Otsuki Connections of Submanifolds of Projective Spaces

Mihailo Jokić

mikajokic@gmail.com

Abstract. Using Otsuki's connection (P, Γ, Γ) we obtain new equations for normalized surfaces, which, in a special case, reduce to the equations given by Norden. Using obtained relations $\nabla_k g_{ij}$, in case of $\det |g_{ij}| \neq 0$ we prove that Otsuki's coefficients of transfer to surface X_m are uniformly specified in external normalization. In the case of internal normalization, where all points of surface X_m belong to absolute hypersurface we derive again new reduced equations of normalized surfaces, which reduce in the special case to the equations given by Norden. In the case $\det |g_{ij}| \neq 0$ using obtained relation $\nabla_k g_{ij} = p_i^t l_k g_{ij} + P_j^t l_k g_{ti}$ we prove that the Otsuki's connection coefficients of surface whose all points belong to the absolutes are uniformly defined.

Mathematics Subject Classification: 53B25, 53B05

Introduction

The connections Γ , Γ naturally appear in differential geometry of smooth manifolds. The connections Γ , Γ determined by a relative normalization (x, X, y) are torsion free Ricci systematic connections. We refer [SSV] and [PAS] for more details.

A triple (Γ, g, Γ) of two symmetric connections Γ and Γ and a semi-Riemannian metric G is called a conjugate triple if the compatibility condition is satisfied:

$$\frac{\partial g_{ij}}{\partial x^k} - \Gamma_{ik}^a g_{aj} - \Gamma_{jk}^a g_{ia} = 0$$

For conjugate triples in relative hypersurface theory, see Section 4. Conjugate triples also appear on hypersurface in space forms with Weingarten operators of maximal rank; see e.g. [SSV].

Otsuki considered general regular connections on n-dimensional C^{∞} manifolds as a pair of two connections (Γ, Γ) , where Γ is the contravariant part and Γ is the covariant part.

Norden [No1], [No2] studied the parallel displacement according to two connections Γ , Γ of two directions which are conjugated with respect to a systematic nondegenerate pseudotensor g.

Prvanović [Prv] constructed a family of pairs of linear connections which are conjugated in the sense of Otsuki satisfying at the same time Norden's condition of conjugation. She also considered conformal transformations and calculated a certain conformally invariant tensor. We refer also [Prv1], [Prv2], [Prv3], [Pu2] for other results related to the geometry of Otsuki spaces.

All of these mentioned results motivate a further study of Otsuki spaces which reduce in a special case to the Norden spaces. In Section 1 we introduce notations and notions, which we use throughout the paper. We state also elementary relations between these notions. In Section 2 we study an Otsuki connection on a submanifold X_m of a projective space \mathcal{P}_n according to external normalization. Internal normalization of X_m is studied in Section 3. For a normalization $x = \lambda x$ we have $y_i = \lambda y_i$ and $\tilde{l}_i = l_i + \partial_i \log \lambda$ of the obtained structure. Consequently, the second normal is not changed.

For a point $x \in N(X_m)$ we have the reper x, y_i, X_s (s = 1, ..., n - m; i = 1, ..., m) of n + 1 points. We have this reper to derive the fundamental equations of a normalized submanifold $N(X_m)$;

$$(0.1) \partial_i x = y_i + l_i x$$

(0.2)
$$\nabla_{j} y_{i} = P_{i}^{t} l_{j} y_{t} + p_{ji} x + \overset{s}{b_{ij}} \overset{X}{X}, \quad j, i = 1, 2 \dots, m,$$

(0.3)
$$\nabla_{j} X_{s} = p_{i}^{t} m_{s}^{i} y_{t} + m_{j} x + n_{s}^{k} X_{k}, \quad t, k = 1, 2, \dots, n - m.$$

For $P_i^t = \delta_i^t$ we have an affine mapping when equations (0.1), (0.2) and (0.3) reduce to equations given by Norden.

 P^{α}_{β} is a mixed tensor such that $\det(p^{\alpha}_{\beta}) \neq 0$ which satisfies the relation

$$\frac{\partial p_{\beta}^{\alpha}}{\partial r^{\gamma}} + "\Gamma^{\alpha}_{\mu\gamma} p_{\beta}^{\mu} - p_{\sigma}^{\alpha\prime} \Gamma^{\sigma}_{\beta\gamma} = 0,$$

where Γ and Γ are two connections.

Let n_x^{α} be linearly independent vectors. Vectors n_x^{α} with $x_{\alpha}^i = \frac{\partial x^{\alpha}}{\partial n_i}$ form the base of tangential space of a manifold X_m in a point. The base $n_{\alpha}^x, x_{\alpha}^i$ of dual vector space is uniquely determined by condition

$$n_x^{\alpha} \overset{y}{n}_{\alpha} = \delta_x^y, \quad x_i^{\alpha} \overset{x}{n}_{\alpha} = 0, \quad x_i^{\alpha} x_{\alpha}^j = \delta_i^j, \quad x_{\alpha}^i n_x^{\alpha} = 0,$$

where $x_i^{\alpha} x_{\beta}^i + n_{\beta}^{\alpha} n_{\beta}^x = \delta_{\beta}^{\alpha}$.

1. Preliminaries

T. Otsuki [Ots] has introduced a general regular connection in n-dimensional C^{∞} manifold M^n . This connection is defined by two different parts: contravariant part Γ and covariant part Γ . In this case the covariant derivative of Γ , type tensor Γ is given by the relation

(1.1)
$$D_k V_j^i = \left(\frac{\partial V_b^a}{\partial x^k} + '\Gamma_{sk}^q V_b^s - ''\Gamma_{kb}^s\right) P_a^i P_j^b$$

where the tensor P of type (1,1) $(\det(P_j^i) \neq 0)$ is the fundamental tensor of Otsuki theory. ' Γ and " Γ are affine connections satisfying the relation

(1.2)
$$\frac{\partial p_{\beta}^{\alpha}}{\partial x^{\gamma}} + "\Gamma_{ak}^{i} P_{j}^{a} - P_{a}^{i\prime} \Gamma_{jk}^{a} = 0,$$

which is equivalent with the condition $D_k Q_j^i$, where $Q = P^{-1}$, i.e.,

$$(1.3) P_s^i Q_j^s = \delta_j^i.$$

On the other hand let $N(X_m)$ be a normalized submanifold X_m of a projective space \mathcal{P}_n . This means that in every point $x \in \mathcal{P}$ there exist two linear manifolds P_{n-m} and P_{m-1} such that

- (a) \mathcal{P}_{n-m} contains the point $x \in \mathcal{P}_n$, but with the tangent plane T_m in x has not other common points,
 - (b) \mathcal{P}_{m-1} is a subset of T_m , but it does not contain x.

We call manifolds \mathcal{P}_{n-m} and \mathcal{P}_{m-1} normals P_I of the first type and \mathcal{P}_{II} of the second type for $N(X_m)$ respectively.

We denote by X_p (p = 1, 2, ..., n - m) points of \mathcal{P}_I and call them tops of the first type normal. The points X_p and X_p compose a system of n - m + 1 independent points and determine P_I .

Let tangent coordinate lines on X_m in a point x cut P_{II} in points $y_i = \partial_i x - l_i x$ which are independent and determine P_{II} . We call them support points.

Given P_{II} is equivalent to a given set l_i of m scalars. A choice of l_i is connected with a choice of curvilinear coordinate system and the normalization of the vector x which determines a point of X_m .

 l_i is a tensor which we call a normalizator of $N(X_M)$.

In projective space \mathcal{P}_n projective metric is introduced and defined by the polarity¹ with the fundamental tensor $a_{\alpha\beta}$. Thus, scalar product of vector of corresponding points is defined by $xy = a_{\alpha\beta}x^{\alpha}y^{\beta}$ and the Weierstrass normalization $x^2 = \sigma = \pm 1$. Normalization of a surface X_m given in \mathcal{P}_n is polar with respect to given polarity if P_I and P_{II} corresponding to each point of conjugated polar.

Given polarity is absolute polarity of that normalization.

¹Polarity is correspondence between points and hypersurface defined by relation $\zeta_{\alpha} = a_{\alpha\beta}x^{\beta}$, where $a_{\alpha\beta}$ is symmetric tensor.

 P_I is orthogonal on tangent space T_m because P_{II} lies in T_m which is polar for P_I .

It the points of surface X_m do not belong to absolute hypersurface of second order Q_{n-1} which is defined by absolute polarity, surface normalization is external.

If all points of X_m belong to absolute hypersurface normalization is internal.

2. External normalization

Point of surface is defined by vector $x = x(u^1, u^2, \dots, u^m)$. The Weierstrass normalization is valid, consequently we have relation $x^2 = \sigma = \pm 1$.

All points P_{II} are conjugated with fixed point X through which passes P_{I} , than $x \cdot y_i = 0$. As $xy_i = x(\partial_i x - l_i x) = \frac{1}{2}\partial x^2 - l_i x^2 = \frac{1}{2}\partial_i \sigma - l_i \sigma = -l_i \sigma$, than $l_i \sigma = 0$ and $l_i = 0$.

From $l_i = 0$ follows $y_i y_j = \partial_i x \partial_j x = g_{ij}$ which proves that the points' scalar products of support are coordinates of tensor projective metrics.

Vectors X, s = 1, 2, ..., n-m are mutually independent and define the tops of normal of first order. We take them that the tops P_I lie on surface \mathcal{P}_{n-2} at which normal P_I intersects polar of point x.

Now we have relations $Xy_i = 0$ and Xx = 0.

Vectors X are fully defined by relation $X X = g_{st} = \text{const.}$

Let the reper whose tops coincide with tops of normal, is autopolar; then we have a relation

$$g_{ss} = \varepsilon_s = \pm 1; \quad g_{st} = 0 \ (s \neq t) \quad (s, t = 1, 2, \dots, n - m).$$

Then from previously mentioned follows

$$\begin{array}{c|cccc} & x & y_i & X \\ \hline x & \varepsilon & 0 & 0 \\ y_j & 0 & g_{ij} & 0 \\ X & 0 & 0 & g_{st} \end{array}$$

We differentiate relation $xy_i = 0$ using the table to obtain

$$(\partial_j x)y_i + x(\nabla_j y_i) = 0,$$

$$(y_j + l_j x)y_i + x(P_i^t l_j y_t + p_{ji} x + b_{ij}^s X) = 0$$

$$(2.1) y_i \cdot y_j + \varepsilon p_{ij} = 0 \iff g_{ij} = -\varepsilon p_{ji} \iff p_{ji} = -\varepsilon g_{ij}.$$

We differentiate relation Xx = 0 to obtain

$$(\nabla_{j} X_{s}) + X_{s}(\partial_{j} x) = 0 \iff (P_{i}^{t} m_{s}^{i} y_{t} + m_{j} x + n_{s}^{k} X_{s}) x + X_{s}(y_{j} + l_{j} x) = 0.$$

Consequently we have

$$(2.2) m_l \varepsilon = 0 \Rightarrow (m_j = 0).$$

We differentiate relation XX = const to obtain

$$(\nabla_j X) X + X(\nabla_j X) = 0 \Rightarrow (P_i^r m_j^i y_r + n_j^k X) X + X(P_i^r m_j^i y_r + n_j^k X) = 0.$$

Thus we have

$$(2.3) g_{tk} n_j^k + g_{sk} n_j^k = 0.$$

Finally we differentiate relation $Xy_i = 0$ to obtain

$$y_i(P_i^t m_j^i y_t + n_j^k X_k) + (P_i^t l_j y_t + p_{ji} x + b_{ij}^k X_k) X = 0.$$

Hence it follows $P_i^t m_s^i g_{ti} + b_{ij}^k g_{ks} = 0$. This relation implies

(2.4)
$$P_i^t m_{jt} + b_{ij} = 0.$$

The relations (2.1), (2.2), (2.3), and (2.4) imply the fundamental equations of normalized surface in external normalization

$$\partial_i x = y_i,$$

$$\nabla_j y_i = -\varepsilon g_{ij} x + \stackrel{s}{b_{ij}} \stackrel{X}{\underset{s}{X}}$$

$$\nabla_j \stackrel{X}{\underset{s}{X}} = P_i^t \stackrel{n}{\underset{s}{i}} y_t + \stackrel{n}{\underset{s}{i}} \stackrel{X}{\underset{k}{X}}.$$

Now we differentiate relation $g_{ij} = y_i y_j$ to have

$$\nabla_k g_{ij} = (-\varepsilon g_{ij} x) y_j + (b_{ik}^s X_s) y_j + y_i (-\varepsilon g_{jk} x) + y_i (b_{jk}^s X_s) = 0.$$

From relation $\nabla_k g_{ij} = 0$ follows that connection of normalized surface in external normalization is metrical. Its metric is induced by absolute polarity.

Assuming that $\det |g_{ij}| \neq 0$ surface X_m is called nonisotropic surface with respect to metric defined by absolute polarity.

Theorem 1. If $\det |g_{ij}| \neq 0$, then coefficients of Otsuki's displacement on surface X_m normalized in external polar normalization are uniquely determined (if tensor P^{α}_{β} is corresponded to manifold X_m , then regular Otsuki's connection $(P, '\Gamma, ''\Gamma)$ of ambient space induces regular Otsuki's connection $(\bar{P}, '\bar{\Gamma}, ''\bar{\Gamma})$ of submanifold).

When $\nabla_k g^{ij} = 0$ is on the surface, then we have an affine mapping.

Proof. From $\nabla_k g_{ij} = p_i^s p_j^l g_{sl|k}$ and $\nabla_k g_{ij} = 0$ it follows

$$(2.5) P_i^s P_j^l(\partial_k g_{sl} - "\bar{\Gamma}_{sk}^h g_{hl} - "\bar{\Gamma}_{lk}^h g_{sh}) = 0 \text{ e.e.},$$

$$(2.5) \partial_k g_{sl} - "\bar{\Gamma}_{sk}^h g_{hl} - "\bar{\Gamma}_{lk}^h g_{sh} = 0$$

k,s,l indexes permutation imply other two relations, which due to " $\bar{\Gamma}_{kl}^h = "\bar{\Gamma}_{lk}^h$ give

$$-2''\bar{\Gamma}_{ls}^h g_{hk} + \partial_l g_{ks} + \partial_s g_{lk} - \partial_k g_{sl} = 0.$$

Consequently

"
$$\bar{\Gamma}_{ls}^{h}g_{hk} - \frac{1}{2}(\partial_{l}g_{ks} + \partial_{s}g_{lk} - \partial_{k}g_{sl})$$

i.e.,

$$''\bar{\Gamma}_{ls}^{h} = \frac{1}{2}(\partial_{l}g_{ks} + \partial_{s}g_{lk} - \partial_{k}g_{sl}).$$

The relations $\frac{\partial P_j^i}{\partial x^k} + "\bar{\Gamma}_{rk}^i P_j^r - "\bar{\Gamma}_{jk}^s P_s^i = 0$ determine the coefficients $'\bar{\Gamma}_{ls}^h$. We know that $g^{ir}g_{rj} = \delta_i^i$. Differentiating this relation we get

$$(\nabla_k g^{ir})g_{rj} + g^{ir}(\nabla_k g_{rj}) = \nabla_k \delta^i_j$$

i.e.,

$$(\nabla_k g^{ir})g_{rj} = P_m^i P_j^s \delta_{s|k}^m,$$

$$\nabla_k g^{ir} = g^{rj} P_m^i P_j^s (\partial_k \delta_s^m + '\bar{\Gamma}_{hk}^m \delta_s^h - ''\bar{\Gamma}_{sk}^h \delta_k^m).$$

In an affine space from relation $\nabla_k g_{ij}$ follows $\nabla_k g^{ij} = 0$. If $\nabla_k g^{ij} = 0$ from relation (*) follows $\delta^i_{i|k} = 0$.

Since $\delta^i_{j||k} = '\bar{\Gamma}^i_{jk} - "\bar{\Gamma}^i_{jk}$ we have that $'\bar{\Gamma} = "\bar{\Gamma}$, i.e., Otsuki displacement reduces to an affine mapping.

3. Internal polar normalization

Polar normalization is internal if point $x = x(u^1, u^2, \dots, u^m)$ belongs to absolute. Introducing scalar product using tensor of absolute polarity we have relation $x^2 = 0$.

Second order normal P_{II} is polar normal of first order P_I which passes trough point x, and all points of normal P_{II} (here are the support points Y_i) satisfy the condition $xy_i = 0$.

From relation $x^2 = 0$ it follows $x \partial_i x = 0$. Now we have

$$y_i y_j = \partial_i x \partial_j x - l_i x \partial_j x - l_j x \partial_i x + l_j l_i x^2 = \partial_i x \partial_j x$$

i.e., $y_i y_j = g_{ij}$, where g_{ij} is fundamental tensor of projective metric.

Since points of surface belong to absolute, it implies that tensor g_{ij} is defined in the points of surface. Due to indeterminacy of normalization of vector x satisfying conditions $x^2 = 0$, this determinacy is up to scalar factor.

We chose the tops X of first order normality s = 1, 2, ..., n - m - 1 in tangential surface, such that their vectors fulfill conditions $Xy_i = 0$, Xx = 0.

Final top X does not belong to tangential hyperplane, because its vector has to fulfill inequality $Xx \neq 0$.

We normalize this space to obtain Xx = 1 and we chose this top on absolute such that we have $X^2 = 0$.

We chose all tops X in subspace \mathcal{P}_{n-2} of intersection of tangent hyperplanes of absolute in points x and X. Then the following relations hold

$$y_i X = 0$$
, $X \cdot X = 0$; $X \cdot X = g_{st} = \text{const}$, $(s, t = 1, 2, ..., n - m - 1)$.

Now we have table where we emphasize the top X and summarize all previous mentioned facts.

Emphasizing the top X we obtain the equations for normalized surface

$$\partial_i x = y_i + l_i X$$

$$\nabla_j y_i = P_i^t l_j y_t + p_{ji} x + b_{ji} X + \stackrel{s}{b}_{ji} \stackrel{X}{X}$$

$$\nabla_j \stackrel{X}{X} = P_i^t \stackrel{m}{m}_j^i y_t + \stackrel{m}{m}_j x + \stackrel{n}{m}_j X + \stackrel{t}{m}_j^t \stackrel{X}{X}$$

$$\nabla_j X = P_i^t \stackrel{m}{m}_i^i y_t + m_j x + n_j X + n_j^t \stackrel{X}{X}.$$

Differentiating relation we obtain

- (1) From $xy_i = 0$ it follows $b_{ii} = -g_{ii}$
- (2) From $x \cdot X = 1$ it follows $n_i = -l_i$
- (3) From xX = 0 it follows $n_j = 0$
- (4) From $X \cdot y_i = 0$ it follows $P_{ji} = -P_i^t m_j^t m_j^i g_{ti}$
- (5) From $Xy_i = 0$ it follows $b_{ji} = -P_i^t m_j^i g_{ti}$
- (6) From $X^2 = 0$ it follows $m_j = 0$ (7) From $X \cdot X$ it follows $m_j = -n_j$
- (8) From $X \cdot \overset{s}{X} = g_{st}$ it follows $\underset{st}{n_j} + \underset{ts}{n_j} = 0$
- (9) From $y_i y_j = g_{ij}$ it follows $P_i^t l_k g_{tj} + P_i^t l_k g_{ti} = \nabla_k g_{ij}$.

The last relation is used in order to obtain coefficients of displacement " $\bar{\Gamma}$.

Equations of normalized surface in internal polar normalization due to previous relations are the following

$$\partial_i x = y_i + l_i x$$

$$\nabla_j y_i = P_i^t l_j y_t + p_{ji} x - g_{ji} X + b_{ji}^s X$$

$$\nabla_j X = P_i^t m_j^i y_t - n_j x + n_j^t X$$

$$\nabla_j X = P_i^t m_j^i y_t - l_j X + h_j^t X$$

with additional conditions (4), (5), and (9). Finally we prove theorem.

Theorem 2. Let g_{ij} be the fundamental tensor of projective metric such that $det(g_{ij}) \neq 0$. Then coefficients " $\bar{\Gamma}_{sr}^t$ of Otsuki displacements are uniquely determined and consequently the Otsuki displacement is also determined on a normalized surface whose all points belong to absolute.

Proof. We use the relation (9) and $\nabla_K g_{ij} = P_i^r P_j^s g_{rs|k}$ to get

$$\begin{split} P_{i}^{r}P_{j}^{s}g_{rs|k} &= P_{i}^{t}l_{k}g_{tj} + p_{j}^{t}l_{k}g_{ti} \\ P_{i}^{r}P_{j}^{s}(\partial_{k}g_{rs} - "\bar{\Gamma}_{rk}^{t}g_{ts} - "\bar{\Gamma}_{sk}^{t}g_{rt}) &= P_{i}^{t}l_{k}g_{tj} + P_{j}^{t}l_{k}g_{ti} \\ Q_{b}^{i}P_{i}^{r}Q_{n}^{j}P_{j}^{s}(\partial_{k}g_{rs} - "\bar{\Gamma}_{rk}^{t}g_{ts} - "\bar{\Gamma}_{sk}^{t}g_{rt}) &= Q_{b}^{i}Q_{n}^{j}(P_{i}^{t}l_{k}g_{tj} + P_{j}^{t}l_{k}g_{ti}) \\ \delta_{k}^{r}\delta_{s}^{n}(g_{k}g_{rs} - "\bar{\Gamma}_{rk}^{t}g_{ts} - "\bar{\Gamma}_{sk}^{t}g_{rt}) &= l_{k}(Q_{b}^{i}Q_{n}^{j}P_{i}^{t}g_{tj} + Q_{b}^{i}Q_{n}^{j}P_{j}^{t}g_{ti}) \\ \partial_{k}g_{bn} - "\bar{\Gamma}_{bk}^{t}g_{tn} - "\bar{\Gamma}_{nk}^{t}g_{bt} &= l_{k}(\delta_{b}^{t}Q_{n}^{j}g_{bj} + Q_{b}^{i}\delta_{n}^{t}g_{ti}) \\ \partial_{k}g_{bn} - "\bar{\Gamma}_{bk}g_{tn} - "\bar{\Gamma}_{nk}^{t}g_{bt} &= l_{k}(Q_{n}^{j}g_{bj} + Q_{b}^{i}g_{ni}). \end{split}$$

Let $Q_n^j g_{bj} = Q_{nb}$ and $Q_b^i g_{ni} = Q_{bn}$; assuming $Q_{nb} = Q_{bn}$ we have $\partial_k g_{bn} - {}''\bar{\Gamma}_{bk}^t g_{tn} - {}''\bar{\Gamma}_{nk}^t g_{bt} = 2l_k Q_{nb}$. Cyclical permutation of k, b, n indexes from previous relations, assuming ${}''\bar{\Gamma}_{bn}^t = {}''\bar{\Gamma}_{nb}^t$ we obtain new relation

$$\partial_k g_{bn} - \partial_b g_{nk} - \partial_n g_{kb} + 2'' \bar{\Gamma}_{nb}^t g_{tk} = 2(l_k Q_{nb} - l_n Q_{bk} - l_b Q_{kn})$$

wherefrom it follows

$$"\bar{\Gamma}_{nb}^t g_{tk} = \frac{1}{2} (\partial_b g_{nk} + \partial_n g_{kb} - \partial_k g_{bn}) + l_k Q_{nb} - l_n Q_{bk} - l_b Q_{kn},$$

or finally

$$"\bar{\Gamma}_{nb}^t = g^{tk} \left[\frac{1}{2} (\partial_b g_{nk} + \partial_n g_{kb} - \partial_k g_{bn}) + l_k Q_{nb} - l_n Q_{bk} - l_b Q_{kn} \right].$$

 $'\bar{\Gamma}^t_{nb}$ is induced displacement through $''\bar{\Gamma}^t_{nb}$ as relations of the fundamental Otsuki displacement on a normalized surface are given by

$$\frac{\partial P_j^i}{\partial x_k} + "\bar{\Gamma}_{rk}^i P_j^r - "\bar{\Gamma}_{jk}^s P_s^i = 0.$$

ACKNOWLEDGMENTS

I am indebted to Mileva Prvanović and Neda Bokan for their help in bringing this work to life.

References

- [Prv1] M. Prvanović, Weyl-Otsuki spaces of the second and third kind, Zb. Rad. Prir.-mat. fak.u Novom Sadu 11 (1981), 219–226
- [Prv2] M. Prvanović, On a special connection in an Otsuki space, Tensor, N.S. 37 (1982), 237–243
- [Pu1] N. Pušić, Weyl-Otsuki spaces of the second kind with a special tensor P, Zb. Rad. Prir.-mat. fak.u Novom Sadu
- [Pu2] N. Pušić, A new kind of a metric Otsuki space, Zb. Rad. Prir.-mat. fak.u Novom Sadu
- [Prv] M. Prvanović, Otsuki–Norden space, Izv. VUZ, Matematika 7 (1984), 59–63, in Russian
- [Ots] T. Otsuki, On general connections, I, Math. J. Okayama Univ. 9(2) (1960), 99-164
- [SSV] U. Simon, A Schwenk-Schellschmidt, and H. Visel, Introduction to the Affine Differential Geometry of Hypersurfaces, Lecture Notes Science University Tokyo, 1991
- [PAS] P. A. Schirokow and A. P. Schirokow, Affine Differentialgeometrie, Teubner, Leipzig, 1962
- [No1] A. P. Norden, Spaces with Affine Connection, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1950; Second edition: Nauka, Moscow, 1976, both in Russian
- [No2] A. P. Norden, A generalization of the fundamental theorem of the theory of normalization, Izv. Vysš. Učebn. Zaved. Matematika 2(51) (1966), 78-82, in Russian

Received: July, 2011