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Yinghui He 2 , Shaolin Li and Yao Long

Department of Mathematics, Honghe University
Mengzi, Yunnan, 661100, P.R. China

Abstract

In this paper, the modified exp-function method is used to seek
generalized wave solutions of Klein-Gordon equation. As a result, some
new types of exact traveling wave solutions are obtained which include
kink wave solutions, periodic wave solution, and solitary wave solutions.
Obtained results clearly indicate the reliability and efficiency of the
proposed modified exp-function method.
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1 Introduction

The investigation of exact solutions of nonlinear wave equations plays an
important role in the study of nonlinear physical phenomena. Recently, many
effective methods for obtaining exact solutions of nonlinear wave equations
have been proposed, such as bäcklund transformation method [1], homoge-
neous balance method [2,3], bifurcation method [4], Hirotas bilinear method
[5], the hyperbolic tangent function expansion method [6,7], the Jacobi elliptic
function expansion method [8,9], F-expansion method[10-12] and so on. He
and Wu [13] developed the exp-function method to seek the solitary, periodic
and compaction like solutions of nonlinear differential equations. It is an effec-
tive and simple method and is widely used. Based on this method, modified
exp-function expansion method is proposed. The purpose of this paper is to
find exact wave solutions of Klein-Gordon equation by the new method.

In this paper, we consider the Klein-Gordon equation

utt − uxx + αu + βu3 = 0 (1)
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where α, β are some nonzero parameters. The nonlinear Klein-Gordon equa-
tion appears in many types of nonlinearities. The Klein-Gordon equations play
a significant role in many scientific applications such as solid state physics,
nonlinear optics and quantum field theory, where a �= 0, b �= 0.

Many powerful methods, such as homotopy analysis method [18], the ex-
tend tanh method [19], the Exp-function method [20] were used to investigate
these types of equations. The aim of this work is to further complement the
studies on the the KleinCGordon equations.

2 Modified exp-function method

The exp-function method was first proposed by He and Wu to solve differen-
tial equations [13] and it was systematically studied in [14-17]. In this paper,
we will introduce a modified exp-function method. The main procedures of
this method are as follows.

We consider a general nonlinear PDE in the form

H(u, ux, ut, uxx, utt, utx, · · ·) = 0 (2)

Using a transformation
ξ = x − ct (3)

where c are constants, we can rewrite Eq.(2) in the following nonlinear ODE:

H1(u, u′, u′′, · · ·) = 0 (4)

where the prime denotes the derivation with respect to ξ.
Let

u = v + s (5)

where s are constants. Then Eq.(4) becomes

H2(v, v′, v′′, · · ·) = 0 (6)

Assume that the solution of Eq.(4) can be expressed in the following form

u(ξ) =

n∑
i=−n

cig
i

n∑
i=−n

digi
=

2n∑
i=0

big
i

2n∑
i=0

aigi

(7)

where g = e−kξ which is the solution of the homogeneous linear equation
corresponding to equation (6), ai, bi are unknown to be further determined
and n can be determined by homogeneous balance principle.

Substituting Eq.(7) into Eq.(4), we can get polynomial equation on g. Let
the coefficient of gi be zero, and solve the equation set, the ai, bi can be deter-
mined.
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3 Solutions of Klein-Gordon equation

Using the transformation (3), equation (1) can be rewrite as

c2u′′ − u′′ + αu + βu3 = 0 (8)

Substituting Eq.(5) into Eq.(8), we have

(c2 − 1)v′′ + (v + 3βs2)v + 3βs2v2 + βv3 + βs3 + αs = 0 (9)

Let s(βs2 + α) = 0, then s = 0 or s = ±√−α
β
.

According to homogeneous balance principle, we get n = 1.
case 1 s = 0.

The solution of the linear equation corresponding to equation (9) is

g = e−kξ, k =

√
α

1 − c2
(10)

So,we can assume

u(ξ) =

2n∑
i=0

big
i

2n∑
i=0

aigi

=
b0 + b1g + b2g

2

a0 + a1g + a2g2
(11)

Substituting Eq.(10) and Eq.(11) into Eq.(8) yields a set of algebraic equa-
tions for gi, i = 0, 1, . . . , 6. Letting the coefficients of these terms gi to be zero
yields a set of over-determined algebraic equations.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βb0
2 + αb0a0

2 = 0
3αb0a1a0 + 3βb0

2b1 = 0
3βb0

2b2 + 3βb0b1
2 − 3αb2a0

2 + 3αb1a0a1 + 6αb0a2a0 = 0
αb1a1

2 − αb0a1a2 + 6βb0b1b2 + 8αb1a0a2 − αb2a0a1 + βb1
3 = 0

3αb1a1a2 + 3βb1
2b2 − 3αb0a2

2 + 6αb2a0a2 + 3βb0b2
2 = 0

3βb1b2
2 + 3αb2a1a2 = 0

αb2a2
2 + βb2

3 = 0

Solving the system of algebraic equations by use of Maple, we obtain

a0 = − βb1
2

8αa2
, a1 = 0, a2 = a2, b0 = 0, b1 = b1, b2 = 0 (12)

where a2 �= 0, b1 is an arbitrary constant.
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Substituting (12) into (11), we obtain following solutions of the Klein-
Gordon equation

u(x, t) = u(ξ) =
b1

− βb1
2

8αa2
g−1 + a2g

(13)

where g = e
−√ α

1−c2
ξ
, ξ = x − ct.

case 1.1 Let b1 = 2, a2 = ±
√

−β
2α

, α · β < 0.

when α
1−c2

> 0, we have

u1,2(x, t) = ±
√−2α

β
sec h(

√
α

1 − c2
(x − ct)) (14)

when α
1−c2

< 0, we have

u3,4(x, t) = ±
√−2α

β
sec(

√
α

c2 − 1
(x − ct)) (15)

case 1.2 Let b1 = 2, a2 = ±
√

β
2α

, α · β > 0.

when α
1−c2

> 0, we have

u5,6(x, t) = ±
√

2α

β
csc h(

√
α

1 − c2
(x − ct)) (16)

when α
1−c2

< 0, we have

u7,8(x, t) = ±I

√
2α

β
csc(

√
α

c2 − 1
(x − ct)) (17)

where I2 = −1.
case 2 s = ±√−α

β
.

The solution of the linear equation corresponding to equation (9) is

g = e−kξ, k =

√
2α

c2 − 1
. (18)

So,we can assume

φ(ξ) =

2n∑
i=0

big
i

2n∑
i=0

aigi

=
b0 + b1g + b2g

2

a0 + a1g + a2g2
. (19)
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Substituting Eq.(18) and Eq.(19) into Eq.(8) yields a set of algebraic equa-
tions for gi, i = 0, 1, . . . , 6. Letting the coefficients of these terms gi to be zero
yields a set of over-determined algebraic equations.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βb0
3 + αb0a0

2 = 0
3βb0

2b1 + 3αb1a0
2 = 0

9αb2a0
2 + 3βb0

2b2 + 3βb0b1
2 + 3αb0a1

2 − 6αb0a2a0 = 0
8αb0a1a2 + αb1a1

2 + βb1
3 + 8αb2a0a1 + 6βb0b1b2 − 10αb1a0a2 = 0

3αb2a1
2 + 3βb1

2b2 − 6αb2a0a2 + 3βb0b2
2 + 9αb0a2

2 = 0
3βb1b2

2 + 3αb1a2
2 = 0

βb2
3 + αb2a2

2 = 0

Solving the system of algebraic equations by use of Maple, we obtain

a0 = ±αa1
2 + b1

2β

4α
√
−β

α
b2

, a2 = ±
√
−β

α
b2, a1 = a1, b0 =

αa1
2 + b1

2β

4b2β
, b1 = b1, b2 = b2.

(20)
Where b2 �= 0, a1, b1 are arbitrary constants.

Substituting (20) into (19), we obtain following solutions of the Klein-
Gordon equation

u(x, t) =

αa1
2+b1

2β
4b2β

+ b1g + b2g
2

±αa1
2+b1

2β√
− β

α
4αb2

+ a1g ±
√
−β

α
b2g2

. (21)

where g = e
−
√

2α
c2−1

ξ
, ξ = x − ct.

case 2.1 Let b1 = b2 = 1, a1 = ±
√

−β
α

, α · β < 0.
When α

c2−1
> 0, we have

u9,10(x, t) = ±
√−α

β
coth(

√
α

2(c2 − 1)
(x − ct)). (22)

When α
c2−1

< 0, we have

u11,12(x, t) = ±I

√−α

β
cot(

√
α

2(1 − c2)
(x − ct)), (23)

where I2 = −1.
case 2.2 Let b1 = 1, b2 = −1, a1 = ±

√
−β
α

, α · β < 0.
When α

c2−1
> 0, we have

u13,14(x, t) = ±
√−α

β
tanh(

√
α

2(c2 − 1)
(x − ct)). (24)
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When α
c2−1

< 0, we have

u15,16(x, t) =

√−α

β
tan(

√
α

2(1 − c2)
(x − ct)). (25)

In order to well understand the solutions that we have got, some typical
figures are given as follows.

1. u1,2 are solitary wave solutions.

(1-1) two-dimensional figure (1-2) three-dimensional figure
Fig.1 u1,2 for α = −1, β = 2, c = 2.

2. u3,4 are periodic solitary wave solutions.

(2-1) two-dimensional figure (2-2) three-dimensional figure
Fig.2 u3,4 for α = −1, β = 2, c = 1/2.

3. u5,6 are kink wave solutions.

(3-1) two-dimensional figure (3-2) three-dimensional figure
Fig.3 u5,6 for α = 1, β = 2, c = 1/2.
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4. u13,14 are kink wave solutions.

(4-1) two-dimensional figure (4-2) three-dimensional figure
Fig.4 u13,14 for α = −1, β = 2, c = 1/2.

4 Conclusions

In this paper, we have obtained some new solitary solutions of the Klein-
Gordon equation (1) by using the modified exp-function method. It shows
that the new method is powerful and straightforward for nonlinear differential
equations. It is said that this method can be applied to other kinds of nonlinear
problems.
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