ((f, k)^{op}, \mathbb{A}) \in Mor_{CModComp} \cap \mathcal{P} \times Cat^1\text{-}Comp} (A, B), \text{ where}$

 $A = (((C_*, \mu_*), (G_*, \eta_*), \partial)^{op}, ((H_*, \alpha_*), s, t))$ and $B = (((D_*, \tau_*), (Y_*, \delta_*), \lambda)^{op}, ((X_*, \beta_*), u, v))$ It is enough to show the commutativity of the following diagram:

$$A \qquad Mor_{Cat^{1}\text{-}Comp} \left(\left((C_{*} \rtimes G_{*}, \mu_{*} \rtimes \eta_{*}), \overline{s}, \overline{t} \right), U \right) \xrightarrow{\Phi(A)} Mor_{CModComp} \left(J, \left((Kers_{*}, \alpha'_{*}), (Ims_{*}, \alpha''_{*}), t | Kers_{*} \right) \right)$$

$$E_{Cat^{1}\text{-}Comp} \left((f \rtimes k)^{op}, k \right) \qquad E_{CModComp} \left((f, k)^{op}, (k', k'') \right)$$

$$E_{CModComp} \left((f, k)^{op}, (k', k'') \right) \xrightarrow{\Phi(B)} Mor_{CModComp} \left(Q, \left((Keru_{*}, \beta'_{*}), (Imu_{*}, \beta''_{*}), v | Keru_{*} \right) \right)$$

where
$$U=((H_*,\alpha_*),s,t)$$
, $J=((C_*,\mu_*),(G_*,\eta_*),\partial)$, $W=((X_*,\beta_*),u,v)$, $Q=((D_*,\tau_*),(Y_*,\delta_*),\lambda)$.
Let $I=\{l_n\}\in Mor_{Cat^1-Comp}$ $\Big(\Big((C_*\rtimes G_*,\mu_*\rtimes \eta_*),\overline{s},\overline{t}\Big),\Big((H_*,\alpha_*),s,t\Big)\Big)$. Therefore
$$E_{CModComp}\Big((f,k)^{op},(k',k'')\Big)\Phi(A)(l)=E_{CModComp}\Big((f,k)^{op},(k',k'')\Big)\Big(\overline{l},l^*\Big)$$

=
$$(k', k'')(\bar{l}, l^*)(f, k)$$
= $(k'\bar{l}f, k''l^*k)$. On the other hand,

$$\Phi(B)E_{Cat^{1}\text{-}Comp}((f \rtimes k)^{op}, \&) \ (l) = \Phi(B)\big(\& \ l \ (f \rtimes k)\big) = \Big(\overline{\& \ l \ (f \rtimes k)}, \big(\& \ l \ (f \rtimes k)\big)^{*}\big).$$

According to the definition of \overline{l} and l^* , we have $\overline{k \ l \ (f \bowtie k)} = k' \ \overline{l} \ f$ and $(k \ l \ (f \bowtie k))^* = k'' \ l^* \ k$, respectively. Also, define a function $\Psi:Mor_{CModComp}(-,R-) \rightarrow Mor_{Cat^1-Comp} \ (T-,-)$ as follows; for all $C = \left(\left((C_*,\mu_*),(G_*,\eta_*),\partial\right)^{op},\left((H_*,\alpha_*),s,t\right)\right) \in ObCModComp^{op} \times Cat^1-Comp$, $\Psi(C):Mor_{CModComp} \ \left(\left((C_*,\mu_*),(G_*,\eta_*),\partial=\{\partial_n\}\right),\left((Kers_*,\alpha_*'),(Ims_*,\alpha_*''),t|Kers_*\right)\right) \longrightarrow Mor_{Cat^1-Comp} \ \left(\left((C_*\rtimes G_*,\mu_*\rtimes \eta_*),\overline{s}=\{\overline{s}_n\},\overline{t}=\{\overline{t}_n\}\right),\left((H_*,\alpha_*),s=\{s_n\},t=\{t_n\}\right)\right),$

is defined by $\Psi(\mathcal{C})(\rho,\theta) = (\rho \rtimes \theta)^{\#}$, for all

 $(\rho = \{\rho_n\}, \theta = \{\theta_n\}) \in Mor_{CModComp}\left(\left((C_*, \mu_*), (G_*, \eta_*), \theta\right), \left((Kers_*, \alpha_*'), (Ims_*, \alpha_*''), t | Kers_*\right)\right)$ where $(\rho \bowtie \theta)^{\#} : \left((C_* \bowtie G_*, \mu_* \bowtie \eta_*), \overline{s} = \{\overline{s}_n\}, \overline{t} = \{\overline{t}_n\}\right) \rightarrow \left((H_*, \alpha_*), s = \{s_n\}, t = \{t_n\}\right)$ is defined by $(\rho_n \bowtie \theta_n)^{\#} : (c_n, g_n) = \rho_n(c_n)\theta_n(g_n)$ for all $(c_n, g_n) \in C_n \bowtie G_n$ and all $n \in Z$. Clearly $(\rho_n \bowtie \theta_n)^{\#}$ is a homomorphism and $\alpha_n(\rho_n \bowtie \theta_n)^{\#} = (\rho_{n-1} \bowtie \theta_{n-1})^{\#} : (\mu_n \bowtie \eta_n)$ which implies that $(\rho \bowtie \theta)^{\#}$ is a chain map. Note that $(\rho \bowtie \theta)^{\#}$ is also a morphism of cat -complexes. We turn now to show that Ψ is a natural transformation. Let $((f,k)^{op}, k) \in Mor_{CModComp^{op} \times Cat^1 - Comp}(C,D)$, where $C = \left(\left((C_*, \mu_*), (G_*, \eta_*), \partial\right)^{op}, \left((H_*, \alpha_*), s, t\right)\right)$ and $D = \left(\left((D_*, \tau_*), (Y_*, \delta_*), \lambda\right)^{op}, \left((X_*, \beta_*), u, v\right)\right)$. It is enough to show the commutativity of the following diagram:

Finally, we shall prove that $\phi \Psi = I_{Mor_{CModComp}(-,R-)}$ and $\Psi \phi = I_{Mor_{Cat^1-Comp}(T-,-)}$. Let $A = \left(\left((C_*,\mu_*), (G_*,\eta_*), \partial \right)^{op}, \left((H_*,\alpha_*),s,t \right) \right) \in ObCModComp^{op} \times Cat^1-Comp$ We need to show the commutativity of the following diagram:

$$Mor_{Cat^{1}\text{-}Comp}\left(\left((C_{*}\rtimes G_{*},\mu_{*}\rtimes\eta_{*}),\overline{s},\overline{t}\right),U\right) \xrightarrow{\Phi(A)} Mor_{CModComp}\left(J,\left((Kers_{*},\alpha'_{*}),(Ims_{*},\alpha''_{*}),t|Kers_{*}\right)\right)$$

$$I_{Mor_{Cat^{1}\text{-}Comp}}(T^{-,-})(A) \qquad \qquad \Psi(A)$$

$$Mor_{Cat^{1}\text{-}Comp}\left(\left((C_{*}\rtimes G_{*},\mu_{*}\rtimes\eta_{*}),\overline{s},\overline{t}\right),U\right)$$

Let $l \in Mor_{Cat^1\text{-}Comp}\left(\left((C_* \rtimes G_*, \mu_* \rtimes \eta_*), \overline{s}, \overline{t}\right), \left((H_*, \alpha_*), s, t\right)\right)$. Therefore $\Psi(A)\phi(A)(l) = \Psi(A)\left(\overline{l}, l^*\right) = \left(\overline{l} \rtimes l^*\right)^\#$, where $\left(\overline{l}_n \rtimes l_n^*\right)^\# = l_n$ on $C_n \rtimes G_n$ for all $n \in \mathbb{Z}$. Thus $\left(\Psi(A)\phi(A)\right)(l) = \left(I_{Mor_{Cat^1\text{-}Comp}}(T_{-,-})(A)\right)(l)$. Now, let $A = \left(\left((C_*, \mu_*), (G_*, \eta_*), \partial\right)^{op}, \left((H_*, \alpha_*), s, t\right)\right) \in ObCModComp^{op} \times Cat^1\text{-}Comp$. We need to show the commutativity of the following diagram:

$$Mor_{CModComp}\left(J,\left((Kers_*,\alpha_*'),(Ims_*,\alpha_*''),t|Kers_*\right)\right) \xrightarrow{\Psi(A)} Mor_{Cat^1\text{-}Comp}\left(\left((C_*\rtimes G_*,\mu_*\rtimes \eta_*),\overline{s},\overline{t}\right),U\right)$$

$$I_{Mor_{CModComp}(-,R-)}(A) \qquad \Phi(A)$$

$$Mor_{CModComp}\left(J,\left((Kers_*,\alpha_*'),(Ims_*,\alpha_*''),t|Kers_*\right)\right)$$

For any
$$(\rho,\theta) \in Mor_{CModComp}\left(\left((C_*,\mu_*),(G_*,\eta_*),\partial\right),\left((Kers_*,\alpha_*'),(Ims_*,\alpha_*''),t|Kers_*\right)\right)$$
, we have $\phi(A)\Psi(A)(\rho,\theta) = \phi(A)((\rho \bowtie \theta)^\#) = \left(\overline{(\rho \bowtie \theta)^\#},((\rho \bowtie \theta)^\#)^*\right)$.
In fact $\overline{(\rho_n \bowtie \theta_n)^\#} = \rho_n$ on C_n and $((\rho_n \bowtie \theta_n)^\#)^* = \theta_n$ on G_n for all $n \in Z$.

Therefore
$$\phi(A)\Psi(A)(\rho,\theta) = \left(I_{Mor_{CModComp}(-,R-)}(A)\right)(\rho,\theta).$$

Thus $\Phi: Mor_{Cat^1\text{-}Comp}(T-,-) \to Mor_{CModComp}(-,R-)$ is a natural isomorphism, and hence $T: CModComp \to Cat^1\text{-}Comp$ is a left adjoint functor of $R: Cat^1\text{-}Comp \to CModComp$.

References

- [1] Brown R. and Huebschmann J., *Identities among Relations, in Low Dimensional Topology*, London, Math. Soc. Lect. Notes, t. 48, Cambridge Univ. press, (1982).
- [2] Brown R. and Sivera R., *Non Abelian Algebraic Topology*, a Draft of Part 1 is available from: http://www.bangor.ac.uk./~mas010/nonab-a-t.html (2008).

- [3] R.S. Mahdi and M. M. Kamil, Crossed Modules of Complexes, International journal of Contemporary mathematical Science, Hikari, Accepted for publication.
- [4] Loday, J.-L., *Spaces with Finitely Many Non-Trivial Homotopy Groups*, J. Pure Appl. Algebra. 24,(1982).
- [5] Rotman J.J., An Introduction to Algebraic Topology, Springr-Verlag, New York (1988).
- [6] Whitehead J.H.C., *Combinatorial Homotopy II*, Bulletin Math. Soc., t.55 (1949).

Received: July, 2011