Union Curves of a Hypersurface of a Weyl Space

Nil Kofoğlu

Mimar Sinan Arts University
Faculty of Science and Letters
34347 Beşiktaş-Istanbul, Turkey
nkofoglu@msu.edu.tr

Abstract

In this paper, we have defined the union curves of a hypersurface $W_n(g_{ij}, T_k)$ of a Weyl space $W_n(g_{ab}, T_c)$ with respect to a congruence.

Mathematics Subject Classification: 53B25, 53A25

Keywords: Weyl space, the union curvature vector field, the union curve.

INTRODUCTION

A manifold with a conformal metric g_{ij} and a symmetric connection ∇_k satisfying the compatibility condition

$$\nabla_k g_{ij} - 2T_k g_{ij} = 0 \tag{1.1}$$

is called a Weyl space that will be denoted by $W_h(g_{ij}, T_k)$. The vector field T_k is named the complementary vector field. Under renormalization of the metric tensor g_{ij} in the form

$$\overset{\nu}{g}_{ij} = \lambda^2 g_{ij} \tag{1.2}$$

the complementary vector field T_k is transformed by the law

$$\overset{\nu}{T}_{k} = T_{k} + \partial_{k} \ln \lambda \tag{1.3}$$

where λ is a scalar function [1].

If, under transformation (1.2), the quantity A is changed according to the rule

$$\overset{\nu}{A} = \lambda^p A \tag{1.4}$$

then A is called satellite of g_{ij} with weight $\{p\}$.

The prolonged derivative and prolonged covariant derivative of A are, respectively, defined by ([2],[3])

and

$$\overset{\bullet}{\nabla}_k A = \nabla_k A - p T_k A. \tag{1.6}$$

Let $W_n(g_{ij}, T_k)$ be a hypersurface of the Weyl space $W_{n+1}(g_{ab}, T_c)$ and let x^a (a = 1.2..., n + 1) and u^i (i = 1.2..., n) be, respectively, the coordinates of $W_{n+1}(g_{ab}, T_c)$ and $W_n(g_{ij}, T_k)$. The metrics of $W_n(g_{ij}, T_k)$ and $W_{n+1}(g_{ab}, T_c)$ are connected by the relations

$$g_{ij} = g_{ab}x_i^a x_i^b \ (j = 1, 2, \dots, n; b = 1, 2, \dots, n+1)$$
 (1.7)

where x_i^a is the covariant derivative of x^a with respect to u^i .

The prolonged covariant derivative of A with respect to u^k and x^c are, respectively, $\overset{\bullet}{\nabla}_k A$ and $\overset{\bullet}{\nabla}_c A$ and related by the conditions

$$\overset{\bullet}{\nabla}_k A = x_k^c \overset{\bullet}{\nabla}_c A \ (k = 1, 2, \dots, n \ ; \ c = 1, 2, \dots, n+1). \tag{1.8}$$

Let the normal vector field n^a of $W_n(g_{ij}, T_k)$ be normalized by the condition $g_{ab}n^an^b=1$.

Since the weight of x_i^a is $\{0\}$, the prolonged covariant derivative of x_i^a , relative to u^k , is given by

$$\nabla_k x_i^a = \nabla_k x_i^a = w_{ik} n^a \tag{1.9}$$

where w_{ik} are the coefficients of the second fundamental form of $W_n(g_{ij}, T_k)$.

On the other hand, it is easy to see that the prolonged covariant derivative of n^a is given by

$$\overset{\bullet}{\nabla}_k n^a = -w_{kl} g^{il} x_i^a. \tag{1.10}$$

Let v_r^i (i, r = 1, 2, ..., n) be the contravariant compenents of the vector field v_r in $W_n(g_{ij}, T_k)$. Suppose that vector fields v_r (r = 1, 2, ..., n) are normalized by the conditions $g_{ij}v_r^iv_r^j = 1$.

The prolonged covariant derivative of the vector field given by

[4]

$$\overset{\bullet}{\nabla}_{k} v^{i} = \overset{p}{T_{k}} v^{i} (r, p = 1, 2, \dots, n)$$
(1.11)

Let v_r^a and v_r^i be, respectively, the contravariant components of the vector field v_r relative to $W_{n+1}(g_{ab}, T_c)$ and $W_n(g_{ij}, T_k)$, we have [5]

$$v_r^a = x_i^a v_r^i, \ (a = 1, 2, \dots, n+1; i = 1, 2, \dots, n)$$
 (1.12)

If κ_{rr} is the normal curvature of the hypersurface $W_n(g_{ij}, T_k)$ in the direction of v, we have

$$\kappa_{rr} = w_{ij} v_r^i v_r^j. \tag{1.13}$$

Since the weight of w_{ij} is $\{1\}$ and that of v_r^i is $\{-1\}$, κ_{rr} is a satellite of g_{ij} with weight of $\{-1\}$.

The quantities

are called the geodesic curvatures of the lines of the net $\left(v, v, \ldots, v\right)$ [4].

The vector fields

$$c^{i} = \int_{p}^{r} v^{i}$$
 $(i, r, p = 1, 2, \dots, n)$ (1.15)

are called the geodesic vector fields of the net (v_1, v_2, \dots, v_n) relative to $W_n(g_{ij}, T_k)$ [4].

If the components of the geodesic vector fields relative to $W_{n+1}(g_{ab}, T_c)$ are denoted by \overline{c}_r^a , then we have [5]

$$v_r^c \stackrel{\bullet}{\nabla_c} v_r^a = \overline{c}_r^a = \left(w_{ik} v_r^i v_r^k\right) n^a + c_r^i x_i^a. \tag{1.16}$$

Since the net $\left(v, v, \ldots, v\atop 1, 2, \ldots, v\atop n\right)$ is ortogonal, we have by [4]

$$T_k^r = 0, T_k^p + T_k^r = 0 \quad (r \neq p).$$
 (1.17)

2. Totally Geodesic Surface in W_{n+1}

Let $W_n(g_{ij}, T_k)$ be a hypersurface of the Weyl space $W_{n+1}(g_{ab}, T_c)$. Let C be a curve in W_n .

Definition 2.1 Totally geodesic surface in W_{n+1} is determined by the tangent vector field of the curve C relative to W_{n+1} and by the derivative of the tangent vector field of the curve C relative to W_{n+1} along the curve C.

Let us consider a congruence of the curves in W_{n+1} such that one curve of the congruence passes through each point of W_n and let us denote it by v. Let v^a be the contravariant components of v in the x's and let v^a be normalized by the condition $g_{ab}v^av^b=1$. The vector field v with components v^a , in general, not normal to W_n and can be specified by

$$v^a = t^i x_i^a + r n^a (2.1)$$

where t^i and r are parameters [6].

Since $g_{ab}v^av^b = 1$, with the help (1.11) and (1.13)

$$t_i t^i = 1 - r^2 \tag{2.2}$$

is valid.

Let y be a vector field in W_n . If it's contravariant components in the x's and the covariant components in the u's are denoted by y^a and y^j , respectively, then there is the following relation between y^a and y^i

$$y^a = x_i^a y^i. (2.3)$$

If we take the absolute derivative of y^a along the curve C relative to W_{n+1} and if h^a are contravariant components in the x's of the derived vector field relative to W_{n+1} and h^j are the contravariant components in the u's of the derived vector field relative to W_n , the following relation is valid:

$$h^{a} = v_{s}^{b} \stackrel{\bullet}{\nabla}_{b} y^{a} = v_{s}^{k} \stackrel{\bullet}{\nabla}_{k} (x_{j}^{a} y^{j})$$

$$= v_{s}^{k} (\stackrel{\bullet}{\nabla}_{k} x_{i}^{a}) y^{i} + x_{i}^{a} v_{s}^{k} (\stackrel{\bullet}{\nabla}_{k} y^{i})$$

$$= w_{ki} v_{s}^{k} y^{i} n^{a} + x_{i}^{a} h^{i}$$

$$(2.4)$$

where v_s is the tangent vector field of the curve C in W_n , it is normalized by the condition $g_{ij}v_s^iv_s^j=1$ and w_{ki} are the coefficients of the second fundamental form of $W_n(g_{ij},T_k)$.

If the geodesic in W_{n+1} in the direction of the congruence with direction v^a is to be a geodesic of the totally geodesic surface, then v can be written as a linear combination of y^a and h^a :

$$v^a = t^i x_i^a + r n^a = \alpha y^a + \beta h^a. \tag{2.5}$$

Besides, since y^i is equal to v^i , the expression (2.5) trans-

forms to

$$v^{a} = t^{i}x_{i}^{a} + rn^{a} = \alpha y^{a} + \beta h^{a} = \alpha x_{i}^{a}v^{i} + \beta h^{a}$$

$$(2.6)$$

where
$$h^{a} = \overline{c}_{s}^{a} = \kappa h^{a} + x_{i}^{a} c^{i}, h^{i} = c_{s}^{i} = \eta v^{i} (p = 1, 2, ..., n)$$

[5]. Here κ_{rr} is the normal curvature of the curve C in W_n in the direction of

v, \overline{c}^{a} and c^{i} are the geodesic curvature vector fields of the curve C relative to W_{n+1} and W_n , respectively.

Therefore, (2.6) can be written as

$$v^{a} = t^{j} x_{i}^{a} + r n^{a} = \alpha x_{i}^{a} v^{i} + \beta \left[w_{ki} v^{k} v^{i} n^{a} + x_{i}^{a} c^{k} \right].$$
 (2.7)

Let us calculate the coefficients α and β :

If the equations (2.7) are multiplied by $g_{ab}x_j^b$ and the summation is taken on a and b,

$$g_{ij}t^i = \alpha g_{ij}v^i_s + \beta g_{ij}c^i_s \tag{2.8}$$

is obtained.

If we multiply (2.8) by v_s^j and we take the summation on i and j, we get the first coefficient as

$$g_{ij}t^iv^j_s = \alpha (2.9)$$

where
$$T_s^i = 0$$
 [4], $g_{ij} v_j^i v_s^j = 0$, $p = (1, 2, \dots, s - 1, s + 1, \dots, n)$.

If we multiply (2.7) by $g_{ab}n^b$ and we take the summation on a and b, we find the second coefficient as

$$r = \beta w_{ki} v^k v^i = \beta \kappa_{ss}$$

or

$$\beta = \frac{r}{\kappa} \tag{2.10}$$

where $g_{ab}n^a n^b = 1$, $g_{ab}x_i^a n^b = 0$.

If we put into place the values of α and β in the equations

(2.8), we get

$$g_{ij}t^{i} = g_{mn}t^{m}t^{n}g_{ij}v_{s}^{i} + \frac{r}{\kappa}g_{ij}c_{s}^{i}.$$
 (2.11)

If the equations (2.11) are multiplied by g^{jk} and the summation is taken on i and j, we obtain

$$t^k = g_{mn}t^m v^n_s v^k_s + \frac{r}{\kappa} c^k_s$$
 (2.12)

or

$$\kappa \frac{t^k}{ss} = \kappa g_{mn} \frac{t^m}{r} v^n v^k + c^k \tag{2.13}$$

where $g_{ij}g^{jk} = \delta_i^k$.

If we take
$$\frac{t^k}{r} = l^k$$
, (2.13) transforms to

$$\kappa_{ss} l^k = \kappa_{ss} g_{mn} l^m v^n v^k + c^k \qquad (2.14)$$

or

$$c_s^k - \kappa_{ss} \left(l^k - g_{mn} l^m v_s^n v_s^k \right) = 0 \quad (k = 1, 2, \dots, n).$$
 (2.15)

3. Union Curves in W_n

For a congruence specified by the parameters l^k , the solutions of the n equations (2.15) determine the union curves in W_n relative to that congruence.

Let us denote the left hand side of the equations (2.15) by η^k , which we shall call the contravariant components of the union curvature vector field in W_n :

$$\eta^k = c_s^k - \kappa_{ss} \left(l^k - g_{mn} l^m v^n v^k \right) = 0 \quad (k = 1, 2, \dots, n).$$
 (3.1)

Definition 3.1 The union curve of W_n relative to a congruence as defined as a curve whose union curvature vector field is a null vector field.

By means of definition 3.1 and (3.1), the following corollaries are obtained:

Corollary 3.1 If the union curve C is an asymptotic curve in W_n , in which case κ is equal to zero, then C is a geodesic in W_n .

Corollary 3.2 If the union curve C is a geodesic in W_n , then it is either an asymptotic curve or the vector field with components $l^k - g_{mn} l^m v^n v^k$ is a null vector field.

Now, let us calculate the magnitude of the union curvature vector field:

Let us denote it by κ_u . Then:

$$\begin{split} \kappa_{u}^{2} &= g_{ij} \eta^{i} \eta^{j} \\ &= g_{ij} \left[c^{i} - \kappa_{ss} \left(l^{i} - g_{mn} l^{m} v^{n} v^{i} \right) \right] \left[c^{j} - \kappa_{s} \left(l^{j} - g_{pq} l^{p} v^{q} v^{j} \right) \right] \\ &= g_{ij} c^{i} c^{j} - \kappa_{s} g_{ij} c^{i} l^{j} + \kappa_{s} g_{ij} c^{i} v^{j} g_{pq} l^{p} v^{q} - \kappa_{s} g_{ij} l^{i} c^{j} \\ &+ \kappa_{s} g_{ij} v^{i} c^{j} g_{mn} l^{m} v^{n} + \kappa^{2} g_{ij} l^{i} l^{j} - \kappa^{2} g_{ij} l^{i} v^{j} g_{pq} l^{q} v^{q} \\ &- \kappa^{2} g_{ij} v^{i} l^{j} g_{mn} l^{m} v^{n} + \kappa^{2} g_{ij} v^{i} v^{j} g_{mn} l^{m} v^{n} g_{pq} l^{p} v^{q} \\ &= \kappa^{2}_{g} - 2 \kappa g_{ij} c^{i} l^{j} + \kappa^{2} g_{ij} l^{i} l^{j} - \kappa^{2} g_{ij} l^{i} v^{j} g_{pq} l^{p} v^{q} \\ &- \kappa^{2} g_{ij} v^{i} l^{j} g_{mn} l^{m} v^{n} + \kappa^{2} g_{mn} l^{m} v^{n} g_{pq} l^{p} v^{q} \\ &- \kappa^{2} g_{ij} v^{i} l^{j} g_{mn} l^{m} v^{n} + \kappa^{2} g_{mn} l^{m} v^{n} g_{pq} l^{p} v^{q} \\ &- \kappa^{2} g_{ij} v^{i} l^{j} g_{mn} l^{m} v^{n} + \kappa^{2} g_{mn} l^{m} v^{n} g_{pq} l^{p} v^{q} \end{split}$$

where κ_u is the union curvature of the curve C, $\kappa_g = \begin{subarray}{c} p \\ is the geodesic curvature of the curve <math>C$ which has tangent vector field v relative to W_n , $g_{ij}c^iv^j = g_{ij}\begin{subarray}{c} p \\ is p$

If we continue the operations, we get

$$\kappa_u^2 = \kappa_g^2 - 2\kappa g_{ij} c^i l^j + \kappa^2 g_{ij} l^i l^j - \kappa^2 g_{ij} l^i v^j g_{pq} l^p v^q$$

$$= \kappa_g^2 - 2\kappa \int_{ss}^p g_{ij} v^i l^j + \kappa^2 g_{ij} l^i l^j - \kappa g_{ij} l^i v^j g_{pq} l^p v^q$$

$$= \kappa_g^2 - 2\kappa \int_{ss}^p \cos\left(\frac{\pi}{2} - \alpha\right) \tan\phi + \kappa^2 \tan^2\phi - \kappa \cos^2\alpha \tan^2\phi$$

$$= \kappa_g^2 - 2\kappa \kappa g \sin\alpha \tan\phi + \kappa^2 \tan^2\phi \left(1 - \cos^2\alpha\right)$$

$$= \kappa_g^2 - 2\kappa \kappa g \sin\alpha \tan\phi + \kappa^2 \tan^2\phi \sin^2\alpha$$

$$= \kappa_g^2 - 2\kappa \kappa g \sin\alpha \tan\phi + \kappa^2 \sin^2\phi \sin^2\alpha$$

$$\kappa_u^2 = \left(\kappa_g - \kappa_{ss} \tan \phi \sin \alpha\right)^2 \tag{3.2}$$

or

$$\kappa_u = \kappa_g - \mathop{\kappa}_{ss} \tan \phi \sin \alpha \tag{3.3}$$

where α is the angle between v and l^k , ϕ is the angle between the vector fields v^a and n^a , therefore

$$\cos \phi = r, g_{ij}e^ie^j = \tan^2 \phi, \cos \alpha \tan \phi = g_{ij}v^il^j \text{ and}$$
$$g_{ij}v^il^j = \cos\left(\frac{\pi}{2} - \alpha\right) \tan \phi \quad p = (1, 2, \dots, s - 1, s + 1, \dots, n).$$

The expression (3.3) gives the relation between the union curvature, the geodesic curvature and the normal curvature of the C in W_n . From that relation:

Corollary 3.3 If $\phi = 0$, the union curve is a geodesic.

Acknowledgment:

I am thankful to Prof. Dr. Leyla Zeren Akgün for her guidance.

REFERENCES

- [1] A. Norden, Affinely Connected Spaces, GRMFL, Moscow, (1976).
- [2] V. Hlavaty, Les Courbes de la Variete Wn, Memor. Sci. Math., Paris, (1934).

[3] A. Norden, Yafarov, S., Theory of Non-geodesic Vector Fields in Two Dimensional Affinely Connected Spaces, Izv., Vuzov, Math., No.12, 29-34, (1974).

- [4] B. Tsareva, G. Zlatanov, On the Geometry of the Nets in the n-Dimensional Space of Weyl, Journal of Geometry, Vol.38, 182-197, (1990).
- [5] S, A. Uysal, A. Özdeğer, On the Chebyshev Nets in a Hypersurface of a Weyl Space, Journal of Geometry, V.51, 171-177, (1994).
- [6] Springer, C.E.: Union Curves of a Hypersurface, Canad. J. Math., Vol.II, No.4, (1950).

Received: June, 2011