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Abstract
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1 Introduction

Predator-prey models and competing species relations have been initiated by
Lotka in [7],[8], and Volterra [9], in a classical way , to represent the interaction
between populations in terms of simultaneous nonlinear differential equations.

Predator-prey systems have been described properly using mathematical
models. Such models describe the interaction between multi-species, particu-
larly two species for which the growth rate of one of the species is increased
but decreased for the other.

In this paper, we include diffusion to a model that describes the interaction
between the prey and the predator; and we use a time-continuous model rather
than discrete, even though the problem is inherently discrete, since we expect a
continuous overlap of generations in the population of such models. Therefore,
continuous models might be a reasonable approximation.

In addition, we also include long range ( or non-local) diffusion; and we shall
consider the more realistic case; namely a diffusion model in the (x1, x2) plane
instead of the one dimensional case. In such model, we consider two coupled
nonlinear parabolic partial differential equations (PDEs) including diffusion;
for more details see [5].

Later on, we will talk about the existence and uniqueness of solutions to
our model.
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In [3], a short range ( or local ) diffusion model has been considered and a
traveling wave solution has been obtained to that model.

2 Preliminary Notes

1.The Predator- Prey Model
The model were are going to consider here is a modification to the plank-

tonic patchiness model , a kind of predator-prey models, which was originally
considered by Levin and Segel in 1976 , see [6];in which they considered some
biological hypotheses concerning the origin of planktonic patchiness that let
to their model in [6].

We used the model in [6] and include long range diffusion, then we assume
that the species specific diffusion coefficients be constants to come up with the
long range diffusive predator-prey model:

ut−Δ(2)u = au+bu2−cuv +dΔu (1)∗

and
vt−Δ(2)v = euv−fv2+gΔv (2)∗;

where u = u(x, t) is the prey density, v = v(x, t) is the predator density,
x = (x1, x2), ut = ∂u

∂t
, and vt = ∂v

∂t
.

We shall assume that a, b, c, d, e, f and g are constants however , a may
assumed to be compact supported and bounded function of x (i.e., a = a(x)
; a(x) = 0 for |x| > N ; where N is a constant) not a constant. The reason
for this assumption is that the birth (or death) rate may depend on the en-
vironment, which is assumed to be bounded. Another reason for assuming
that a, b, c, d, e, f and g are constants, is due to the fact that the birth (or
death) rate could just depend on the interaction between the male and the
female (sexual interaction as in terms bu2 and −fv2) , or just on the binary

interaction (sexual, birth or death like in the term uv ).

Here Δ = ∂2

∂x2
1

+ ∂2

∂x2
2

represents the short range diffusion (dispersal), and

Δ(2) =
2∑

i,j=1

∂4

∂x2
i ∂x2

j
represents the long range diffusion.

uv represents the binary interaction which result in either growth or
decay.

au represents the birth or death of the prey.
u2, v2 represent the sexual interaction between the males and the fe-

males of the prey and the predator, respectively.

Finally, we shall assume that the initial data are in the same Lpspace for
some p > 1. The initial values for equations (1)∗ and (2)∗ will be given by
u(x, 0) = g(x) and v(x, 0) = h(x), respectively, where both g(x) and h(x) ∈
Lp (R2).
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In addition, we will consider large values of time t ,since we are looking for
non-local solutions in the long range diffusion; as considered in [2].

In previous work; namely [1] we have shown the existence and uniqueness
of solutions to the following short range diffusive model. We shall repeat the
process here in order to enable the reader to know the difference between the
short range and (later) the long range diffusion.

The model considered in [1] was as follows:

ut − Δu = au + ku2 − buv (1)

and
vt − Δv = cuv − dv2 (2)

The solution to the above model , as in [1], is redone again in the next
section.

2. Usual or local or short range diffusion with p = q in the Lp,q

norms
To ease solving (1) and (2) we shall make the term au disappear from (1);

to do so let u(x, t) = eαtw(x, t). Therefore (1) and (2) together with the initial
conditions become as follows:

wt − Δw = keαtw2 − bwv (3)

w(x, 0) = g(x) (4)

and

vt − Δv = ceαtwv − dv2 (5)

v(x, 0) = h(x) (6)

Since we have the heat operator ∂
∂t
−Δ in the left hand sides of (3) and (5),

therefore w and v can be obtained by solving the following integral equations:

w =
∫ t

0

∫
Rn

K(x − y, t − τ)
[
keατw2 − bwv

]
dydτ +

∫
Rn

K(x − y, t)g(y)dy (7)

and

v =
∫ t

0

∫
Rn

K(x − y, t − τ)
[
ceατwv − dv2

]
dydτ +

∫
Rn

K(x − y, t)h(y)dy; (8)
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where K is the fundamental solution to the heat equation with n = 2
;thus

K(x, t) =
1

2πt
e

−|x|2
2t and |x| = (x2

1 + x2
2)

1/2 (9)

Using the symbol ⊗ to represent the convolution in space and time while
the symbol ∗ to represent the convolution in space only; we can rewrite (7)
and (8) in a simpler way as follows:

w = K ⊗
[
keατw2 − bwv

]
+ K ∗ g (10)

v = K ⊗
[
ceατwv − dv2

]
+ K ∗ h; (11)

where w and v are weak solutions of (3), (4), (5), and (6) respectively.
We will now introduce the function ϕ as follows:

ϕ(τ) =

{
0, if τ > T

′

eατ , if τ ≤ T
′ (12)

where 0 < τ < T
′
and T

′
is small.

Let us now consider T (w) and T (v) to be the images of w and v respec-
tively.. Thus, if τ ≤ T

′
, then equations (10) and (11) become:

T (w) = K ⊗
[
kϕ(τ)w2 − bwv

]
+ K ∗ g (13)

T (v) = K ⊗
[
cϕ(τ)wv − dv2

]
+ K ∗ h (14)

We are assuming small values of t in order to show the existence and uniqueness
of local solutions to (13), (14).

Lemma 2.1 If w(x, t) , v(x, t) ∈ L( 4
2−ε

, 4
2−ε)

(
R2x

[
0, T

′])
; and g(x) ,

h(x) ∈ L
8

3(2−ε) (R2),
then for ε > 0, we have

‖T (w)‖ 4
2−ε

, 4
2−ε

≤ C
′
4

2−ε

‖w‖2
4

2−ε
, 4

2−ε
+C

′′
4

2−ε

‖w‖ 4
2−ε

, 4
2−ε

‖v‖ 4
2−ε

, 4
2−ε

+C 8
3(2−ε)

‖g‖ 8
3(2−ε)

and
‖T (v)‖ 4

2−ε
, 4

2−ε
≤ D

′
4

2−ε
‖w‖ 4

2−ε
, 4

2−ε
‖v‖ 4

2−ε
, 4

2−ε
+D

′′
4

2−ε
‖v‖2

4
2−ε

, 4
2−ε

+D 8
3(2−ε)

‖h‖ 8
3(2−ε)

.

Proof:
It is obvious from (9) that

0 ≤ |K(x, t)| ≤ c0

(|x| + t1/2)
2 ; (15)

where c0 is some positive constant.
Observe that
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(
|x| + t1/2

)2
=

(
|x| + t1/2

)2−θ (
|x| + t1/2

)θ ≥ |x|2−θ

t
θ
2

for t > 0 and 0 < θ < 2 .
Thus

|K(x, t)| ≤ c0
1

|x|2−θ

1

t
θ
2

(16)

Now, for very small positive ε > 0 , we may rewrite (16) as

|K(x, t)| ≤ c0
1

|x|2−θ

1

t
θ
2

t
ε
2

t
ε
2

(17)

Using the assumption that 0 < t < T
′
and T

′
is very small, (17) may be

expressed as

|K(x, t)| ≤ c0T
′
ε
2

|x|2−θt
θ+ε
2

(18)

Observe that θ+ε
2

= 1− 2−(θ+ε)
2

. The very small value of ε > 0 is chosen
to satisfy 0 < θ + ε < 2 ; thus (18) may be written as:

|K(x, t)| ≤ c0
1

|x|2−θ

T
′
ε
2

t1−
2−(θ+ε)

2

(19)

By (13) and (19) we obtain:

|T (w(x, t))| ≤ kc0e
αT

′
T

′
ε
2

∫ T
′

0

∫
R2

|w(y, τ)|2dydτ

|x − y|2−θ|t − τ |1− 2−(θ+ε)
2

+bc0T
′
ε
2

∫ T
′

0

∫
R2

|w(y, τ)||v(y, τ)|dydτ

|x − y|2−θ|t − τ |1− 2−(θ+ε)
2

+ |K ∗ g| (20)

Let us now assume that g ∈ Lp(R2), wv ∈ L
p
2 (R2), and w2 = w.w ∈ L

p
2 (R2)

. Let r > 1 be chosen so that:

1

r
=

2

p
− θ

2
, 2 < p <

4

θ
(21)

Now, by taking the Lr(R2) norm of both sides and using the same idea as
in Benedek-Panzone Potential Theorem , see [4] page 321, theorem 1, the first
and second terms of the right hand side of (20) become:

|T (w(., t))|r ≤ kc0cpT
′
ε
2

∫ T
′

0

|w(., τ)|2pdτ

|t − τ |1− 2−(θ+ε)
2

+ bc0cpT
′
ε
2

∫ T
′

0

|w(., τ)|p|v(., τ)|pdτ

|t − τ |1− 2−(θ+ε)
2

+‖K ∗ g (., t) ‖r (22)
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Now, if we let ‖w(., τ)‖2
p ∈ L

q
2 (R+) , ‖w(., τ)‖p.‖v(., τ)‖p ∈ L

q
2 (R+) , and

s > 1 so that

1

s
=

2

q
− 2 − (θ + ε)

2
, 2 < q <

4

2 − (θ + ε)
(23)

Again, by applying the Benedek-Panzone Potential Theorem to the first and
second terms of the right hand side of (22) , and upon taking the Ls(R+) norm
of both sides, we obtain:

|T (w)|r,s ≤ kc0cpcq|w|2p,q + bc0cpcq|w|p,q|v|p,q + |K ∗ g|r,s (24)

We shall now take p = r = 2
θ

, and q = s = 2
2−(θ+ε)

, 0 < θ < 2 and ε > 0.

In addition, we shall require that p = q . Therefore θ = 2−ε
2

; which implies
that p = q = r = s = 4

2−ε
,(ε > 0).

By selecting C
′
4

2−ε
= kc0cpcq = kc0c 4

2−ε
c 4

2−ε
and C

′′
4

2−ε
= bc0cpcq = bc0c 4

2−ε
c 4

2−ε

; and since
‖K ∗ g‖ 4

2−ε
, 4
2−ε

≤ C 8
3(2−ε)

‖g‖ 8
3(2−ε)

follows directly from the following imbed-

ding lemma (namely Lemma 2.2) for the initial data; this in turns will conclude
the proof of our Lemma 2.1.

Lemma 2.2 Let F (x, t) = K ∗ g. Assume that g ∈ Lr(R2); 1 < r < ∞.

If for p > 1 and q > 1 with 1
p

+ 1
2q

= 1
r

, then F (x, t) ∈ Lp,q (R2xR+)

and ‖F‖p,q ≤ c(r) ‖g‖r ; where c(r) is some constant depending on r and the
dimension.

Proof:
Using (15) we have |F (x, t)| ≤ c0

∫
R2

|g(x−y)|dy

(|y|+t1/2)
2

By taking the Lq (R+) norm of both sides, we obtain

(∫
R+

|F (x, t)qdt|
)1/q

≤ c0

[∫
R+

{∫
R2

|g(x − y)|dy

(|y| + t1/2)
2

}q

dt

]1/q

(25)

Applying the integral inequality of Minkowski on the right hand side to get

|F (x, .)|q ≤ c0

∫
R2

|g(x− y)|
[∫

R+

dt

(|y|+ t1/2)
2q

]1/q

(26)

from which we obtain

|F (x, .)|q ≤ c0d
∫

R2

|g(y)|dy

|x − y|2− 1
q

(27)
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for some constant d that does not exceed
∫ ∞
0

dt

(1+t1/2)
2q .

Since g ∈ Lr(R2) and 1 < p < ∞, we get for 1
p

= 1
r
− 1

2q
the necessary

conditions to apply the Benedek-Panzone theorem to reach ‖F‖p,q ≤ c (r) ‖g‖r;
where c(r) = C(c0, d, r).

This concludes the proof of Lemma 2.2.

3 Main Results

These are the main results of the paper.

Non-local or long range diffusion in the Lp,q norms
Let us now consider a modification to our model in (1)∗ and (2)∗ ; namely:

ut − Δ(2)u = a1u
4 + a2uv3 + a3u

2v2 + a4u
3v + a5v

4 + a6Δuα (28)

and
vt − Δ(2)v = −b1v

4 − b2uv3 − b3u
2v2 − b4u

3v − b5u
4 + b6Δvα; (29)

where u4 represents interaction between 4 species in the same population,
uv3 represents the interaction between one species from the first population
and 3 species from the second population, and so on.

We will add these two initial conditions to equations (28) and (29) respec-
tively as follows:

u(x, 0) = f(x) (30)

and

v(x, 0) = k(x) (31)

Here u = u(x, t), v = v(x, t) , x ∈ R2 , and t ∈ R+.

We shall now convert equation (28) together with the initial condition (30)
to an integral equation , then show the existence and uniqueness of long range
diffusive solutions to it. Of course, the same procedure can be employed to
equation (29) together with the initial condition (31)

To do so, let us define a new Kernel K2(x, t) = t−
1
2 φ(xt−

1
4 ) ; where K2 ∈

C∞(R2) is the fundamental solution to the homogeneous PDE:
ut − Δ(2)u = 0.

Also we may use K2(x, t) = ΔK and then use (15).
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At any rate, K2 can be approximated as follows:

0 ≤ |K2(x, t)| ≤ c1

(|x| + t1/4)
4 ; (32)

where c1 is some positive constant.

Our goal now is to calculate α that makes the solution to our equations
(28), (29), (30), and (31) exist and unique.

To do so, let us covert equation (28) together with the initial condition (30)
into an integral equation and do the same thing for equations (29) and (31) to
obtain:

u = K2 ⊗ [a1u
4 + a2uv3 + a3u

2v2 + a4u
3v + a5v

4 + a6Δuα] + K ∗ f (33)

and

v = K2 ⊗ [−b1v
4 − b2uv3 − b3u

2v2 − b4u
3v − b5u

4 + b6Δvα] + K ∗ k (34)

First of all, we shall proof the following lemma for the initial data in equa-
tion (33) and the proof for equation (34) is analogous.

Lemma 3.1 If f ∈ Lq(R2) and 0 ≤ |K(x, t)| ≤ c1

(|x|+t1/2)
2 ; where c1 is a

constant and t 	 0 then K ∗ f ∈ L3q.

Proof:
K ∗ f ≤ c1

∫
R2

f(y)dy

(|x−y|+t1/2)
2

Let us take the p norm in t to both sides of the above inequality; namely

‖K ∗ f‖p ≤
∥∥∥∥∥c1

∫
R2

f(y)dy

(|x−y|+t1/2)
2

∥∥∥∥∥
p

Apply the Minkowski’s integral inequality on the right hand side to obtain:

‖K ∗ f‖p ≤ c1

∫
R2 |f(y)| [∫R+

dt

(|x−y|+t1/2)
2p ]

1
p dy

≤ c1β
∫
R2 |f(y)| [∫R+

1

(|x−y|+t1/2)
2p−4 ]

1
p dy

= c1β
∫
R2

|f(y)|dy

(|x−y|+t1/2)
2− 4

p
; where β is a constant.

Let us now take the q norm in x of the above inequality to obtain:
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‖K ∗ f‖q ≤ c1β

∥∥∥∥∥∫
R2

|f(y)|dy

(|x−y|+t1/2)
2− 4

p

∥∥∥∥∥
q

Using the Benedek-Panzone Theorem, we find out that the right hand side
of the above inequality is less than or equal to C ‖f‖q if and only if 1

p
= 1

q
− 2

p

; where C is a constant.

This means that p = 3q Q.E.D.

We will now prove our main Theorem in this paper. But first let z(x, t) =
(u(x, t), v(x, t)).

Theorem 3.2 If z(x, t) ∈ L2,2(R2xR+), then the solution z(x, t) to equa-
tions (28), (29), (30), and (31) exists and it is unique if α 	 3

2
.

Proof: We will use the same process used earlier in proving Lemma 2.1

and other Lemmas; but we will be brief here and without repetition. Namely,
by (32) we have:

|K2(x, t)| ≤ c1

(|x|+t1/4)
4 = c1

(|x|+t1/4)
2+4−2

Therefore

1
q

= α
p
− 2

2+4

i.e., 1 ≺ p
α
≺ 3

Let p = q , then p = 3(α − 1). But since 1 ≺ p
α
≺ 3 we will have:

α ≺ 3(α − 1) ≺ 3α
Which yields that α 	 3

2
as required. But to complete the proof to

our Theorem we need to construct a contraction mapping from Lp(R2xR+)
into Lp(R2xR+).To do so, we must equate all the exponents of p we got earlier
and also in Lemma 3.1; namely

3q = 3(α − 1)
Thus,

q = α − 1
Hence, the contraction mapping becomes:

‖T (z)‖3(α−1) ≤ C(α) ‖z‖α
3(α−1) + ‖l‖3(α−1) ; (35)

where l = (f, k). We shall now compare (35) with the mapping
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y = Axα + B, (36)

where A and B are constants.

As we know, Axα grows faster than a linear function and it is convex.
For B = 0, we have only one non-zero root of (36).
Since the graph of Axα and y = x will intersect in only one non-zero point.
For the same reason, if 0 ≺ B ≺∈ where ∈ is sufficiently small, we have

two roots.
Now, if we let x1 to be the smallest root, then y(x) ≤ x whenever 0 � x �

x1.
This implies that ‖T (u)‖ � x1 if ‖u‖ � x1.
Now, by using (35), we have

T (z) = d1K2 ⊗ zα + l (37)

where d1 is a constant.
Therefore, if x1 is chosen to be small enough, then the mapping T (z) in

(37) will be a contraction mapping that maps the ball of radius x1 onto itself.
Hence, the solution to our equations (28), (29), (30), and (31) for which

z = T (z) with z = (u, v) will exist and be unique in the ball of radius x1 such
that x1 depends on the size of the initial data.

This completes the proof of Theorem 3.2.
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