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Abstract

In this paper, according to consequent system of a endemic model,
a model with Acute and Chronic Stages is proposed. By making use of
differential equation and characteristic of hepatitis C, we obtain that,
When R0 > 1 the endemic equilibrium of system is globally stable.
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1. Introduction

In this paper, the stability of the equilibrium of a chronic stage on the

disease transmission and behavior in an exponentially growing or decaying

population is the focus of this paper. The framework is brought into the case

of hepatitis C, a disease typically characterized by a long chronic stage. As is

well known to us, Hepatitis C, formerly referred to as ’non-A, non-B’ hepatitis,

is an important infection of the liver which was first considered as a separate

disease in 1975. In practice, the vast majority of patients with acute hepatitis

C develop a chronic infection which is characterized by detection of HCV RNA

for a period of at least six months after a newly acquired infection. The most

common symptoms of acute hepatitis C are fatigue and jaundice. However,

the majority of cases, including those with chronic disease, are asymptomatic.

This makes the diagnosis of hepatitis C very difficult and can be explained

clearly why the HCV epidemic is often called ’the silent epidemic’ [1]. No

vaccine is available for hepatitis C. The high mutability of the hepatitis C
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genome [2] composes its development. There is no evidence that the successful

treatment of HCV gives any kind of partial or temporary immunity. Hence

the models developed fall within the class of models that treated or recovered

individuals move back to the susceptible class.

In fact, the only two works known to the authors are [3]. A model struc-

tured by age-since-infection has also been considered in relation to HIV in [4,

5]. Reade et al. discussed an ODE model for infections with acute and chronic

Stages with feline calicivirus [3]. Their work is mostly numerical and focuses on

the impact of vaccination on the acute and chronic phases. A model without

exposed class is constructed in [6], which obtained the proportional stability of

the equilibriums. In this paper, it is supposed that, after the primary infection,

a host stays in a latent period before becoming infectious. A four-dimension

model with acute and chronic stages is discussed. The epidemic is transmitted

through people’s direct contacts. We suppose that the disease has an exposed

period and then the patients enter into the acute and finally they went through

the chronic stage. The patients have no immunity after recovering and become

susceptible again. We part the population in researched area into four classes:

S-susceptible; E-exposed; I-infected with acute hepatitis C; V -infected with

chronic hepatitis C. The total number inttime isN(t) = S(t)+I(t)+V (t)+E(t).

2. Basic assumptions and the Mathematical model

Next, we construct the following model:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ(t) = bN − βI
1+α1I

S
N
− γV S − dS + αV,

Ė(t) = βI
1+α1I

S
N

+ γV S
N
− dE − εE,

İ(t) = εE − (d + k)I,

V̇ (t) = kI − (d + α)V,

S(0) = S0, E(0) = E0, I(0) = I0, V (0) = V0,

(2.1)

By adding the equations of system (2.1)we obtain Ṅ(t) = (b − d)N We set

r = b − d,then Ṅ(t) = rN ,hence N = N0e
rt, terefore r gives the growth rate

of the population, if r > 0,that is b > d, the population exponentially grows,

if r < 0,that is b < d, the population exponentially decreases. The case r = 0

or b = d implies that the population is stationary. Setting N = 1,then the

system (2.1)becomes the following equivalent system:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ(t) = b(1 − S) − βIS
1+α1I

− γV S + αV,

Ė(t) = βIS
1+α1I

+ γV S − (b + ε)E,

İ(t) = εE − (b + k)I,

V̇ (t) = kI − (b + α)V,

S(0) = S0, E(0) = E0, I(0) = I0, V (0) = V0,

(2.2)
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Letting E = 1 − S − I − V substitute E in the third equation of (2.2)and

removing the second equation,we obtain

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ṡ(t) = b(1 − S) − βIS
1+α1I

− γV S + αV,

İ(t) = ε(1 − S − I − V ) − (b + k)I,

V̇ (t) = kI − (b + α)V,

S(0) = S0, E(0) = E0, I(0) = I0, V (0) = V0,

(2.3)

Setting Γ={(S, I, V ) ∈ R3 | S > 0,I > 0,V > 0,S + I + V ≤ 1}, obviouslyΓ is

a invariable set of (2.3).

3. Stability of the endemic and limit cycle

In this section, we study the stability and bifurcation of the endemic .

Let

R0 = ε
β(b + α) + kγ

(b + α)(ε + b)(k + b)
=

βε

(k + b)(ε + b)
+

kεγ

(b + α)(ε + b)(k + b)
.

When R0 > 1 , the model (2.3) has a unique endemic equilibrium . Evaluating

the of the model (2.3) at E∗ gives

J =

⎡
⎢⎢⎣
−b − βI∗

1+α1I∗ − γV ∗ −βS∗
(1+α1I∗)2

−γS∗ + α

−ε −ε − b − k −ε

0 k −(b + α)

⎤
⎥⎥⎦ .

Then the characteristic equation about E∗ is given by λ3 +Eλ2 +Fλ+G = 0,

where

E = 3b +
βI∗

1 + α1I∗ + γV ∗ + α + ε + k,

F = (b+
βI∗

1 + α1I∗+γV ∗)(b+k+ε)− βS∗ε
(1 + α1I∗)2

+(b+α)(2b+k+ε+
βI∗

1 + α1I∗+γV ∗)+kε,

G = (b+α)[(b+
βI∗

1 + α1I∗+γV ∗)(b+k+ε)− βS∗ε
(1 + α1I∗)2

]+k[ε(b+α)+ε(
βI∗

1 + α1I∗+γV ∗)−εγS∗].

Evidently E > 0 , establishing the sign of G in the following G > [(b + α)(b +

k + ε) + kε]( βI∗
1+α1I∗ + γV ∗) > 0. If S∗ < 1

R0
the last inequality is tenable. In

the following, we calculate the sign of EF − G ,

EF−G = (b+α)2(2b+k+ε+
βI∗

1 + α1I∗+γV ∗)+kε(2b+k+ε)+(2b+k+ε+
βI∗

1 + α1I∗+γV ∗)

×[(b+
βI∗

1 + α1I∗+γV ∗)(b+k+ε)− βS∗ε
(1 + α1I∗)2

+(b+α)(2b+k+ε+
βI∗

1 + α1I∗+γV ∗)].
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Theorem 3.1. Suppose R0 > 1, then the disease endemic equilibrium E∗ of

(2.3) is a stable node or focus when EF − G > 0, G > 0. E∗ is an unstable

node or focus when EF − G < 0 , or G < 0 and has at least one closed orbit

in Ω ; E∗ is a center of the linear system of (2.3) when EF − G = 0.

Letting V = 1−S−E−I substitute the V of the first and the second equations

in (2.2), then the system (2.2) becomes

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ṡ(t) = b(1 − S) − βIS
1+α1I

− γS(1 − E − I) + α(1 − S − E − I) + γS2,

Ė(t) = βIS
1+α1I

+ γS(1 − E − I) − γS2 − (b + ε)E,

İ(t) = εE − (b + k)I,

§(0) = S0, E(0) = E0, I(0) = I0, V (0) = V0,
(3.1)

Setting Ω ={(S, E, I) ∈ R3
1 | S + E + I < 1}. Let x → f(x) ∈ Rn be a C1

function for x in an open set D ⊂ Rn. Consider the differential equation

ẋ = f(x) (3.2)

Denote by x(t, x0) the solution to (3.2) such that x(0, x0) = x0 . We make the

following two assumptions: (H1 )eq. (2.3) has a unique equilibrium x̄ in D.

(H2 ) There exists a compact absorbing set K ⊂ D .

Lemma 3.2.Under the assumptions (H1 ) and (H2 ), find conditions on (3.2)

such that the local stability of x̄ implies its global stability in D.

Theorem 3.3.When R0 > 1, if γ = 0, α = 0 , then the endemic equilibrium

P ∗ of system (2.3) is globally stable in Γ0.

proof: The global stability of the endemic equilibrium of system (2.3) in P ∗

is equivalent to that of the endemic equilibrium P̄ (S∗, E∗, I∗) of system (3.1)

in Ω . Evidently, system (3.1) has unique endemic equilibrium P̄ in Ω , hence

it satisfies the assumption (H1 ). Because R0 > 1, the instability of and

the boundness of the solutions of system (3.1) ensure the system (3.1) has a

compact set in Ω, so it also satisfies the assumption (H2 ). When γ = 0, α = 0,

the Jocobian matrix of system (3.1)is

J =

⎡
⎢⎢⎣
−b − βI∗

1+α1I∗ 0 −βS∗
(1+α1I∗)2

βI∗
1+α1I∗ −ε − b βS∗

(1+α1I∗)2

0 ε −(b + k)

⎤
⎥⎥⎦ .

And its second additive compound matrix is

J [2] =

⎡
⎢⎢⎣
−2b − βI∗

1+α1I∗ − ε βS∗
(1+α1I∗)2

βS∗
(1+α1I∗)2

ε −2b − βI∗
1+α1I∗ − k 0

0 βI∗
1+α1I∗ −2b − k − ε

⎤
⎥⎥⎦ .
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Set the function P (X) = P (S, E, I) = diag{1, E
I
, E

I
}, then PfP

−1 = diag{0, Ė
E
−

İ
I
, Ė

E
− İ

I
}, And the matrix B = PfP

−1+PJ [2]P−1 can be written in block form

B =

[
B11 B12

B21 B22

]
,

where

B11 = −2b − βI∗

1 + α1I∗ − ε, B12 = (
βS

(1 + α1I)2

I

E
,

βS

(1 + α1I)2

I

E
),

B21 =

(
εE

I

0

)
, B22 =

⎛
⎝ Ė

E
− İ

I
− 2b − βI∗

1+α1I∗ − k 0
βI∗

1+α1I∗
Ė
E
− İ

I
− 2b − k − ε

⎞
⎠

Let (u, v, w) denote the vectors in R3 ∼= R
(

3

2
)

, we select a norm in R3 as

|(u, v, w)| = max{|u|, |v + w|}. And let u denote the measure with respect to

this norm. Using the method of estimating u in [7], we have

u(B) ≤ sup{g1, g2}, (3.3)

where

g1 = u1(B11) + |B12|, g2 = |B21| + u1(B22),

Here B12, B21 are matrix norms with respect to the l1 vector norm, and u1

denotes the Lozinskii measure with respect to the l1 norm. More specifically,

u1(B11) = −2b − βI∗

1 + α1I∗ − ε, |B12| =
βS

(1 + α1I)2

I

E
,

|B21| = ε
E

I
, u1(B22) =

Ė

E
− İ

I
− 2b − k.

Therefore g1 = βS
(1+α1I)2

− 2b − β − βI∗
1+α1I∗ , g2 = Ė

E
− İ

I
− 2b − k + εE

I
. Hence

g1 ≤ Ė

E
− b − βI∗

1 + α1I∗ ≤ Ė

E
− b, g2 =

Ė

E
− b.

By (3.3) we can obtain u(B) ≤ Ė
E
− b. Along each solution x(t, x0), (x0 ∈ K) ,

where K is the compact absorbing set, we thus have 1
t

∫ t
0 u(B)ds ≤ 1

t
log E(t)

E0
−b,

when t → ∞, ḡ2 ≤ −2
b

< 0.

According to the theorem of Li and Muldowney, if γ = 0, α = 0 , the endemic

equilibrium P̄ of system (2.3) is globally stable in Ω. The proof is completed.

Theorem 3.4.Suppose R̂0 < R0 < 1 and b + α > A1 . Then the endemic
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equilibrium E∗ of (2.3) is a saddle, E∗ is a stable node or focus when EF −G >

0, G > 0 ; E∗ is an unstable node or focus when EF − G < 0, or G < 0 , and

has at least one closed orbit in Ω ; E∗ is a center of the linear system of (2.3)

when EF − G = 0 .

proof: the Jocobian of E∗ is given by

M1 =

⎡
⎢⎢⎣
−b − βI∗

1+α1I∗ − γV∗
−βS∗

(1+α1I∗)2 −γS∗ + α

−ε −ε − b − k −ε

0 k −(b + α)

⎤
⎥⎥⎦ .

For S∗ = 1 − (k+b)(ε+α+b)+εα
ε(b+α)

I∗, We have

det(M1) = −(b+
βI∗

1 + α1I∗
+γV∗)[kε+(b+α)(b+k+ε)]+kγ−kγ[kε + (b + α)(b + k + ε)]

ε(b + α)
I∗

−kα +
(b + α)βε

(1 + α1I∗)2
− βI∗

(1 + α1I∗)2
[kε + (b + α)(b + k + ε)].

for V∗ = k
b+α

I∗, I∗ = −b1−
√

Δ
2b0

, substitute I∗ , then after some algebra we can

see that det(M1) < 0 and the equilibrium E∗(S∗, I∗, V∗) is a saddle point.

The proof is completed. Next we analyze the stability of the second positive

equilibrium E∗(S∗, I∗, V ∗). The Jocobian matrix at E∗(S∗, I∗, V ∗) is

M2 =

⎡
⎢⎢⎣
−b − βI∗

1+α1I∗ − γV ∗ −βS∗
(1+α1I∗)2 −γS∗ + α

−ε −ε − b − k −ε

0 k −(b + α)

⎤
⎥⎥⎦ ,

By a similar argument as above, we obtain that det(M2) > 0 . Thus, E∗ is a

node, or a focus, when EF − G > 0 ; E∗ is an unstable node or focus when

EF −G < 0; E∗ is a center of the linear system when EF −G = 0. The proof

is completed.
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