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Abstract. We give a concrete example of a diagonal operator acting in the
Hardy space H2 (D) for which the Berezin symbol has radial limits at no point
of the boundary ∂D. We use the Berezin symbol technique in the discussion of
several old problems from the classical book of I.I. Privalov [18] related with the
Taylor coefficients and boundary behavior of analytic functions. In particular,

we give in terms of Taylor coefficients
{

f̂ (n)
}

and Berezin symbols necessary

and sufficient conditions ensuring existence of radial boundary values of the

functions f (z) =
∑

n≥0 f̂ (n) znfrom the classes lpA (D) , 0 < p ≤ ∞.Lohwater
and Piranian type example of a function analytic on the unit disc D which
has radial limits at no point of the boundary∂D is also presented. The proof
depends on the “high-indices” Tauberian theorem of Hardy and Lilttlewood
which states that Abel summability of a lacunary trigonometric series at a
point implies convergence of that series. Some other questions are also dis-
cussed.
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1. Introduction

Let C be the complex plane and D = {z ∈ C : |z| < 1} be the open unit disk
in C. Let T denote the boundary of D, so T = {eit : t ∈ [0, 2π)}. A functional
Hilbert space is a Hilbert space H = H (D) of complex-valued functions on a
disk D which has the property that point evaluations are continuous (i.e., for
each λ ∈ D, the map f → f (λ) is a continuous linear functional on H). Then
the Riesz representation theorem ensures that for each λ ∈ D there is a unique
element kλ of H such that f (λ) = 〈f, kλ〉 for all f ∈ H,where 〈·, ·〉 denotes an
inner product in H. Because kλ reproduces the value of functions in H at λ,

it is called the reproducing kernel. The normalized reproducing kernel k̂λ is

defined by k̂λ = kλ

‖kλ‖ . It is well known (see, for instance , Halmos [5, Problem

37]) that if {en } is an orthonormal basis for a functional Hilbert space H,

then the reproducing kernel of H is given by kλ (z) =
∑

n en (λ)en (z).

For A a bounded linear operator on H, the Berezin symbol of A, denoted Ã,
is the complex-valued function on D defined by

Ã (λ) =
〈
Ak̂λ, k̂λ

〉
.

The range of the Berezin symbol Ã is called the Berezin set of the operator
A, and will be denoted as Ber (A). The Berezin number berA of A is defined
as ber (A) = sup {|λ| : λ ∈ Ber (A)}(see, also [11],[12]). Clearly, Ber (A) ⊂
W (A), where W (A) is the numerical range of operator A defined as W (A) =
{〈Af, f〉 : ‖f‖H = 1}. The Berezin symbol associates smooth functions with
operators on functional Hilbert spaces H = H (D) of analytic functions in D,

namely, for each bounded operator A on H, the Berezin symbol Ã is a bounded

real-analytic function on D. This implies that Ã is infinitely differentiable on

D. The boundary behavior of the Berezin symbol Ã can be very irregular.
For example, it is not known if the Berezin symbol of a bounded operator
on H must have radial limits almost everywhere on the unit circle T. For
H = L2

a (D) (Bergman space, L2
a (D), consists of the analytic functions f on

D such that
∫
D |f |2 dA < ∞, where dA denotes area measure, normalized so

that the area of D equals 1), this problem was formulated by Zorboska in
[23]. In [13] Karaev solved Zorboska’s problem in the negative, showing the
existence of a concrete class of diagonal operators on L2

a (D) for which the
Berezin symbol does not have radial boundary values anywhere on the unit
circle T. A similar result is also obtained in the case of Hardy space H2 (D)
in reference [13] and also in a paper of Englis [4]. In Section 2 of the present
article, we give a more concrete example of a diagonal operator acting on the
Hardy space H2 (D) for which the Berezin symbol has radial limits at no point
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of the boundary T (see Theorem 1). In Section 3, we use the Berezin symbols
technique to give a partial solution to a problem posed in the classical book of
Privalov [18, Chapter II,§10,11] (see also Duren [3, Chapter 6]). That problem
is to relate Taylor coefficients and boundary behavior of analytic functions. In

particular, we give in terms of Taylor coefficients
{

f̂ (n)
}

and Berezin symbols

necessary and sufficient conditions ensuring existence of radial boundary values

of the functions f (z) =
∑

n≥0 f̂ (n) zn from the classes lpA := lpA (D) , 0 < p ≤
∞, which consist of the analytic functions f (z) =

∑
n≥0 f̂ (n) zn on D with{

f̂ (n)
}
∈ lp; the norm in lpA being defined by ‖f‖lpA

=
∥∥∥
{

f̂ (n)
}∥∥∥

lp
. It is

easy to see that lpA (D) ⊂ Hp (D) ⊂ l∞A (D). Moreover, we describe the z-
invariant subspaces E of lpA in terms of Berezin symbols of weighted shift
operator associated with the Taylor coefficients of the functions in E. We also
show that the Berezin set provides information about the range of the function
(1− |z|) f with f ∈ l∞A (see Section 4).

In Section 5, an example of a function analytic on the unit disc D which has
radial limits at no point of the boundary T is presented. The proof depends
on the “high-indices” Tauberian theorem of Hardy and Littlewood [7], which
states that Abel summability of a lacunary trigonometric series at a point
implies convergence of that series. Notice that since almost nowhere does not
mean nowhere, our example has strictly worse behavior than the bad behavior
proven to occur on pages 148-149 of Privalov’s book [18].

2. A Berezin symbol without radial limits

For 1 ≤ p < ∞, the Hardy class Hp = Hp (D) is the set of all functions f
analytic on D such that

(1) sup
0<r<1

1

2π

∫ 2π

0

∣∣f (
reiθ

)∣∣p dθ < ∞.

The p-th root of the left hand side of inequality (1) defines a complete norm
on Hp. For more information on these spaces, see [18], [3], and [9]. In the case
of p = 2, H2 is the familiar Hardy space of all functions analytic on D with
square-summable Taylor series coefficients.

Recall that the sequence {an}∞n=0 of complex numbers an is Abel convergent
to a if the limit

lim
t→1−

(1− t)
∞∑

n=0

antn

exists and is equal to a.
The following result gives a counterexample to the problem formulated above

in Section 1.
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Theorem 1. Let an := n−ic, where c ∈ R\ {0} , and let D{an} be a diagonal
operator with diagonal elements an with respect to the standard orthonormal

basis {zn}n≥0 of the Hardy space H2. Then the Berezin symbol D̃{an} of the
operator D{an} has radial limits at no point of the boundary T.

Proof. Let us denote

sk =
k∑

n=1

n−1−ic.

It is easy to verify that the series
∑∞

n=1 n−1−ic is not convergent and n−1−ic =
O

(
1
n

)
. Then it follows from the Littlewood Tauberian theorem that

∑∞
n=1 n−1−ic

is not Abel convergent, that is {sk} is not an Abel convergent sequence. On
the other hand, it can be showed that (see Hardy[6, p.163]) sk + ak

ic
tends to

a finite limit as k tends to infinity. It follows from this that {an} cannot be
an Abel convergent sequence, for if it were we would get the contradiction
that {sk} is Abel convergent. Clearly, {an}n≥0 (we put a0 := 0) is a bounded

sequence, and therefore the diagonal operator D{an} is bounded in H2. Then
we have (see[14]):

D̃{an} (λ) =
〈
D{an}k̂λ, k̂λ

〉
=

(
1− |λ|2)

〈
D{an}

∞∑
n=0

λ
n
zn,

1

1− λz

〉

=
(
1− |λ|2)

〈 ∞∑
n=0

λ
n
anzn,

1

1− λz

〉
=

(
1− |λ|2)

∞∑
n=0

an |λ|2n ,

where k̂λ =
(
1− |λ|2) (

1− λz
)−1

is the normalized reproducing kernel of H2.
Thus,

D̃{an} (λ) = D̃{an}
(|λ|2)

(i.e., D̃{an} is a radial function), and

(3) D̃{an}
(|λ|2) =

(
1− |λ|2)

∞∑
n=0

an |λ|2n , λ ∈ D,

or

(4) D̃{an} (t) = (1− t)
∞∑

n=0

ant
n, 0 ≤ t < 1,

where t = |λ|2. Since {an} = {n−ic} is not an Abel convergent sequence,

it follows from (2)–(4) that the Berezin symbol D̃{an} has no radial limits
anywhere on the unit circle T. This completes the proof.
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3. Berezin symbols and boundary behavior of analytic
functions from the class l∞A (D)

Following Privalov [18] and Duren [3], we consider a function f (z) =
∑

n≥0 f̂ (n) zn

belonging to a certain Hp space and ask what can be said about its Taylor co-

efficients
{

f̂ (n)
}

?

It is also interesting to ask how an Hp function can be recognized by the
behavior of its Taylor coefficients. Ideally, one would like to find a condition

on the f̂ (n) which is both necessary and sufficient for f to be in Hp. For
p = 2, of course, the problem is completely solved: f ∈ H2 if and only if∑∞

n=0

∣∣∣f̂ (n)
∣∣∣
2

< ∞. For p = ∞, the problem of coefficients was solved by I.

Schur in 1919 (see, [18, Chapter 2]). Some classical results about the Taylor
coefficients of functions in the Hardy space Hpand Bergman spaces Lp

a (D) are
also known (see, for instance [18], [3], [8], [22], [20]). Some recent results about
Taylor coefficients of entire functions in the Fock spaces F p

α have been obtained
by Tung [20]. But the general situation is much more complicated, and no
complete answer is available. This section contains some scattered information
in terms of Berezin symbols about analytic functions f with bounded Taylor

coefficients
{

f̂ (n)
}

. We will show that the boundary behavior of the Berezin

symbols of diagonal operators on the Hardy space H2 can be also used in the
study of radial boundary values of analytic functions on the unit disc D. Our
main result in this section is the following.

Theorem 2. If f (z) =
∑

n≥0 f̂ (n) zn ∈ l∞A (D), then f has radial limits
almost everywhere on the unit circle T if and only if

D̃{f̂(n)einθ}
(√

t
)

= O (1− t) as t → 1−

for almost all θ ∈ [0, 2π).
Proof. Let f ∈ l∞A (D) be an analytic function in D with sequence of Taylor

coefficients
{

f̂ (n)
}

. Let us denote, as usual, r = |λ| and θ = arg (λ) for any

λ ∈ D. Then f (λ) =
∑∞

n=0 f̂ (n) λn. Write λ = reiθ, and regard θ ∈ [0, 2π)
as fixed. The Taylor series then becomes a power series on [0, 1), of the form∑∞

n=0 f̂ (n) einθrn. Let D{f̂(n)einθ} be a diagonal operator defined by

D{f̂(n)einθ}zn = f̂ (n) einθzn, n ≥ 0,

on the Hardy space H2 (D). Since
{

f̂ (n)
}

is a bounded sequence (because

f ∈ l∞A (D)) and θ is fixed number, the operator D{f̂(n)einθ} is bounded. Then



158 J. M. Ash and M. T. Karaev

by using the proof of formula (4), we have :

f (λ) = f
(
rei arg(λ)

)
= f

(
reiθ

)

=
∞∑

n=0

f̂ (n) einθrn =
(1− r)

∑∞
n=0 f̂ (n) einθrn

1− r

=
D̃{f̂(n)einθ} (

√
r)

1− r
.

Thus

(5) f
(
reiθ

)
=

D̃{f̂(n)einθ} (
√

r)

1− r
,

where D̃{f̂(n)einθ} is the Berezin symbol of a bounded diagonal operator D{f̂(n)einθ}.
Since r ∈ [0, 1) and θ ∈ [0, 2π) are arbitrary fixed numbers, formula (5) implies
that

lim
r→1−

f
(
reiθ

)
= lim

r→1−

D̃{f̂(n)einθ} (
√

r)

1− r
,

that is f has radial limits almost everywhere on the unit circle T if and only if

D̃{f̂(n)einθ}
(√

r
)

= O (1− r) as r → 1−

for almost all θ ∈ [0, 2π), which proves the theorem.
Remark 1. Note that Theorem 2 can be considered as one possible par-

ticular answer to the classical problem of Privalov in [18, Chapter 2, §10],

where it is required to give in terms of Taylor coefficients
{

f̂ (n)
}

necessary

and sufficient conditions ensuring existence of angular boundary values of the

analytic function f (z) =
∑

n≥0 f̂ (n) zn almost everywhere on the unit circle
T. It is necessary, of course, to note also that there are many sufficient con-
ditions in terms of Taylor coefficients ensuring existence of radial and angular
limits of analytic functions on the unit disk D (see [18], [3], and also [20] and
its references)

The following results are immediate from formula (5).
Corollary 3. Let f ∈ l∞A . Then f ∈ Hp (0 < p < ∞) if and only if

sup
0<r<1

1

(1− r)p

1

2π

∫ 2π

0

∣∣∣D̃{f̂(n)einθ}
(√

r
)∣∣∣

p

dθ < ∞.

For p = ∞, f ∈ H∞ if and only if

sup
0<r<1

θ∈[0,2π)

∣∣∣D̃{f̂(n)einθ} (
√

r)
∣∣∣

1− r
< ∞.
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Corollary 4. Let f ∈ l∞A . Then

(6) sup
z∈D

(1− |z|) |f (z)| ≤ sup
z∈D

ber
(
D{f̂(n)ein arg(z)}

)
,

where ber
(
D{f̂(n)ein arg(z)}

)
is the Berezin number of the operator D{f̂(n)ein arg(z)}.

Note that, since

ber
(
D{f̂(n)ein arg(z)}

)
≤ w

(
D{f̂(n)ein arg(z)}

)
( numerical radius)

≤
∥∥∥D{f̂(n)ein arg(z)}

∥∥∥

= sup
n≥0

∣∣∣f̂ (n) ein arg(z)
∣∣∣ = sup

n≥0

∣∣∣f̂ (n)
∣∣∣

for all z ∈ D, inequality (6) is better than the well-known and obvious inequal-
ity

(7) (1− |z|) |f (z)| ≤ sup
n≥0

∣∣∣f̂ (n)
∣∣∣ .

L’Hospital’s rule and a property of compact operators together with formula
(5) give the proofs (which are omitted) of the following two results.

Corollary 5. Let eiθ ∈ T be a fixed point. Let f be an analytic function
on D such that

(a) f̂ (n) → 0 (n → 0) ;

(b) the sequence
{

nf̂ (n) einθ
}

is Abel convergent to zero.

Then limr→1− f
(
reiθ

)
exists and

lim
r→1−

f
(
reiθ

)
= −1

2
lim

r→1−
D̃′
{f̂(n)einθ}

(√
r
)
.

Corollary 6. Let f ∈ lpA (0 < p < ∞) be a function such that
{

nf̂ (n) einθ
}

is Abel convergent to zero for almost all θ ∈ [0, 2π), and let ϕ
(
eiθ

)
be a

measurable function on the unit circle T. Then f
(
eiθ

)
= ϕ

(
eiθ

)
for almost all

θ ∈ [0, 2π) if and only if

ϕ
(
eiθ

)
= −1

2
lim

r→1−
D̃′
{f̂(n)einθ}

(√
r
)

for almost all θ ∈ [0, 2π).
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4. Other applications of diagonal operators

For any f ∈ lpA (0 < p ≤ ∞) and λ ∈ D we have

λf (λ) = λ
∑
n≥0

f̂ (n) λn =
∑
n≥0

f̂ (n) λn+1

=
∑
n≥1

f̂ (n− 1) λn =
∑
n≥1

f̂ (n− 1) ein arg(λ) |λ|n

=
(1− |λ|) ∑

n≥0 f̂ (n− 1) ein arg(λ) |λ|n
1− |λ|

=
D̃{f̂(n−1)ein arg(λ)}

(√
|λ|

)

1− |λ| ,

Thus

(8) λf (λ) =
D̃{f̂(n−1)ein arg(λ)}

(√
|λ|

)

1− |λ| (∀λ ∈ D) .

Our next result is immediate from formula (8).
Corollary 7. Let E ⊂ lpA (0 < p < ∞) be a closed subspace. Then zE ⊂ E

(i.e., E is invariant subspace for the shift operator ) if and only if

D̃{f̂(n−1)ein arg(z)}
(√

|z|
)

1− |z| ∈ E for all f ∈ E.

If g ∈ lpA , 0 < p < ∞, and f ∈ l∞A , then it is standard to show that

|g (z)| ≤ (1− |z|q)−1/q ‖g‖lpA
,

where 1
q

+ 1
p

= 1, and(see formula (7))

(9) (1− |z|) |f (z)| ≤ ‖f‖l∞A

for all z ∈ D. Formula (9) implies that the values of the function (1− |z|) f are
contained in the closed disc Dd, where d = ‖f‖l∞A

. The following proposition

represents the range of the function (1− |z|) f in terms of Berezin sets of diag-

onal operators associated with the Taylor coefficients
{

f̂ (n)
}

of the function

f .
Proposition 8. If f ∈ l∞A (D), then

(10) Range (1− |z|) f = ∪
θ∈[0,2π)

Ber
(
D{f̂(n)einθ}

)
.

Proof. For any θ ∈ [0, 2π), let [0, eiθ) denote the line segment with the ends
0 and eiθ. Since for any z ∈ D, z ∈ [0, ei arg(z)), it is easy to see that

(11) D = ∪
θ∈[0,2π)

[0, eiθ).
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Now, let θ ∈ [0, 2π) be any fixed number. Then for any z ∈ [0, eiθ) we have

(1− |z|) f (z) = D̃{f̂(n)einθ}
(√

|z|
)

,

which implies that (1− |z|) f (z) ∈ Ber
(
D{f̂(n)einθ}

)
, and therefore (1− |z|) f (z) ∈

∪
t∈[0,2π)

Ber
(
D{f̂(n)eint}

)
. This inclusion together with (5) and (11) shows that

{(1− |z|) f (z) : z ∈ D} = ∪
t∈[0,2π)

Ber
(
D{f̂(n)eint}

)
,

which proves the proposition.
Remark 2. Since for any t ∈ [0, 2π), D{f̂(n)eint} is a normal operator on

H2, we have σ
(
D{f̂(n)eint}

)
= clos

{
f̂ (n) eint : n ≥ 0

}
and

W
(
D{f̂(n)eint}

)
= conv σ

(
D{f̂(n)eint}

)
.

Then,by considering the obvious inclusion

Ber
(
D{f̂(n)eint}

)
⊂ W

(
D{f̂(n)eint}

)
,

we have that

Range ((1− |z|) f) ⊆ ∪
t∈[0,2π)

conv clos
{

f̂ (n) eint : n ≥ 0
}

.

Proposition 9. Let f ∈ l∞A . For any t ∈ [0, 2π), let T{f̂(n)eint} be a weighted

shift operator acting on the Hardy space H2 by the formula

T{f̂(n)eint}zn = f̂ (n) eintzn+1, n ≥ 0.

Then

Range ((1− |z|) zf) ⊂ W
(
T{f̂(n)}

)
.

Proof. It is easy to verify that

(12) λf (λ) =
T̃{f̂(n)ein arg(λ)}

(√
|λ|

)

1− |λ| (∀λ ∈ D) .

From this

(13) (1− |λ|) λf (λ) = T̃{f̂(n)ein arg(λ)}
(√

|λ|
)

(∀λ ∈ D) .

Since
∣∣∣f̂ (n) ein arg(λ)

∣∣∣ =
∣∣∣f̂ (n)

∣∣∣, for every fixed λ ∈ D there exists a unitary

diagonal operator D{δn,λ} on H2 such that

D−1

{δn,λ}T{f̂(n)}D{δn,λ} = T{f̂(n)ein arg(λ)}.
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Then, by considering that

Ber
(
T{f̂(n)ein arg(λ)}

)
⊂ W

(
T{f̂(n)ein arg(λ)}

)

and

W
(
T{f̂(n)ein arg(λ)}

)
= W

(
T{f̂(n)}

)
,

we have from the equality (13) that

(1− |λ|) λf (λ) = (D−1

{δn,λ}T{f̂(n)}D{δn,λ})˜

(√
|λ|

)

∈ Ber

(
D−1

{δn,λ}T{f̂(n)}D{δn,λ}
)
⊂ W

(
D−1

{δn,λ}T{f̂(n)}D{δn,λ}
)

= W
(
T{f̂(n)}

)

for all λ ∈ D. Thus, Range ((1− |z|) zf) ⊂ W
(
T{f̂(n)}

)
, which completes

the proof.
Remark 3. By using formula (12), Corollary 7 can be reformulated as

follows: if E ⊂ lpA (0 < p ≤ ∞) is a closed subspace, then zE ⊂ E if and only
if

T̃{f̂(n)ein arg(z)}
(√

|z|
)

1− |z| ∈ E

for all f ∈ E.

5. An analytic function without boundary values

There is a well known principle that very good behavior of a complex val-
ued function of a complex variable on a disc does not necessarily imply even
moderately good behavior at the boundary points of that disc. For example,
Hadamard (see[19]) has constructed a function analytic on a disc that is not
extendable to any neighborhood of any point of the boundary. Another ex-
ample: K. G. Binmore has displayed a class of functions analytic in the unit
disc |z| < 1 = {z ∈ C : |z| < 1} which cannot be extended continuously to
any boundary point P , even if we interpret “extended continuously” in the
very weak sense of only requiring that the function restricted to some curve in
|z| < 1 terminating at P have a finite limiting value as P is approached.[1] We
also note that apparently Lohwater and Piranian [15] gave a construction for
analytic function which has radial limits at no point of the boundary ∂D = T.
But their construction is not simple ( see also Collingwood and Lohwater [2,
Chapter 2]). The point of this section is to call the reader’s attention to two
examples of functions analytic on D that have radial limit at no point of T.
This result is quite a bit weaker than the result of Binmore, but both examples
can be understood very quickly. The first example has the advantage of hav-
ing an extremely short proof, but that proof depends on a powerful Tauberian
theorem. The second example requires slightly more work, but the proof is
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completely self-contained. The very direct and simple second proof was dis-
covered by a referee of an early version of this paper and appears with his
permission.

There are many known results about functions analytic on D and also enjoy-
ing further good behavior, which nonetheless fail to have radial limits at almost
every point of T. See Theorems 2 and 3 of [16] for two results like this. Com-
paratively, the present results consider much less good functions since nothing
except analyticity on D is assumed, but the resulting boundary behavior is a
little worse since the set of nonexistence of radial limits is guaranteed to be
empty rather than just of measure zero.

Theorem 10. The function f (z) =
∑∞

n=0 z2n
is analytic on D, but has

radial limits at no point of the boundary T. In other words, for each θ ∈ [0, 2π),

lim
r→1−

∞∑
n=0

(
eiθr

)2n

= lim
r→1−

∞∑
n=0

ei2nθr2n

does not exist.
Proof. For every positive r < 1, the function f (z) =

∑∞
n=0 z2n

converges
on |z| ≤ r by the root test and thus f is analytic on |z| < r. Since r is arbitrary,
f is analytic on all of D.

Fix θ and set an = ei2nθ. Our goal is to show that the limit

(14) lim
r→1−

∞∑
n=0

anr
2n

does not exist. It is a fundamental theorem of Abel that the convergence of
a series

∑
bk implies the existence of the limit limr→1−

∑
bkr

k (see Hardy [6],
and also Pati[17])(see also Karaev [14] for a functional analysis proof of Abel’s
theorem based on the Berezin symbols). The easy proof of this is a simple
summation by parts argument. But what we need here is the contrapositive
of a limited converse theorem. That limited converse theorem, which is called
the “high-indices” Tauberian theorem of Hardy and Littlewood, asserts that
the existence of the limit limr→1−

∑
αnr

2n
implies the convergence of the series∑

αn. This is a much deeper result. The reason that this converse is limited
is that αn ←→ b2n so that this converse only applies to numerical series

∑
bn

whose terms are zero when n is not a power of 2. It was proved by Hardy and
Littlewood.[7] A simplified proof due to Ingham [10] appears as Theorem 115
on page 173 of [6]. (The statement is more general, the sequence {2n} may
be replaced by any lacunary sequence). Such a limited converse theorem, i.e.,
one which imposes a prior condition on the coefficient sequence {bn}, is called
a Tauberian theorem.

Thus we need only show that the series
∑

an is divergent. But the modulus
of every term of this series is 1 and a series of complex numbers whose moduli
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do not tend to zero diverges. Therefore, the limit (14) does not exist. This
proves Theorem 10.

This proof is so short, basically it can be rephrased as “apply the high-
indices Tauberian Theorem,” that what is truly remarkable is that it seems
to be missing from all of the standard texts discussing boundary values of
functions harmonic on D. It actually appears in the introduction of a multi-
variate paper of Ullrich.[21] We feel certain that it was solidly embedded in
the folklore. Certainly any of the classical analysts of the first half of the twen-
tieth century such as Hardy, Littlewood, Ingham, and Zygmund, could have
instantly produced it upon request. We hope that it will not sink from sight
again.

Theorem 11. The function f (z) =
∑∞

n=1 zn! is analytic on D, but has
radial limits at no point of the boundary T.

Proof. The only property of the sequence
{
2k

}
used in the proof of Theorem

10 was that limk→∞ 2k+1

2k > 1, which is to say that
{
2k

}
is lacunary. Since the

sequence {k!} is also lacunary, the same proof works here also. The point
of this example is that it allows us to give a complete and direct proof that
works for sequences {λk} satisfying limk→∞

λk+1

λk
= ∞. Such sequences might

be called super-lacunary.
Fix θ, 0 ≤ θ < 2π. If δk satisfies |δk| ≤ 1 for all k, and sk−1 =

∑k−1
j=1 eiθj!,

then limk→∞
δk

e
+sk−1 does not exist. One reason for this is that the difference

between two successive terms does not tend to zero, since
∣∣∣∣
δk+1

e
+ sk − δk

e
− sk−1

∣∣∣∣ =

∣∣∣∣sk − sk−1 +
δk+1 − δk

e

∣∣∣∣

≥
∣∣eiθk!

∣∣−
∣∣∣∣
δk+1 − δk

e

∣∣∣∣ ≥ 1− 2

e
> 0.

We will now show that for each k, there is a δk satisfying |δk| ≤ 1 so that

(5.1) lim
k→∞

(
f

(
(1− 1/k!) eiθ

)−
(

δk

e
+ sk−1

))
= 0,

from which it is immediate that f does not have a radial limit at eiθ. Set

δk =
(
1− 1

k!

)k!
eiθk!e and write

f
(
(1− 1/k!) eiθ

)
=

k−1∑
j=1

(
1− 1

k!

)j!

eiθj! +

(
1− 1

k!

)k!

eiθk! +
∞∑

j=k+1

(
1− 1

k!

)j!

eiθj!

= I +
δk

e
+ II,(5.2)

Using the basic calculus identity that for each M ≥ 1, there holds 1 −
(1− x)M ≤ Mx for all x ∈ [0, 1],
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|I − sk−1| ≤
k−1∑
j=1

1−
(

1− 1

k!

)j!

(5.3)

≤
k−1∑
j=1

j!

k!
<

(k − 2)!

k!

k−2∑
j=1

1 +
(k − 1)!

k!

=
k − 2

(k − 1) k
+

1

k
<

2

k
= o (1) .

Another basic calculus identity is that as n increases from 1 to ∞,

(5.4)

(
1− 1

n

)n

↗ 1

e
.

By the definition of δk and (5.4),

(5.5) |δk| ≤ 1.

Finally we estimate II.

|II| ≤
∞∑

j=k+1

{(
1− 1

k!

)k!
} j!

k!

≤
∞∑

j=k+1

{
1

e

} j!
k!

(5.6)

≤
∞∑

j=k+1

{
1

e

}j

=
1

ek+1

1

1− 1/e
= o (1) .

By Equation (5.2) and the definition of δk, it follows that

f
(
(1− 1/k!) eiθ

)−
(

δk

e
+ sk−1

)
= (I − sk−1) + II,

so that limit (5.1) follows from estimates (5.3) and (5.6).
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