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Abstract
The t-pebbling number, ft(G), of a connected graph G, is the small-

est positive integer such that from every placement of ft(G) pebbles,
t pebbles can be moved to a specified target vertex by a sequence of
pebbling moves, each move taking two pebbles off a vertex and placing
one on an adjacent vertex. In this paper, we compute the t-pebbling
number of fan graphs and wheel graphs and we study the conjecture:
ft(G × H) ≤ f(G) ft(H), for the product of fan graphs and for the
product of wheel graphs.
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1 Introduction

Graph pebbling is a model for the transmission of consumable resources.
Chung [1] defines a pebbling distribution on a connected graph as a place-
ment of pebbles on the vertices of the graph. A pebbling move then consists
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of removing two pebbles from one vertex, throwing one away, and putting the
other pebble on an adjacent vertex. Chung defined the pebbling number of a
vertex v in G as the smallest number f(v, G) such that from every placement of
f(v, G) pebbles, it is possible to move a pebble to v by a sequence of pebbling
moves. She also defined the t-pebbling number of v in G as the smallest number
ft(v, G) such that from every placement of ft(v, G) pebbles, it is possible to
move t pebbles to v. Then the t-pebbling number of G is the smallest number
ft(G) such that from any placement of ft(G) pebbles, it is possible to move t
pebbles to any specified target by a sequence of pebbling moves. Thus ft(G)
is the largest value of ft(v, G) over all vertices v. The value of ft(G) for t = 1
is the pebbling number of G, denoted by f(G).

Throughout this paper G denotes a simple connected graph with vertex
set V (G) and edge set E(G). Also for any vertex v ∈ V (G), d(v) denotes the
degree of v.

Chung also defined the two pebbling property of a graph, and Wang [12]
extended Chung’s definition to the odd two-pebbling property. In [7] we find
the following definitions.

Definition 1.1 ([7]). Given the t-pebbling number of G, let p be the num-
ber of pebbles on G, let q be the number of vertices with at least one pebble.
We say that G satisfies the 2t-pebbling property if it is possible to move 2t
pebbles to any specified target vertex of G starting from every configuration in
which p ≥ 2ft(G) − q + 1 or equivalently p + q > 2ft(G) for all t.

If q stands for the number of vertices with an odd number of pebbles, we
call the property, the odd 2t-pebbling property.

Definition 1.2 ([7]). We say a graph satisfies the odd 2t-pebbling prop-
erty for all t if, for any arrangement of pebbles with at least 2ft(G) − r + 1
pebbles, where r is the number of vertices in the arrangement with an odd num-
ber of pebbles, it is possible to put 2t pebbles on any target vertex using pebbling
moves.

It is easy to see that a graph which satisfies the 2t-pebbling property also
satisfies the odd 2t-pebbling property for all t. For t = 1, Definition 1.1
gives the two pebbling property and Definition 1.2 gives the odd two-pebbling
property.

With regard to the t-pebbling number of graphs, we find the following
theorems in [6, 8, 9, 10].

Theorem 1.3 ([10]). Let G be a connected graph on n vertices where n ≥
2. Let there be a vertex v such that d(v) = n − 1. Then ft(v, G) = 2t + n − 2.

Theorem 1.4 ([10]). Let Kn be the complete graph on n vertices where
n ≥ 2. Then ft(Kn) = 2t + n − 2.
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Theorem 1.5 ([6]). Let K1 = {v}. Let Cn−1 = (u1, u2, . . . , un−1) be a
cycle of length n − 1. Then the t-pebbling number of the wheel graph Wn is
ft(Wn) = 4t + n − 4 for n ≥ 5.

Definition 1.6. A graph G = (V, E) is called an r-partite graph if V can
be partitioned into r non-empty subsets V1, V2, . . . , Vr such that no edge of G
joins vertices in the same set. The sets V1, V2, . . . , Vr are called partite sets
or vertex classes of G.

If G is an r-partite graph having partite sets V1, V2, . . . , Vr such that every
vertex of Vi is joined to every vertex of Vj, where 1 ≤ i, j ≤ r and i �= j, then
G is called a complete r-partite graph. If |Vi| = si, for i = 1, 2, . . . , r, then
we denote G by Ks1,s2,... ,sr .

Notation 1.7 ([8]). For s1 ≥ s2 ≥ · · · ≥ sr, s1 > 1 and if r = 2, s2 > 1,
let K∗

s1,s2,... ,sr
be the complete r-partite graph with s1, s2, . . . , sr vertices in

vertex classes C1, C2, . . . , Cr respectively. Let n =
∑r

r=1 si.

Theorem 1.8 ([8]). For G = K∗
s1,s2,... ,sr

,

ft(G) =

{
2t + n − 2, if 2t ≤ n − s1

4t + s1 − 2, if 2t ≥ n − s1

Theorem 1.9 ([10]). Let K1,n be an n-star where n > 1.
Then ft(K1,n) = 4t + n − 2.

Theorem 1.10 ([10]). Let Cn denote a simple cycle with n vertices, where
n ≥ 3. Then

ft(Cn) =

{
t (2

n
2 ), if n is even

1 + (t − 1) (2�
n
2
�) + 2

( ⌈
2
3
(2�

n
2
� − 1)

⌉ )
, if n is odd

Theorem 1.11 ([10]). Let Pn be a path on n vertices. Then ft(Pn) =
t (2n−1).

Theorem 1.12 ([10]). Let Qn be the n-cube. Then ft(Qn) = t (2n).

With regard to the 2t-pebbling property, we find the following theorems
in [7, 8, 9, 11].

Theorem 1.13 ([11]). All diameter two graphs satisfy the two-pebbling
property.

Theorem 1.14 ([7]). All paths satisfy the 2t-pebbling property for all t.
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Theorem 1.15 ([7]). All even cycles satisfy the 2t-pebbling property for
all t.

Theorem 1.16 ([7]). The n-cube Qn satisfies the 2t-pebbling property for
all t.

Theorem 1.17 ([8]). Let Kn be a complete graph on n vertices. Then Kn

satisfies the 2t-pebbling property for all t.

Theorem 1.18 ([9]). The star graph K1,n, where n > 1 satisfies the 2t-
pebbling property.

Theorem 1.19 ([9]). Any complete r-partite graph satisfies the 2t-pebbling
property.

Now we find the t-pebbling numbers of fan graphs. We show that fan
graphs satisfy the 2t-pebbling property. We also give an alternate proof for
the t-pebbling number of wheel graphs.

2 The t-Pebbling Number of Fan Graphs and

Wheel Graphs

A fan graph, denoted by Fn, is a path Pn−1 plus an extra vertex connected to
all vertices of the path Pn−1. Throughout this paper, a fan graph with vertices
v0, v1, . . . , vn−1 in order means the fan graph Fn whose vertices of the path
Pn−1 are v1, . . . , vn−1 in order and whose extra vertex is v0.

For any vertex v of a graph G, p(v) refers to the number of pebbles on v.
We find the following theorem in [3].

Theorem 2.1. The pebbling number of the fan graph Fn is f(Fn) = n.

Theorem 2.2. Let Fn be a fan graph on n vertices in order. For n ≥ 4,
ft(Fn) = 4t + n − 4.

Proof. By Theorem 1.3, ft(v0, Fn) = 2t + n − 2.
Let us now find the t-pebbling number of v1. Without loss of generality,

we assume that v1 has zero pebbles on it. We place 4t − 1 pebbles on vn−1

and one pebble each on the vertices of Fn, other than v0, v1, v2 and vn−1. In
this configuration of pebbles, we cannot move t pebbles to v1. So ft(v1, Fn) ≥
4t + n − 4. Hence ft(Fn) ≥ 4t + n − 4 for all t ≥ 1.

Let us now use induction on t to show that ft(Fn) ≤ 4t + n− 4. For t = 1,
the theorem is true by Theorem 2.1. We now assume t > 1. Suppose 4t+n−4
pebbles are placed on the vertices of Fn. First let the target vertex be v0. By
Theorem 1.3, ft(v0, Fn) = 2t + n− 2 and this is less than 4t + n− 4 for t > 1.
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Next, suppose the target vertex is vk and p(vk) = 0, where k ∈ {1, . . . , n− 1}.
We consider the following cases:
Case (i): If p(v0) ≥ 2, then using two pebbles we can put a pebble on vk.
Then the remaining number of pebbles on the vertices of Fn will be 4t+n−6.
Then these pebbles would suffice to put t − 1 additional pebbles on vk.
Case (ii): If p(v0) = 1, then we can find some vi (i �= k) with p(vi) ≥ 2. Then
using two pebbles of vi we can move a pebble to v0. Now v0 has two pebbles.
So we can move a pebble to vk. Then by induction the remaining number of
pebbles will suffice to put t − 1 additional pebbles.
Case (iii): If p(v0) = 0, then we can find some vi(i �= k) with p(vi) ≥ 4
or we can find at least two vertices vj(j �= k) and vl(l �= k) with p(vj) ≥ 2
and p(vl) ≥ 2. Suppose not. Then the total number of pebbles placed on the
vertices of Fn will be at most n which is a contradiction to the total number
of pebbles placed on the vertices of Fn. Hence we can find at least two vertices
vj(j �= k) and vl(l �= k) with p(vj) ≥ 2 and p(vl) ≥ 2. Now we can put a pebble
on vk using at most four pebbles. Then there will be at least 4t+n−8 pebbles
remaining on the vertices of Fn. By induction, we can move t − 1 additional
pebbles to vk.

Theorem 2.3. Fan graphs satisfy the 2t-pebbling property.

Proof. Suppose we start with a configuration of 2ft(Fn) − q + 1 = 2(4t + n −
4)− q + 1 = 8t + 2n− 7− q pebbles where q denotes the number of vertices of
Fn with at least one pebble. Let us use induction on t to show that 2t pebbles
can be moved to the target. For t = 1, the theorem is true by Theorem 1.13.
We assume t > 1 and the target vertex has zero pebbles on it initially.
Case (1): Let the target vertex be v0.

As q can be at most n − 1, we start with at least 8t + 2n − 7 − q ≥
8t + 2n − 7 − n + 1 = 8t + n − 6 pebbles.
Subcase (i): n ≤ 8t − 7. In this case we start with at least 2n + 1 pebbles.
We claim that there is at least one i ∈ {1, . . . , n − 1} with p(vi) ≥ 5 or there
exist at least j, l ∈ {1, . . . , n − 1} with p(vj) ≥ 3 and p(vl) ≥ 3. Suppose not.
Then p(vi) ≤ 4 and p(vk) ≤ 2 for every k �= i. Therefore, the configuration has
at most (q− 2) 2 +4 ≤ 2(n− 1) < 2n+1 pebbles, which is a contradiction. So
we can move two pebbles to v0 using four pebbles without making any of the q
occupied vertices empty. This leaves us with 8t+2n−11−q > 2ft−1(Fn)−q+1
pebbles that have not been moved with q occupied vertices. By induction, we
can put 2(t − 1) additional pebbles on v0.
Subcase (ii): n > 8t − 7. If there exists i ∈ {1, . . . , n − 1} with p(vi) ≥ 5
or there exist j, k ∈ {1, . . . , n − 1} with p(vj) ≥ 3 and p(vk) ≥ 3, then as
in Subcase (i), we can put 2t pebbles on v0. Suppose not. We assume there
exists l ∈ {1, . . . , n − 1} with p(vl) = 4. Therefore, p(vm) ≤ 2 for m �= l.
We claim that there will be at least 2t − 1 vertices with exactly two pebbles.
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Suppose there are at most 2t − 2 vertices with exactly two pebbles. Then the
configuration has at most (2t − 2) 2 + 4 +

(
q − (2t− 1)

)
= 2t + q + 1 pebbles.

Note that q ≤ n−1. So the configuration has at most 2t+n pebbles. This is a
contradiction to the total number of pebbles placed on Fn. So, there will be at
least 2t − 1 vertices with exactly two pebbles and a vertex with four pebbles.
Hence we can move 2t pebbles to v0.

Case (2): Let the target vertex be vk, where k ∈ {1, . . . , n − 1}.
Without loss of generality, we assume v0 has zero pebbles on it. As q can

be at most n − 2, we start with at least 8t + n − 5 pebbles.

Subcase (iii): n ≤ 8t−8. Clearly the total number of pebbles on the vertices
of Fn is at least 2n + 3. We claim that there is at least one i ∈ {1, . . . , n− 1},
i �= k, with p(vi) ≥ 9 or there exist at least i and j, i �= k, j �= k with
p(vi) ≥ 5 and p(vj) ≥ 5 or there exist {i, j, l, m} ⊆ {1, . . . , n − 1} such
that i �= k, j �= k, l �= k, m �= k with p(vi) ≥ 3, p(vj) ≥ 3, p(vl) ≥ 3
and p(vm) ≥ 3. Suppose not. Without loss of generality, we assume there
is a vertex with eight pebbles. Therefore the other vertices will contain at
most two pebbles. Then the number of pebbles in the configuration is at most
(q− 1) 2 +8 = 2q +6 ≤ 2n+2 as q is at most n− 2. This is a contradiction to
the total number of pebbles placed on the vertices of Fn. So, we can move four
pebbles to v0 and hence we can move two pebbles to vk using eight pebbles
without making any of the q occupied vertices empty. After this, we will be
having 8t+ 2n− q− 15 = 2ft−1(Fn)− q +1 pebbles that have not been moved
with q occupied vertices. By induction, these pebbles would suffice to put
2(t − 1) additional pebbles on vk.

Subcase (iv): n > 8t − 8. If there is a vertex with at least nine pebbles or
there are two vertices with at least five pebbles each or there is a vertex with
at least five pebbles and two vertices with at least three pebbles each or there
are four vertices with at least three pebbles each then we apply induction to
put 2t pebbles on vk. Otherwise, without loss of generality we assume there
is a vertex with eight pebbles. Thus, the other vertices will have at most
two pebbles on them. We claim that there are at least 4t − 1 vertices with
exactly two pebbles. Suppose, there are at most 4t − 2 vertices with exactly
two pebbles. Then, the total number of pebbles in the configuration will be
at most (4t − 2) 2 + 8 +

(
q − (4t − 1)

)
= 4t + 5 + q ≤ 4t + n + 3, where the

last inequality follows because q ≤ n − 2. This is a contradiction. Therefore,
we have at least 4t − 1 vertices with exactly two pebbles and a vertex with
eight pebbles. Hence we can move 4t pebbles to v0 and then we can move 2t
pebbles to vk.

We now give an alternate proof for Theorem 1.5, which is found in [6].

Lemma 2.4. Let G be a spanning subgraph of H. Then ft(G) ≥ ft(H).
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Proof. We note that the t-pebbling number of a graph will never increase
when additional edges are added to the graph. Hence the proof of the lemma
follows.

Theorem 2.5. Let K1 = {v}. Let Cn−1 = (u1, u2, . . . , un−1) be a cycle of
length n − 1. Then the t-pebbling number of Wn is ft(Wn) = 4t + n − 4 for
n ≥ 5.

Proof. By Theorem 1.3, ft(v, Wn) = 2t + n − 2. Let us now find out the
t-pebbling number of u1. Assume that u1 has zero pebbles. Place 4t − 3
pebbles at u�n

2
� and one pebble at every vertex of Wn − {u1, u�n

2
�}. Then t

pebbles cannot be moved to u1. So ft(u1, Wn) ≥ 4t + n − 4. By symmetry,
ft(ui, Wn) ≥ 4t + n − 4 for i = 2, 3, . . . , n − 1. Hence ft(Wn) ≥ 4t + n − 4.

Since Fn is a spanning subgraph of Wn, by Lemma 2.4, ft(Wn) ≤ ft(Fn).
Now by Theorem 2.2, ft(Wn) ≤ 4t + n − 4.

3 t-Pebbling the Product of Graphs

In this section we define the product of two graphs and discuss results on the
t-pebbling number of direct product of two graphs. We also discuss the t-
pebbling number of the product of two fan graphs and the t-pebbling number
of product of two wheel graphs.

Definition 3.1 ([4]). If G = (VG, EG) and H = (VH , EH) are two graphs,
the direct product of G and H is the graph, whose vertex set is the Cartesian
product VG×H = VG × VH = {(x, y) : x ∈ VG, y ∈ VH} and whose edges are
given by EG×H =

{(
(x, y), (x′, y′)

)
: x = x′ and (y, y′) ∈ EH or (x, x′) ∈

EG and y = y′}.

We write {x}×H (respectively G×{y}) for the subgraph of vertices whose
projection on to VG is the vertex x (respectively whose projection on to VH

is y). If the vertices of G are labeled xi then for any distribution of pebbles
on G × H , we write pi for the number of pebbles on {xi} × H and qi for the
number of occupied vertices of {xi} × H .

Chung [1] attributed Conjecture 3.2 to Graham and Lourdusamy [7] ex-
tended Graham’s Conjecture to the t-pebbling number of a graph as given in
Conjecture 3.3.

Conjecture 3.2. For any connected graphs G and H, the pebbling number
of G × H satisfies f(G × H) ≤ f(G)f(H).

Conjecture 3.3 (Lourdusamy). For any connected graphs G and H, the
t-pebbling number of G × H satisfies ft(G × H) ≤ f(G)ft(H) for all t.
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We take Lemma 3.4 from [4]. It describes how many pebbles we can transfer
from one copy of H to an adjacent copy of H in G×H . It is also called Transfer
Lemma.

Lemma 3.4 (Transfer Lemma). Let (xi, xj) be an edge in G × H. Sup-
pose that in G × H, we have pi pebbles occupying qi vertices of {xi} × H. If
qi − 1 ≤ k ≤ pi and if k and pi have the same parity then k pebbles can be
retained on {xi} × H while moving pi−k

2
pebbles onto {xj} × H. If k and pi

have opposite parity we must leave k + 1 pebbles on {xi} × H, so we can only

move pi−(k+1)
2

pebbles onto {xj} × H.

In particular, we can always move at least
pi − qi

2
pebbles onto {xi} × H.

We find the following theorems with regard to the t-pebbling number of
direct product of two graphs in [7, 8, 9].

Theorem 3.5 ([7]). Let Pm be a path on m vertices. When G satisfies the
2t-pebbling property,

ft(Pm × G) ≤ f(Pm)ft(G) for all t.

Theorem 3.6 ([7]). Let Pm be a path on m vertices. Then

ft(Pm × Pn) ≤ t 2m+n−2 for all t.

Theorem 3.7 ([8]). Let Pm be a path on m vertices and K∗
s1,s2,... ,sr

be a
complete r-partite graph. Then

ft(Pm × K∗
s1,s2,... ,sr

) ≤ f(Pm)ft(K
∗
s1,s2,... ,sr

) for all t.

Theorem 3.8 ([8]). Let Kn be a complete graph on n vertices where n ≥ 2
and let G be a graph with the 2t-pebbling property. Then

ft(Kn × G) ≤ f(Kn)ft(G) for all t.

Theorem 3.9 ([8]). Let Kn be a complete graph on n vertices. Then

ft(Kn × K∗
s1,s2,... ,sr

) ≤ f(Kn)ft(K
∗
s1,s2,... ,sr

) for all t.

Theorem 3.10 ([8]). Let Kn be a complete graph on n vertices. Then

ft(Km × Kn) ≤ f(Km)ft(Kn) for all t.

Theorem 3.11 ([9]). Let K1,n be an n-star (n > 1). If G satisfies the
2t-pebbling property then

ft(K1,n × G) ≤ f(K1,m)ft(G) for all t.
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Theorem 3.12 ([9]). Let K1,n be an n-star, where n > 1. Then

ft(K1,n × K1,m) ≤ f(K1,n) ft(K1,m) for all t.

Theorem 3.13 ([9]). Let Ks1,2 be a complete bipartite graph with s1 ≥ 2
and G be a graph with the 2t-pebbling property. Then

ft(Ks1,2 × G) ≤ f(Ks1,2) ft(G) for all t.

Note that f(Ks1,2) = s1 + 2 [2].

Theorem 3.14 ([9]). Let K∗
s1,s2,... ,sr

be a complete r-partite graph with s1, s2, . . . , sr

vertices in vertex classes C1, C2, . . . , Cr respectively and G be a graph with the
2t-pebbling property. Then

ft(K
∗
s1,s2,... ,sr

× G) ≤ nft(G) for all t, where

n = f(K∗
s1,s2,... ,sr

) = s1 + s2 + . . . + sr [2].

Theorem 3.15 ([9]). Let K∗
s1,s2,... ,sr

be a complete r-partite graph. Then

ft(K
∗
s1,s2,... ,sr

× K∗
m1,m2,... ,mn

) ≤ f(K∗
s1,s2,... ,sr

) ft(K
∗
m1,m2,... ,mn

) for all t.

We now discuss our results regarding the t-pebbling number of direct prod-
uct of two graphs.

Corollary 3.16. Let Pm be a path on m vertices and Fn be a fan graph on
n vertices. Then

ft(Pm × Fn) ≤ f(Pm) ft(Fn) for all t.

Corollary 3.17. Let Km be a complete graph on m vertices and Fn be a
fan graph on n vertices. Then

ft(Km × Fn) ≤ f(Km) ft(Fn) for all t.

Corollary 3.18. Let K1,m be an m-star (m > 1) and Fn be a fan graph on
n vertices. Then

ft(K1,m × Fn) ≤ f(K1,m) ft(Fn) for all t.

Corollary 3.19. Let Ks1,2 be a complete bipartite graph with s1 ≥ 2 and
Fn be a fan graph on n vertices. Then

ft(Ks1,2 × Fn) ≤ f(Ks1,2) ft(Fn) for all t.
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Corollary 3.20. Let K∗
s1,s2,... ,sr

be a complete r-partite graph with s1, s2,
. . . , sr vertices in vertex classes C1, C2, . . . , Cr respectively and Fn be a fan
graph on n vertices. Then

ft(K
∗
s1,s2,... ,sr

× Fn) ≤ f(K∗
s1,s2,... ,sr

) ft(Fn) for all t.

We now discuss Conjecture 3.3 for the product of fan graphs and for the
product of wheel graphs.

Theorem 3.21. Let Fn be a fan graph on n vertices v0, v1, . . . , vn−1 in
order. If G satisfies the 2t-pebbling property, then

ft(Fn × G) ≤ f(Fn) ft(G) for all t.

Proof. For n = 3, F3 = K3. So the theorem is true by Theorem 3.8 for n = 3.
It is easy to verify the theorem for n = 4, 5. We assume n > 5. Let pi be the
number of pebbles on {vi} × G with qi occupied vertices, where i = 0, 1, 2,
. . . , n − 1. Let y ∈ G.
Case (1): Suppose the target vertex is (v0, y). If p0 ≥ ft(G), then we put t
pebbles on (v0, y). So we assume p0 < ft(G). If there exists some i ∈ {1, 2,
. . . , n−1} with pi+qi

2
> ft(G), then we can put 2t pebbles on (vi, y) and so we

can move t pebbles to (v0, y). Otherwise, pi+qi

2
≤ ft(G) for i = 1, 2, . . . , n−1.

Now we transfer pi−qi

2
pebbles from {vi}×G to {v0}×G for i = 1, 2, . . . , n−1.

So we transfer
∑n−1

i=1
pi−qi

2
pebbles to {v0} × G. If p0 +

∑n−1
i=1

pi−qi

2
≥ ft(G),

then we put t pebbles on (v0, y). Suppose not. Then p0 +
∑n−1

i=1
pi−qi

2
< ft(G).

Adding this with pi+qi

2
≤ ft(G) for i = 1, 2, . . . , n − 1, we get

p0 + p1 + p2 + · · · + pn−1 < n ft(G).

Thus any distribution of pebbles from which we may not put t pebbles on
(v0, y) must begin with fewer than n ft(G) pebbles.
Case (2): (vi, y) is a target vertex, where i ∈ {1,, 2, . . . , n − 1}. Without
loss of generality we assume that (vn−1, y) is the target vertex. We take the n
copies of G i.e., {v0} × G, {v1} × G, . . . , {vn−1} × G, respectively as G0, G1,
. . . , Gn−1.

If p0 + pn−2 + pn−1 ≥ 3 ft(G), then we are done. So we assume that
p0+pn−2+pn−1 < 3 ft(G). Let p0+pn−2+pn−1 = 3 α0 ft(G), where 0 ≤ α0 < 1.
Let Gj contain (kj + αj) ft(G) pebbles where kj is a non-negative integer and
0 ≤ αj < 1 for j = 1, 2, . . . n − 3. Now we may assume that

∑n−3
j=1 qj >

(n− 6 + 3α0) ft(G). Suppose not. Then
∑n−3

j=1 qj ≤ (n− 6 + 3α0) ft(G). Then

we could move at least (n−3α0) ft(G)−(n−6+3α0) ft(G)
2

= 3(1 − α0) ft(G) pebbles
to G0 and hence after this process, the number of pebbles on the subgraph(
Fn − ∪n−3

i=1 {vi}
) × G will be at least 3(1 − α0) ft(G) + 3α0 ft(G) = 3ft(G)
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and so we can move t pebbles to the target. Hence we may assume that∑n−3
j=1 qj > (n − 6 + 3α0) ft(G). Now let s =

∑n−3
j=0 αj . Then s ≤ n − 3. It

is easy to see that
∑n−3

j=1 kj = n − s. Note that αjft(G) + qj < 4 ft(G) for
1 ≤ j ≤ n − 3. We claim that there exists j1, j2, . . . , js such that ji ≥ 1 and
αji

ft(G) + qji
> ft(G), i = 1, 2, . . . , s. Suppose not. Then

n−3∑
j=1

(
αj ft(G) + qj

)
<

(
(n − 3) − (s − 1)

)
ft(G) + 4(s − 1) ft(G).

So

n−3∑
j=1

(
αj ft(G) + qj

)
<

(
(n − 6)

)
ft(G) + 3sft(G).

But

n−3∑
j=1

(
αj ft(G) + qj

)
>

n−3∑
j=1

αj ft(G) + (n − 6 + 3α0) ft(G).

That is
n−3∑
j=1

(
αj ft(G) + qj

)
> (n − 6)ft(G) + 3s ft(G).

This is a contradiction. Therefore,we may assume (after relabeling if necessary)
that αj ft(G) + qj > ft(G) for 1 ≤ j ≤ s. Hence by the 2t-pebbling property,
we can move at least (kj +1)t pebbles to (vj, y) in Gj for 1 ≤ j ≤ s. For j > s,
we can move at least kj t pebbles to (vj , y) in Gj . By the above pebbling
moves, we see that at least

∑s
j=1(kj + 1)t +

∑n−3
j=s+1 kjt = nt ≥ ft(Fn) pebbles

can be moved to the copy Fn × {y} of Fn and so we are done (note that
(vn−1, y) ∈ Fn × {y}).

Corollary 3.22. Let Fn be a fan graph on n vertices. Then

ft(Fm × Fn) ≤ f(Fm) ft(Fn) for all t.

Corollary 3.23. Let Fn be a fan graph on n vertices and Pm be a path on
m vertices. Then

ft(Fn × Pm) ≤ f(Fn) ft(Pm) for all t.

Corollary 3.24. Let Fn be a fan graph on n vertices and Km be a complete
graph on m vertices. Then

ft(Fn × Km) ≤ f(Fn) ft(Km) for all t.

Corollary 3.25. Let Fn be a fan graph on n vertices and K1,m be an m-star
(m > 1). Then

ft(Fn × K1,m) ≤ f(Fn) ft(K1,m) for all t.
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Corollary 3.26. Let Fn be a fan graph on n vertices and Ks1,2 be a complete
graph with s1 ≥ 2. Then

ft(Fn × Ks1,2) ≤ f(Fn) ft(Ks1,2) for all t.

Corollary 3.27. Let Fn be a fan graph on n vertices and K∗
s1,s2,... ,sr

be a
complete r-partite graph with s1, s2, . . . , sr vertices in vertex classes C1, C2,
. . . , Cr respectively. Then

ft(Fn × K∗
s1,s2,... ,sr

) ≤ f(Fn) ft(K
∗
s1,s2,... ,sr

) for all t.

We now show that Conjecture 3.3 holds for the product of wheel graphs.

Theorem 3.28. Let Wn be a wheel graph on n vertices. Then

ft(Wn × Wm) ≤ f(Wn) ft(Wm) for all t.

Proof. By Theorem 1.5 and Theorem 2.2, ft(Wn) = ft(Fn) for all t. Since
Fn×Fm is a spanning subgraph of Wn×Wm, by Lemma 2.4 and Corollary 3.22,
ft(Wn × Wm) ≤ f(Wn) ft(Wm) for all t.

4 Conclusion and Future Direction

We have found the t-pebbling number of fan graphs. We have shown that fan
graphs satisfy the 2t-pebbling property. We have proved Conjecture 3.3 is true
for some graphs. We have also proved that the Conjecture 3.3 is true for the
product of fan graphs and for the product of wheel graphs.

Conjecture 4.1. Conjecture 3.3 is true for a graph, which is the direct
product of a tree with a tree.
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