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Abstract

In this paper, a new approach to improve univariate multiquadric
operators is surveyed. The presented scheme is obtained by using Her-
mite interpolating polynomials where the function is approximated by
generalized LB quasi-interpolation operator. Error analysis shows that
the convergence rate depends on the shape parameter c. Thus, our op-
erators could provide the desired smoothness and precision by choosing
the suitable value of c. The advantage of the resulting scheme is that
the algorithm is simple and provides a high degree of accuracy.
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1 Introduction

Hrady [8] proposed multiquadric (MQ) in 1968 as a kind of radial basis
function (RBF). In 1992, Beatson and Powel [1] proposed three univariate mul-
tiquadric quasi-interpolation. They named them LA, LB, LC to approximate
a function f : [a, b] → R on the scattered points a = x0 < x1 < · · · < xN = b.
Afterwards, Wu and Schaback [12] proposed a multiquadric quasi interpolation
LD, which possesses shape preserving and linear reproducing on [x0, xN ]. They
proved that when the shape parameter c = O(h) , where h is the maximum
distance between adjacent centers, the error of the operator LD is O(h2| lnh|).

Recently many works have been done on this subject. Ling [10] proposed
a multilevel MQ operator using the operator LD, and proved that it con-
verges with a rate of O(h2.5| lnh|) as c = O(h). Feng & Li [7] constructed a
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shape-preserving quasi-interpolation operator by shifts of qubic multiquadrics.
They showed that the operator satisfies the quadric polynomial reproduction
property and produces an error of O(h2) as c = O(h). Furthermore, many
researchers provided some examples using multiquadric quasi-interpolation to
solve differential equations [3, 4, 5, 6, 9].

The aim of our paper is to present multiquadric quasi-interpolation op-
erators with higher accuracy. Based on [11], which the authors proposed
quasi-interpolation operators LH2m−1 , we propose a kind of improved quasi-
interpolation operators LH3m−1 , by combining the operator LB with Hermite
interpolating polynomials. We show that the new operators could reproduce
polynomials of higher degree. Our analysis indicates that the convergence rate
depends heavily on c. Thus, our operators could provide the desired smooth-
ness and precision by choosing the suitable value of c.

The rest of the paper is organized as follows: In Section 2, we define the
improved multiquadric quasi-interpolation operators LH3m−1 . Afterwards, we
obtain error analysis. In Section 3, two examples for testing our method is
showed and in the last section the conclusion is derived.

2 The improved quasi-interpolation operators

by using Hermite interpolating polynomials

In this section, we first define the improved quasi-interpolation operators
LH3m−1 , then give our main results including the polynomial reproduction prop-
erty and convergence rate.

The quasi-interpolation operator LB is defined as follows

(LBf)(x) = f(x0)ψ0(x) +
N−1∑
i=1

f(xi)ψi(x) + f(xN )ψN(x) , x ∈ [a, b], (1)

where

ψ0(x) =
1

2
c2

∫ x0

−∞

1

[ (x− θ)2 + c2 ]3/2
dθ +

1

2
c2

∫ x1

x0

(x1 − θ)/ (x1 − x0)

[ (x− θ)2 + c2 ]3/2
dθ

=
1

2
+
ϕ1(x) − ϕ0(x)

2 (x1 − x0)
, (2)

ψN (x) =
c2

2
(

∫ ∞

xN

1

[ (x− θ)2 + c2 ]3/2
dθ +

∫ xN

xN−1

(θ − xN−1)/ (xN − xN−1)

[ (x− θ)2 + c2 ]3/2
dθ)

=
1
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− ϕN(x) − ϕN−1(x)

2 (xN − xN−1)
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ψi(x) =
1

2
c2

∫ xi+1

xi−1

Bi(θ)

[ (x− θ)2 + c2 ]3/2
dθ

=
ϕi+1(x) − ϕi(x)

2 (xi+1 − xi)
− ϕi(x) − ϕi−1(x)

2 (xi − xi−1)
, (4)

and

ϕi(x) =
√

(x− xi)2 + c2, c > 0. (5)

for i = 1, 2, . . . , N − 1, where Bi(θ) is the piecewise linear hat function
having the knots {xi−1, xi, xi+1}, and satisfying Bi(xi) = 1.

Here, we extend the proposed method in [11], and define the improved
quasi-interpolation operators LH3m−1 as follows

(LH3m−1f)(x) =

N∑
i=0

ψi(x)H3m−1[f ; xi−1, xi, xi+1](x), (6)

whereH3m−1[f ; xi−1, xi, xi+1](x) are general Hermite interpolating polynomials
of degree 3m− 1 which agree with the function f at the points

xi−1, xi−1, . . . , xi−1︸ ︷︷ ︸
m

xi, xi, . . . , xi︸ ︷︷ ︸
m

, xi+1, xi+1, . . . , xi+1︸ ︷︷ ︸
m

.

The quasi-interpolation (LH3m−1f)(x) are C∞ function on [a, b], and the oper-
ators LH3m−1 have the following polynomial reproduction property.
Theorem 1. The operators LH3m−1 reproduce all polynomials of degree �
3m− 1.
Proof. It is well known that

H3m−1[f ; xi−1, xi, xi+1](x) = f(x), ∀f ∈ P3m−1, (7)

where P3m−1 denotes the set of all polynomials of degree � 3m− 1. Thus, we
have

LH3m−1f ≡ f, ∀f ∈ P3m−1, (8)

i.e., LH3m−1 reproduce all polynomials of degree � 3m− 1. �

According to [11], we define these notations for considering convergence
rate of the operators,

Iρ(x) = [x− ρ, x+ ρ], ρ > 0,
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h = inf{ρ > 0 : ∀x ∈ [a, b], Iρ(x) ∩X �= ∅},

M = max
x∈[a, b]

# (Ih(x) ∩X),

where X = {x0, x1, . . . , xN} and #(·) denotes the cardinality function. It is
easy to check that 2h = max{ | x1 − x0 |, | x2 − x1 |, . . . , | xN − xN−1 |}, and
M is the maximum number of points of X contained in an interval Ih(x).
Theorem 2. Assume that the shape parameter c satisfies

c � Dhl,

where D is a positive constant, and l is a positive integer. If f ∈ C3m([a, b]),
then

‖LH3m−1f − f‖∞ � KM‖f (3m)‖∞εl,m(h), (9)

where ‖ · ‖∞ denotes the sup-norm on [a, b],

εl,m(h) =

{
h3m, if 3m < 2l − 1,
h2l−1, if 3m � 2l − 1,

(10)

and K is a positive constant independent of x and X.
Proof. The proof is similar to theorem 2 in [11]. �

3 Numerical examples

In this section, we consider the following functions on [0, 1], which these
functions are given in [12]

Saddle f1 =
1.25

6 + 6(3x− 1)2
, (11)

Sphere f2 =

√
64 − 81(x− 0.5)2

9
− 0.5. (12)

We apply the operators LH3m−1 and LH2m−1 with c = (2h)l on both of these
functions.

The numerical results using uniform grids of 21 points for the operators
LH3m−1 and LH2m−1 are given in Tables 1 and 2. In order to compare these meth-
ods, we calculate the approximating functions at the points i

101
, i = 1, . . . , 100.

Tables 1 and 2 show the mean and maximum errors which are calculated for
different values of the parameters l and m. The numerical results show that
the improved quasi-interpolation operators LH3m−1 have good approximating
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behavior.

LH3m−1f1 LH2m−1f1

(l, m) εmean εmax εmean εmax

(2, 1) 0.1640 × 10−4 0.5783 × 10−4 0.2654 × 10−3 0.1200 × 10−2

(2, 2) 0.3087 × 10−5 0.1149 × 10−4 0.6678 × 10−5 0.4005 × 10−4

(3, 1) 0.1708 × 10−4 0.6072 × 10−4 0.2541 × 10−3 0.1180 × 10−2

(3, 2) 0.3755 × 10−7 0.2777 × 10−6 0.6435 × 10−5 0.4160 × 10−4

(4, 1) 0.1708 × 10−4 0.6073 × 10−4 0.2540 × 10−3 0.1180 × 10−2

(4, 2) 0.3301 × 10−7 0.2768 × 10−6 0.6435 × 10−5 0.4160 × 10−4

Table 1. Numerical results for the saddle function.

LH3m−1f2 LH2m−1f2

(l, m) εmean εmax εmean εmax

(2, 1) 0.2422 × 10−5 0.1202 × 10−4 0.3037 × 10−3 0.5727 × 10−3

(2, 2) 0.1474 × 10−5 0.3126 × 10−5 0.1590 × 10−5 0.4065 × 10−5

(3, 1) 0.2307 × 10−5 0.1232 × 10−4 0.2848 × 10−3 0.5653 × 10−3

(3, 2) 0.4669 × 10−8 0.1544 × 10−7 0.5714 × 10−6 0.3077 × 10−5

(4, 1) 0.2307 × 10−5 0.1232 × 10−4 0.2848 × 10−3 0.5653 × 10−3

(4, 2) 0.1024 × 10−8 0.7906 × 10−8 0.6017 × 10−6 0.3107 × 10−5

Table 2. Numerical results for the sphere function.

4 Conclusions

In this paper, a kind of improved multiquadric quasi-interpolation operators
is proposed. The operators reproduce polynomials of higher degree. Under a
certain assumption, a result on the convergence rate of the operators is given.
The numerical examples show that proposed method provides a high degree
of accuracy.
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