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Abstract
The t-pebbling number, f;(G), of a connected graph G, is the small-
est positive integer such that from every placement of f;(G) pebbles,
t pebbles can be moved to a specified target vertex by a sequence of
pebbling moves, each move taking two pebbles off a vertex and placing
one on an adjacent vertex. In this paper, we compute the ¢t-pebbling
number of fan graphs and wheel graphs and we study the conjecture:

fi(G x H) < f(G) fi(H), for the product of fan graphs and for the
product of wheel graphs.

Mathematics Subject Classification: 05C05

Keywords: Pebbling, Graham’s Conjecture, Direct products, Graph pa-
rameters

1 Introduction

Graph pebbling is a model for the transmission of consumable resources.
Chung [1] defines a pebbling distribution on a connected graph as a place-
ment of pebbles on the vertices of the graph. A pebbling move then consists
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of removing two pebbles from one vertex, throwing one away, and putting the
other pebble on an adjacent vertex. Chung defined the pebbling number of a
vertez v in G as the smallest number f(v, G) such that from every placement of
f(v, G) pebbles, it is possible to move a pebble to v by a sequence of pebbling
moves. She also defined the t-pebbling number of v in GG as the smallest number
fi(v, G) such that from every placement of f;(v, G) pebbles, it is possible to
move t pebbles to v. Then the t-pebbling number of G is the smallest number
f:(G@) such that from any placement of f;(G) pebbles, it is possible to move ¢
pebbles to any specified target by a sequence of pebbling moves. Thus f;(G)
is the largest value of fi(v, G) over all vertices v. The value of f;(G) for t =1
is the pebbling number of G, denoted by f(G).

Throughout this paper GG denotes a simple connected graph with vertex
set V(G) and edge set E(G). Also for any vertex v € V(G), d(v) denotes the
degree of v.

Chung also defined the two pebbling property of a graph, and Wang [12]
extended Chung’s definition to the odd two-pebbling property. In [7] we find
the following definitions.

Definition 1.1 ([7]). Given the t-pebbling number of G, let p be the num-
ber of pebbles on G, let q be the number of vertices with at least one pebble.
We say that G satisfies the 2t-pebbling property if it is possible to move 2t
pebbles to any specified target vertex of G starting from every configuration in
which p > 2f(G) — q+ 1 or equivalently p 4+ q > 2f(G) for all t.

If q stands for the number of vertices with an odd number of pebbles, we
call the property, the odd 2t-pebbling property.

Definition 1.2 ([7]). We say a graph satisfies the odd 2t-pebbling prop-
erty for all t if, for any arrangement of pebbles with at least 2f,(G) —r + 1
pebbles, where r is the number of vertices in the arrangement with an odd num-
ber of pebbles, it is possible to put 2t pebbles on any target vertex using pebbling
mouves. |

It is easy to see that a graph which satisfies the 2¢-pebbling property also
satisfies the odd 2t-pebbling property for all ¢t. For ¢ = 1, Definition 1.1
gives the two pebbling property and Definition 1.2 gives the odd two-pebbling
property.

With regard to the ¢-pebbling number of graphs, we find the following
theorems in [6, 8, 9, 10].

Theorem 1.3 ([10]). Let G be a connected graph on n vertices where n >
2. Let there be a vertex v such that d(v) =n —1. Then f;(v,G) =2t +n — 2.
|

Theorem 1.4 ([10]). Let K, be the complete graph on n vertices where
n>2. Then fi(K,) =2t +n—2. [
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Theorem 1.5 ([6]). Let K1 = {v}. Let C,_y = (uy,ug,... ,uy—1) be a
cycle of length n — 1. Then the t-pebbling number of the wheel graph W, is

fi(W,) =4t +n—4 forn >5. [

Definition 1.6. A graph G = (V, E) is called an r-partite graph if V can
be partitioned into r non-empty subsets Vi, Vo, ..., V.. such that no edge of G
joins vertices in the same set. The sets Vi, Va, ..., V,. are called partite sets
or vertex classes of G.

If G is an r-partite graph having partite sets Vi, Vs, ..., V.. such that every
vertex of V; is joined to every vertex of V;, where 1 <1, j <r and i # j, then
G is called a complete r-partite graph. If |V;| = s;, fori=1, 2, ..., r, then

we denote G by K, s, s, -

Notation 1.7 ([8]). Fors; > sy > -+ > 5., 81> 1 and if r =2, s5 > 1,

let K3 s, . 5. be the complete r-partite graph with sy, sa, ..., s, vertices in
vertez classes Cy, Cs, ..., C, respectively. Let n =" _ s;.

Theorem 1.8 ([8]). For G = K*

1,525.0. 5517

2t4+n—2, if2t<n-—s
fi(G) = ) '
dt+s1—2, if2t>n—s

Theorem 1.9 ([10]). Let K, be an n-star where n > 1.
Then fi(Ky,) =4t +n — 2. [

Theorem 1.10 ([10]). Let C,, denote a simple cycle with n vertices, where
n > 3. Then

- t(2%), if n is even
f:(C) = {1 F(t—1) (QLgJ) +2( (%(QL%J — 1)} )7 if n is odd

Theorem 1.11 ([10]). Let P, be a path on n wvertices. Then fy(P,) =
t (2. |

Theorem 1.12 ([10]). Let Q, be the n-cube. Then f,(Q,) =t (2"). N

With regard to the 2¢-pebbling property, we find the following theorems
in [7, 8,9, 11].

Theorem 1.13 ([11]). All diameter two graphs satisfy the two-pebbling
property. ]

Theorem 1.14 ([7]). All paths satisfy the 2t-pebbling property for all t.
|
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Theorem 1.15 ([7]). All even cycles satisfy the 2t-pebbling property for
all t. |

Theorem 1.16 ([7]). The n-cube Q,, satisfies the 2t-pebbling property for
all t. |

Theorem 1.17 ([8]). Let K,, be a complete graph on n vertices. Then K,
satisfies the 2t-pebbling property for all t. |

Theorem 1.18 ([9]). The star graph K., where n > 1 satisfies the 2t-
pebbling property. [ |

Theorem 1.19 ([9]). Any complete r-partite graph satisfies the 2t-pebbling
property. (]

Now we find the t-pebbling numbers of fan graphs. We show that fan
graphs satisfy the 2t-pebbling property. We also give an alternate proof for
the t-pebbling number of wheel graphs.

2 The t-Pebbling Number of Fan Graphs and
Wheel Graphs

A fan graph, denoted by F,,, is a path P,_; plus an extra vertex connected to
all vertices of the path P, ;. Throughout this paper, a fan graph with vertices
Vg, U1, ..., Up_1 in order means the fan graph F, whose vertices of the path
P, 1 are vy, ..., v,_1 in order and whose extra vertex is vy.
For any vertex v of a graph G, p(v) refers to the number of pebbles on v.
We find the following theorem in [3].

Theorem 2.1. The pebbling number of the fan graph F,, is f(F,) =n. R

Theorem 2.2. Let F, be a fan graph on n vertices in order. Forn > 4,
fi(F,) =4t +n —4.

Proof. By Theorem 1.3, fi(vo, Fy,) = 2t +n — 2.

Let us now find the t-pebbling number of v;. Without loss of generality,
we assume that v; has zero pebbles on it. We place 4t — 1 pebbles on v,,_1
and one pebble each on the vertices of F;,, other than vy, v1, v and v,,_1. In
this configuration of pebbles, we cannot move ¢ pebbles to vy. So fi(vy, F},) >
4t +n — 4. Hence fi(F,) >4t +n —4 for all t > 1.

Let us now use induction on ¢ to show that fi(F,) <4t+n—4. Fort =1,
the theorem is true by Theorem 2.1. We now assume t > 1. Suppose 4t +n—4
pebbles are placed on the vertices of F),. First let the target vertex be vg. By
Theorem 1.3, fi(vo, Fy,) = 2t +n — 2 and this is less than 4¢ +n — 4 for t > 1.
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Next, suppose the target vertex is vy and p(vg) = 0, where k € {1,... ,n—1}.
We consider the following cases:

Case (i): If p(vg) > 2, then using two pebbles we can put a pebble on vy.
Then the remaining number of pebbles on the vertices of F,, will be 4t +n —6.
Then these pebbles would suffice to put ¢ — 1 additional pebbles on vy.

Case (ii): If p(vg) = 1, then we can find some v; (i # k) with p(v;) > 2. Then
using two pebbles of v; we can move a pebble to vy. Now vy has two pebbles.
So we can move a pebble to v;x. Then by induction the remaining number of
pebbles will suffice to put £ — 1 additional pebbles.

Case (iii): If p(vg) = 0, then we can find some v;(i # k) with p(v;) > 4
or we can find at least two vertices v;(j # k) and v (I # k) with p(v;) > 2
and p(v;) > 2. Suppose not. Then the total number of pebbles placed on the
vertices of F),, will be at most n which is a contradiction to the total number
of pebbles placed on the vertices of F,,. Hence we can find at least two vertices
vj(j # k) and v, (I # k) with p(v;) > 2 and p(v;) > 2. Now we can put a pebble
on v using at most four pebbles. Then there will be at least 4¢4+n — 8 pebbles
remaining on the vertices of F,,. By induction, we can move ¢ — 1 additional
pebbles to vy. [ |

Theorem 2.3. Fan graphs satisfy the 2t-pebbling property.

Proof. Suppose we start with a configuration of 2f,(F,) —q+ 1 = 2(4t +n —
4) —q+1 = 8t+2n — 7 — q pebbles where ¢ denotes the number of vertices of
F,, with at least one pebble. Let us use induction on ¢t to show that 2t pebbles
can be moved to the target. For t = 1, the theorem is true by Theorem 1.13.
We assume ¢ > 1 and the target vertex has zero pebbles on it initially.
Case (1): Let the target vertex be vy.

As ¢ can be at most n — 1, we start with at least 8 + 2n — 7 — ¢ >
8t+2n—T7—n+1=8t+n — 6 pebbles.
Subcase (i): n < 8t — 7. In this case we start with at least 2n + 1 pebbles.
We claim that there is at least one i € {1,... ,n — 1} with p(v;) > 5 or there
exist at least j, [ € {1,...,n— 1} with p(v;) > 3 and p(v;) > 3. Suppose not.
Then p(v;) < 4 and p(vg) < 2 for every k # i. Therefore, the configuration has
at most (¢ —2)2+4 <2(n—1) < 2n+ 1 pebbles, which is a contradiction. So
we can move two pebbles to vy using four pebbles without making any of the ¢
occupied vertices empty. This leaves us with 8t+2n—11—¢q > 2f, 1(F,)—q+1
pebbles that have not been moved with ¢ occupied vertices. By induction, we
can put 2(¢ — 1) additional pebbles on wy.
Subcase (ii): n > 8 — 7. If there exists i € {1,... ,n — 1} with p(v;) > 5
or there exist j, k € {1,...,n — 1} with p(v;) > 3 and p(vy) > 3, then as
in Subcase (i), we can put 2¢ pebbles on vy. Suppose not. We assume there
exists | € {1,...,n — 1} with p(v;) = 4. Therefore, p(v,,) < 2 for m # I.
We claim that there will be at least 2t — 1 vertices with exactly two pebbles.
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Suppose there are at most 2t — 2 vertices with exactly two pebbles. Then the
configuration has at most (2t —2)2+4+ (¢ — (2t — 1)) = 2t + ¢+ 1 pebbles.
Note that ¢ < n—1. So the configuration has at most 2t +n pebbles. This is a
contradiction to the total number of pebbles placed on F;,. So, there will be at
least 2t — 1 vertices with exactly two pebbles and a vertex with four pebbles.
Hence we can move 2t pebbles to vy.
Case (2): Let the target vertex be vy, where k € {1,... ,n —1}.

Without loss of generality, we assume vy has zero pebbles on it. As ¢ can
be at most n — 2, we start with at least 8 +n — 5 pebbles.
Subcase (iii): n < 8t—38. Clearly the total number of pebbles on the vertices
of F, is at least 2n 4+ 3. We claim that there is at least one i € {1,... ,n— 1},
i # k, with p(v;) > 9 or there exist at least i and j, i # k, j # k with
p(v;) > 5 and p(v;) > 5 or there exist {i, j, I, m} C {1,...,n — 1} such
that i # k, j # k, |l # k, m # k with p(v;) > 3, p(v;) > 3, p(v)) > 3
and p(v,,) > 3. Suppose not. Without loss of generality, we assume there
is a vertex with eight pebbles. Therefore the other vertices will contain at
most two pebbles. Then the number of pebbles in the configuration is at most
(q—1)24+8=2¢+6 <2n+2 as ¢ is at most n — 2. This is a contradiction to
the total number of pebbles placed on the vertices of F;,. So, we can move four
pebbles to vy and hence we can move two pebbles to v, using eight pebbles
without making any of the ¢ occupied vertices empty. After this, we will be
having 8t +2n — ¢ — 15 = 2f;_1(F,)) — ¢+ 1 pebbles that have not been moved
with ¢ occupied vertices. By induction, these pebbles would suffice to put
2(t — 1) additional pebbles on .
Subcase (iv): n > 8t — 8. If there is a vertex with at least nine pebbles or
there are two vertices with at least five pebbles each or there is a vertex with
at least five pebbles and two vertices with at least three pebbles each or there
are four vertices with at least three pebbles each then we apply induction to
put 2t pebbles on v,. Otherwise, without loss of generality we assume there
is a vertex with eight pebbles. Thus, the other vertices will have at most
two pebbles on them. We claim that there are at least 4t — 1 vertices with
exactly two pebbles. Suppose, there are at most 4t — 2 vertices with exactly
two pebbles. Then, the total number of pebbles in the configuration will be
at most (4t —2)2+8+4 (¢ — (4t — 1)) =4t + 5+ ¢ < 4t + n + 3, where the
last inequality follows because ¢ < n — 2. This is a contradiction. Therefore,
we have at least 4t — 1 vertices with exactly two pebbles and a vertex with
eight pebbles. Hence we can move 4t pebbles to vy and then we can move 2t
pebbles to vy. ]

We now give an alternate proof for Theorem 1.5, which is found in [6].

Lemma 2.4. Let G be a spanning subgraph of H. Then fi(G) > fi(H).
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Proof. We note that the t-pebbling number of a graph will never increase
when additional edges are added to the graph. Hence the proof of the lemma
follows. |

Theorem 2.5. Let K1 = {v}. Let C,,_1 = (u1,us, ... ,u,_1) be a cycle of
length n — 1. Then the t-pebbling number of W,, is f,(W,) = 4t +n — 4 for
n > 5.

Proof. By Theorem 1.3, fi(v,W,) = 2t +n — 2. Let us now find out the
t-pebbling number of u;. Assume that u; has zero pebbles. Place 4t — 3
pebbles at ur»y and one pebble at every vertex of W, — {uy,ur=1}. Then ¢
pebbles cannot be moved to u;. So fi(uy, W,,) > 4t + n — 4. By symmetry,

fe(us, W) > 4t +n—4fori=2,3,...,n—1. Hence f;(W,) >4t +n — 4.
Since F,, is a spanning subgraph of W,,, by Lemma 2.4, f,(W,,) < fi(F,).
Now by Theorem 2.2, f,(W,) < 4t +n — 4. n

3 t-Pebbling the Product of Graphs

In this section we define the product of two graphs and discuss results on the
t-pebbling number of direct product of two graphs. We also discuss the t-
pebbling number of the product of two fan graphs and the t-pebbling number
of product of two wheel graphs.

Definition 3.1 ([4]). If G = (Vg, Eg) and H = (Vg, Ey) are two graphs,
the direct product of G and H is the graph, whose vertex set is the Cartesian
product Vaxg = Vo X Vg = {(z,y) : © € Vg, y € Vy} and whose edges are
gwen by Egxy = {((z,y), («,y)) : @ = 2/ and (y,y') € Ey or (z,2') €
Eq andy = y’}.

We write {x} x H (respectively G x {y}) for the subgraph of vertices whose
projection on to Vg is the vertex = (respectively whose projection on to Vg
is y). If the vertices of G are labeled x; then for any distribution of pebbles
on G x H, we write p; for the number of pebbles on {z;} x H and ¢; for the
number of occupied vertices of {z;} x H.

Chung [1] attributed Conjecture 3.2 to Graham and Lourdusamy [7] ex-
tended Graham’s Conjecture to the t-pebbling number of a graph as given in
Conjecture 3.3.

Conjecture 3.2. For any connected graphs G and H, the pebbling number
of G x H satisfies f(G x H) < f(G)f(H).

Conjecture 3.3 (Lourdusamy). For any connected graphs G and H, the
t-pebbling number of G x H satisfies f;(G x H) < f(G)f,(H) for all t.
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We take Lemma 3.4 from [4]. It describes how many pebbles we can transfer
from one copy of H to an adjacent copy of H in G x H. It is also called Transfer
Lemma.

Lemma 3.4 (Transfer Lemma). Let (x;,x;) be an edge in G x H. Sup-
pose that in G x H, we have p; pebbles occupying q; vertices of {x;} x H. If
¢ —1 < k < p; and if k and p; have the same parity then k pebbles can be
retained on {x;} x H while moving £ pebbles onto {x;} x H. If k and p;
have opposite parity we must leave k + 1 pebbles on {x;} x H, so we can only

move w pebbles onto {z;} x H.

In particular, we can always move at least bi ; ¢

pebbles onto {z;} x H.

We find the following theorems with regard to the ¢-pebbling number of
direct product of two graphs in [7, 8, 9.

Theorem 3.5 ([7]). Let P, be a path on m vertices. When G satisfies the
2t-pebbling property,

fit(Po x G) < f(Pn)fi(G)  for all t.
Theorem 3.6 ([7]). Let P,, be a path on m vertices. Then
ft(Pm X Pn) < t2m+n72 fO’f’ all t.

Theorem 3.7 ([8]). Let P, be a path on m vertices and K ,, . be a
complete r-partite graph. Then

ft(Pm X K;:,sz,...,sr) S f(Pm)ft(K;kl,sz,...,sr) fOT all t.

Theorem 3.8 ([8]). Let K,, be a complete graph on n vertices where n > 2
and let G be a graph with the 2t-pebbling property. Then

[i( K, x G) < f(KL) fi(G)  for all t.

Theorem 3.9 ([8]). Let K,, be a complete graph on n vertices. Then
K X Iy ) < S FEC ) for all
Theorem 3.10 ([8]). Let K, be a complete graph on n vertices. Then
fi(Kpy x Ky,) < f(Kp)fi(Ky,)  for all t.

Theorem 3.11 ([9]). Let K;, be an n-star (n > 1). If G satisfies the
2t-pebbling property then

[i(Kin x G) < f(Kim)fi(G)  for all t.
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Theorem 3.12 ([9]). Let Ky, be an n-star, where n > 1. Then

[i( K1 X Kim) < f(K1y) ft(Kym)  forall t.

Theorem 3.13 ([9]). Let K, 2 be a complete bipartite graph with s, > 2
and G be a graph with the 2t-pebbling property. Then

[i(Ks 0 x G) < f(K,2) f:(G)  for all t.
Note that f(Ks,2) = s1+2 [2].

Theorem 3.14 ([9]). Let K7 .,
vertices in vertex classes C1,Cs, ... ,C, respectively and G be a graph with the
2t-pebbling property. Then

ft(K:hS%__’ST x G) < nfi(G) for allt, where
n= f(K; J=s1+s+...+s [2. N

51,525+ 387

Theorem 3.15 ([9]). Let K _ be a complete r-partite graph. Then

51,525+ ,8

ft(K;kl,Sg,...,Sr X K:n1,m2,...,mn> S f(K:1,SQ,...,Sr> ft(K:’Ll,mg,...,mn) fOT a/u t

We now discuss our results regarding the ¢-pebbling number of direct prod-
uct of two graphs.

Corollary 3.16. Let P,, be a path on m vertices and F,, be a fan graph on
n vertices. Then

ft(Po x E,) < f(Pn) fi(F,)  for allt.

Corollary 3.17. Let K,, be a complete graph on m wvertices and F},, be a
fan graph on n vertices. Then

ft(Km X Fn) < f(Km) ft(Fn) fOT all t.

Corollary 3.18. Let K, be an m-star (m > 1) and F,, be a fan graph on
n vertices. Then

ft(Kl,m X Fn) S f(KLm) ft(Fn) fO’f’ Clll t.

Corollary 3.19. Let K, o be a complete bipartite graph with s; > 2 and
F, be a fan graph on n vertices. Then

(K 2 X ) < f(Ks,2) fi(F,)  for all t.

_ be a complete r-partite graph with sy, sz, . . .

y Sr
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Corollary 3.20. Let K be a complete r-partite graph with s, ss,
., S, vertices in vertex classes Cl, Csy, ..., C, respectively and F,, be a fan
graph on n vertices. Then
f (K::1 52,. ) < f( 51,82,. )ft(Fn> fOT a/ll t

We now discuss Conjecture 3.3 for the product of fan graphs and for the
product of wheel graphs.

Theorem 3.21. Let F,, be a fan graph on n vertices vy, V1, ..., Up_1 in
order. If G satisfies the 2t-pebbling property, then

fi(F, x G) < f(F,) fi(G)  for all t.

Proof. For n = 3, F3 = K3. So the theorem is true by Theorem 3.8 for n = 3.
It is easy to verify the theorem for n = 4, 5. We assume n > 5. Let p; be the
number of pebbles on {v;} x G with ¢; occupied vertices, where i = 0, 1, 2,
,n—1. Let y € G.
Case (1): Suppose the target vertex is (vo,y). If po > fi(G), then we put ¢
pebbles on (vg,y). So we assume py < fi(G). If there exists some i € {1, 2,
n—1} with 25% > f,(G), then we can put 2¢ pebbles on (v;, y) and so we
can move t pebbles to (vg, y). Otherwise, pi;”“ < filG)fori=1,2,... n—1.
Now we transfer 5% pebbles from {v;} xG to {vo} xG fori=1,2,... ,n—1
So we transfer Z? 11 it pebbles to {vo} x G. If po + S0} pZQ‘h > fi(G),
then we put ¢ pebbles on (vg,y). Suppose not. Then py+ Y 1", ! pizai 52 < fil(G).
Adding this with 252 < f,(G) for i = 1, 2, — 1, we get

Po+p1+pe+ -+ <nfiG).

Thus any distribution of pebbles from which we may not put ¢ pebbles on
(vo, y) must begin with fewer than n f;(G) pebbles.

Case (2): (v;,y) is a target vertex, where ¢ € {1,, 2, ..., n — 1}. Without

loss of generality we assume that (v,_1, ) is the target vertex. We take the n

copies of G i.e., {vo} X G, {v1} x G, ..., {v,_1} X G, respectively as Gg, G,
. Gy,

If po + pno + pn_1 > 3 fi(G), then we are done. So we assume that
Po+Pn—2+pn-1 <3 fi(G). Let po+pn—2+pn_1 = 3ap fi(G), where 0 < ag < 1.
Let G; contain (k; + «;) fi(G) pebbles where k; is a non-negative mteger and
0<ao;<lforj=1,2 ... n—3. Nowwe may assume that D 7~ 1%
(n — 6+ 3) fi(G). Suppose not. Then 77} ?q; < (n— 64 3ag) fi(G). Then
we could move at least =320 /(G)= (” Bi00) (G _ = 3(1 — ) fi(G) pebbles
to Go and hence after this process, the number of pebbles on the subgraph

(F, — U2 {vi}) x G will be at least 3(1 — ag) fi(G) + 3ap f:(G) = 3f(G)
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and so we can move t pebbles to the target. Hence we may assume that
> i 3q; > (n— 6+ 3ap) fi(G). Now let s = Z;:g’ aj. Then s <n—3. It
is easy to see that Z;:f’ kj = n —s. Note that o fi(G) + ¢; < 4 fi(G) for

1 < j <n—3. We claim that there exists ji, ja, - .. , js such that j; > 1 and

aj, f{(G)+q;, > fi(G),i=1,2, ..., s. Suppose not. Then
nz_j (0 fi(G) + ;) < ((n=3) = (s = 1)) filG) + 4(s — 1) fi(G).
pm

So nz_j (aj £:(G) + q;) < ((n—6)) fi(G) + 3sf(G).
But nzj(aj fi(G) +q5) Z@] £i(G) + (n — 6+ 3a0) £1(G).
p
That is nz_g (o [t(G) + q5) > (n—6) fi(G) + 3s f,(G).

=1

This is a contradiction. Therefore,we may assume (after relabeling if necessary)
that «; fi(G) + ¢; > fi(G) for 1 < j < s. Hence by the 2t-pebbling property,
we can move at least (k;+ 1)t pebbles to (v;,y) in G, for 1 < j <s. For j > s,
we can move at least k;t pebbles to (vj,y) in G By the above pebbling
moves, we see that at least > i (kj+ 1t + Zj o1 kit =nt > f;(F,) pebbles
can be moved to the copy F x {y} of F, and so we are done (note that

(Un-1,vy) € F, x {y}). [
Corollary 3.22. Let F,, be a fan graph on n vertices. Then
fe(Fo x E,) < f(F) fi(E,)  for allt.

Corollary 3.23. Let F,, be a fan graph on n vertices and P,, be a path on
m vertices. Then

fi(Fn x Pp) < f(F,) fi(Pn) for allt.

Corollary 3.24. Let F), be a fan graph on n vertices and K,, be a complete
graph on m vertices. Then

fi(Fo x Kp) < f(F,) fi(K,y)  for allt.

Corollary 3.25. Let F,, be a fan graph on n vertices and K, ,, be an m-star
(m >1). Then

fo(Fu % Kyn) < [(Fy) fi( K1) for allt.
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Corollary 3.26. Let I, be a fan graph on n vertices and Ks, » be a complete
graph with s > 2. Then

fi(Fo x Kg,2) < f(Fn) fi(Ks,2)  for all t.

Corollary 3.27. Let F, be a fan graph on n wvertices and K7 ,, . be a
complete r-partite graph with s1, S, ..., s, vertices in vertex classes C, Cs,

..., C, respectively. Then

ft(F'n, X K:LSQ,...,ST) S f(Fn> ft(K§1,SQ,...,ST> fOT a/ll t.
We now show that Conjecture 3.3 holds for the product of wheel graphs.

Theorem 3.28. Let W,, be a wheel graph on n vertices. Then
ft(Wn X Wm) S f(Wn) ft(Wm) fOT’ all t.

Proof. By Theorem 1.5 and Theorem 2.2, f,(W,) = f,(F,) for all t. Since
F, x F,, is a spanning subgraph of W,, x W,,,, by Lemma 2.4 and Corollary 3.22,
fi(Wy x Wy) < f(W,) fi(W,,) for all t. [

4 Conclusion and Future Direction

We have found the t-pebbling number of fan graphs. We have shown that fan
graphs satisfy the 2¢-pebbling property. We have proved Conjecture 3.3 is true
for some graphs. We have also proved that the Conjecture 3.3 is true for the
product of fan graphs and for the product of wheel graphs.

Conjecture 4.1. Conjecture 3.3 is true for a graph, which is the direct
product of a tree with a tree.
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