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Abstract

Let K be a nonempty closed convex and bounded subset of a real
Banach space E; Let f : K — K be a contraction map with a con-
tractive constant o € (0,1) and T7; : K — K, ¢ = 1,2,--- ,N, be N
uniformly L- szschztzmn asymptotzcally pseudocontmctwe maps with
sequences {kn }, and wniformly asymptotically regular with sequence
{en}. Suppose {z,} is generated iteratively by zn+1 = ApOnf(zn)+
1= (1+0n)]zn+ AT, n > 1, where Ty, = T,y 00 Ny, 1 € K is a
given point. If {\,}, {0,} C [0,1] satisfy appropriate conditions, then
nan;O |z, — Tixn|| = 0 for each I € {1,2,--- ,N}.
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1 Introduction and preliminaries

Throughout this paper we assume that F is a real Banach space and let J
denote the normalized duality mapping from E into 2€" given by J(z) = {f €
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E* Az, f) = ||z||% ||z|| = |If]l, = € E}, where E* denotes the dual space of
E and (-,-) denotes the generalized duality pairing. It is well known that if
E* is strictly convex, then Jis single-valved. In the sequel,we shall denote the
single-valved duality mapping by j .

Let K beasubset of Eand T : K — K amapping. It is called nonexpansive
if [Tz — Tyl < ||z —y|| for all z,y € K. It is called a contraction if there
exists @ € (0,1) such that [|Tx — Ty| < af||lx —y|| for all z, y € K. It is called
asymptotically nonexpansive if there exists a sequence {k,} with k, > 1 and
lim,, o kyn = 1 such that ||T"z —T"y|| < ky||z—y|| foralln > 1and z, y € K.
It is called asymptotically pseudocontractive if there exists a sequence {k,} C
[1,4+00) such that lim, ..k, = 1, and there exists j(z —y) € J(z — y) such
that the inequality

(T"z = T"y, j(z —y)) < kallz —y[*, n>1 (1.1)

holds for all z, y € K. It is easy to see that every asymptotically nonexpansive
mapping is asymptotically pseudocontractive mapping.

Let {T;}Y, : K — K be a family of mappings. It is called uniformly
asymptotically reqular if for each € > 0 there exists integer ng, such that for
all n > ng maxy<;j<n |77 2 — Tzl < eV a € K. It is called uniformly
asymptotically reqular with sequence {e,} if maxi<;j<n | T}"'x — T/x|| < &,
for all x € K, where ¢, — 0 as n — oc.

Mapping T : K — K is called uniformly L-Lipschitzian if there exists
L > 0 such that [|[T"z — T"y|| < L||x —y||, n>1, Va,y € K. It is called
pseudocontractive if there exists j(z —y) € J(x — y) such that

(Tx =Ty, jlx—y)) <z —y|*>Va,ye K. (1.2)

It follows from a result of Kato [4] that (1.2) is equivalent to
[z =yl <llz =y +r(({ =Tz = =T)y)l (1.3)

for all x,y € K and all » > 0, where I denotes the identity mapping.

A mapping T : K — K is called strongly pseudocontractive if for each
x,y € K, there exists j(z —y) € J(x —y) and k € (0,1) such that (T'x —
Ty, j(x —y)) < kllz —yll*

Any sequence {x,} satisfying nh_)rgo |z, — Tix,|| =0,0=1,--- | N, is called

an approzimate fized point sequence for a family mappings {T;}Y,.

The asymptotically pseudocontractive mapping has been studied by vari-
ous authors(see e.g., [8,9] etc.). In 2003, Chidume and Zegeye[3| construct an
approximate fixed point sequence for the class of asymptotically pseudocon-
tractive mapping in Banach space,they proved the following theorem:

Theorem CZ[3] Let K be a nonempty closed convex and bounded subset of
a real Banach space E. LetT : K — K be uniformly L-Lipschitzian, uniformly
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asymptotically regular with sequence {e,} and asymptotically pseudocontrac-
tive with sequence {k,} such that for \,, 6, € (0,1),Yn > 1, the following
conditions are satisfied:

(DA (146,) < 1,577 N0 = 00, |Kna— k| = 0(Anb2), A\v—1=0(6,);

On— 1_
T On ‘ : En—1
g = 0,lim,, 02 = 0.

(7) limy, 00 0, = 0, lim,, oo 9—" =0, lim, s
Let {x,} be generated from x; € K by

Tpr1 = (1= Ny + N1 — NOn (2, — 1), YV > 1,

Then ||z, — Tx,|| =0 as n — oco.
The above iterative sequences is generalized by WZ[11] as following:

Tpt1 = NOn f(2) + [1 = A(1 + 00)]z0 + N T2y, 71 € K.

It is called viscosity iterative scheme. Recently, many authors studied this
class of the iterative scheme because it is able to approximate solution of
some variational inequalities ( for example,1,2,10,11). By the sequence, WZ[11]
prove the following result.

Theorem WZ [11] Let K be a nonempty closed convex and bounded subset
of a real Banach space FE, f : K — K be a contraction. T : K — K
is uniformly L-Lipschitzian, uniformly asymptotically regular with sequence
{en} and asymptotically pseudocontractive with sequence {k,} such that for
A, On € (0,1), the following conditions are satisfied:

(DA (146,) < 1,307 Ay = 00, |/€n_1—/<an| = 0(M0%), \n—1=0(0,);

‘ 65 |
AnOn

(79) limy,— 00 0, = lim,, oo :9\—” = lim, oo

Let {x,} be generated from x; € K by
Tnt1 = MNOn f(20) + [1 = Ao (1 + 0,)]zy + N T 2,

. En—
= lim,,_. v 05 =0.

for all positive integer n > 1. Then ||z, — Tx,| =0, as n — oc.

The importance of approximate fixed point sequences is that once a se-
quence has been constructed and proved to be an appropriate fixed point
sequence for a mapping 7, then it is generally achieved that the sequence con-
verges to a fixed point of T.

Question 1. Is it possible to construct an approximate fixed point sequence
for a finite family of asymptotically pseudocontractive mappings in Banach
spaces?

In this paper, we introduce the following iterative sequence {z,}:

for a finite family of asymptotically pseudocontractive mappings {T;}Y | : K —
K, where T,, = T, (moan), {Mn}, {0n} C [0,1], 21 € K is a given point.
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Our purpose in this paper is to give an affirmative answers to Question
1. Under suitable condition, we prove that ||z, — Tjz,|| — 0 as n — oo for
l=1,2,---, N.The results obtained can be regarded as extension of Theorem
CZ and Theorem WZ.

In the sequel, we shall make use of the following Lemmas:

Lemma 1.1([6]). Let E be a real normed linear space and J the normalized
duality mapping on E. Then for each x,y € FE and j(x +vy) € J(z +y), we
have

lz +ylI* < [l2* + 2y, j(z +))

Lemma 1.2([5]). Let {p,}, {an}, {on} be three sequences of nonnegative
numbers satistying conditions a, —0, 3= —0, as n— 00, X2, =00,

pn-l—l < pn - an¢(pn+1) +0on, N >1

be given where ¢ : [0,+00) — [0,400) is a strictly increasing function such
that it is positive on (0, +00) and ¥(0) = 0. Then p, — 0 as n — 0.

2 Main results

Lemma 2.1. Let K be a nonempty closed convex and bounded subset of
a real Banach space E. Let f : K — K be a contraction mapping and
T; : K — K be N uniformly asymptotically regular, uniformly L-Li sch1tz1an
and asymptotically pseudocontractive mapping with sequence {/{n ,oio=
1,--+,N. Suppose 0, € (0,1) such that 0, — 0 and k, —1 = 0(6,,) asn — oo,
where k, = max{/-ig), e ,m(zN)}. Then there exists a positive integer ng and
a sequence {y,} C K such that when n > noy, {y,} satisfies the following
condition:

where T0? = T7 i nys An = m. Further, ||y, — Thyn|| — 0, as n — oo.

Proof. Since f : K — K is a contraction, then there exists o € (0,1) such
that || f(z)—f(v)|| < a|lz—y]|, Y eK. By 0,— 0 and k,—1 =0(0,), as n— oo,
there exists ng such that == Loty <t —1 , > Ng.

For n > 1, define the 1 mappmg S : K — K by Su(y) = ATy + (1 —
A f(y). Then S, + K — K is continuous and strongly pseudocontractive,
when n > ny. By theorem 5 in Reich [7], S, has a unique fixed point(say)
yn € K, for n > ng. This means that y, = ATy, + (1 — A,) f(y,) has a
unique solution for n > ngy. Since K is bounded, then we have

[yn = Tyl = (1 = A)I[f(yn) = T3yl = 0(n — o0). (2.2)
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Given that for n > ng,

Hyn_TnynH = H(l - An)(f(yn) - Tnyn) + An(T:yn - Tnyn)H
< (1_An)”f(yn>_TnynH+An(HT7?yn_Tr?+lynH+HT£LHyn_ n¥nl)

By the uniformly asymptotic regularity of {T;}¥; and (2.2-2.3) we have lim ||y,—
T.yn|| = 0. Completing the proof of lemma 2.1. O

Theorem 2.2 Let K be a nonempty closed convex and bounded subset of
a real Banach space E, [ : K — K a contraction. T; : K — K are N uni-
formly L-Lipschitzian, asymptotically pseudocontractive with sequence {RS)},
1=1,2,--- N, and a family uniformly asymptotically regular mappings with
sequence {e,}. Let {x,} be defined by

Tot1 = NOn f(20) + [1 = A (1 + 0,) ]z + N0y, n>1 (2.4)

where T,, = T, (moan), 1 € K is a given point, {\, }, {6} be two real sequences
in [0, 1] satisfying the following conditions:
(1) M(146,) <1, D07 Al = 00, limy, o0 0, = 0;

[n=t_y|

(if) limy, oo 52 = 0, lim, oo —525— =0, lim, o =0
i) [kt — | = 0(M02), K—1 = 0(8,), K, = max{ri’, - M.
(iii) | | = o(Auby), : R

Then Hxn—Tlan — 0 asn — oo, forl:LQ’... ,N‘

Proof. Step 1. We prove that ||z, — y,|| — 0 as n — co. Since f: K — K
is a contraction, then there exists o € (0, 1) such that || f(z) — f(y)| < afjlz —
yll, =,y € K. Since 6,, — 0 and k, — 1 = 0(f,), as n — oo, there exists nyg
such that ’;Z—;j<to<i—1,n2no.
For n > ng, let {y,} be the sequence defined as that in (2.1) and B,, = é
Then from (2.4) and lemma 1.1 we get that, for n > ny,
||In-i-1_ynH2 = Hxn — Yn + )‘n‘gnf(xn) - /\n(l + en)xn + /\nTeran2
= Hxn _ynHQ_'_Q)\n(en(xn—H —Tp—Tpy +yn+f(xn)_yn)_xn‘i‘Tr?xn:j(xn—H_yn))
< |z, - ynH2 — 22 0n || Tpg1 — yn||2 + 20, (On (Tng1 — 70)
_<xn+1 - BnTsanrl) + (xn+1 - BnTr?anrl)aj(anrl - yn>> (25>

By the properties of y,, and the asymptotically pseudocontractivity of 7,, then
Qn(f(yn) - yn) - (yn - BnT:yn) + (1 - Bn)f(yn) =0, (2‘6>
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<(xn+1 - BnT:xn—&-l) - (yn - BnTgyn))j(xn-‘rl - yn)> > 07 (27>
for all n > ng. It follows from (2.5) and (2.7) that, for all n > no,

Hxn+1_ynH2
S ||xn_yn||2_2/\n0n“xn+1 _yn’|2+2/\n<8n(xn+1 _In) + en(f(xn) _yn)
_<xn _Tr?xn) - (yn _BnTr:Lyn) + (xn+1 _BnTg'anrl)a j(anrl _yn)> (28>

Substituting (2.6) into (2.8) we have that

Hxn-&-l_ynH2
< ||xn_yn||2_2/\n‘9n“xn+l_yn||2+2)‘n<0n(xn+l_xn)_}_en(f(xn)_yn)_l‘n
A wn =00 (f (Yn) = Yn) — (1= Bn) f (Yn) +Tns1 — B3 Tng1s J(Tng1—Yn))
= |Ja, — yn||2 — 220 || Tpt1 — ynH2 + 20 ((0n + 1) (@041 — @)
+0,(f(2n) = f(@ni1) + f(@ni1) = fyn) + Tian — BT, wn
+B, 15 wn — BpTy ng — (1= B) f(Yn)s J(Tnt1 — Yn))
< o, — yn||2 — 22000 (1 — @) [pg1 — yn||2 + 60| Zn1 — TallllTn1 — yull
+2Xa[(1 = Bp) (1T 2n || + 1f () D) + Bul| Ty — T wn i [[]l[2n41 = ynll
< an =yall? = 22000 (1 =) |21 =yl +20. 3+ L) |20 11 — 20 [ | 2011 =y
2 [(1 = Bp) 1Tz [l + 1 () D]l %01 — vl (2.9)
Notice the fact that
a1 = @all = Mol f(2n) = (L4 O)wn + Tiagl £ Aloa]-
Since K is bounded, which implies that {z,},{f(z,)} and {T)z,} are all
bounded, then there exists M; > 0 such that

max{|[zns1 = ynll, [lonll, [T @nll + 1 F )ll} < My, n>1

Let C,, = 202 (3+L)M? + 2\, (1—B,)M}. Hence, from (2.9) we get
241 =< 10—yl "= 20a00 (1= @) [|Zn 41—y |* + Cha. (2.10)

Letting T := ;LT, then we have
(Tx =Ty, j(z —y)) = BT}z = Ty j(z — y)) < [lo — ",

therefore, T is a pseudocontractive mapping. Hence from (1.3) we have for
n 2 Ny,

1

By B, = 1/k, and (2.6) and (2.11) we get that
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Hyn—l_ynH
1
S;Hyn—l__yn_Fa_{jthT_fikljztfyn—l+13n—lzzzfyn—l_lgnjq?yn—fiyn+lgnjq?yn}H

’ (1— 9’”) Wt = @)+ F 1) =S )+ 7 Bas (T 1~ T

0 0,
1 : 1
g Bact = BT = £0) + 50 B ) = 1)
0, — En—1Bn—
< = 2 s = Ao+ s =l +
1 e}
+9_’an1 — Bl T3 Y1 — f(yn)ll + 9_(1 — Bo)|[yn-1 — vl (2.12)

By 5-(1-B,) = 2lin=l) — aty, m > ny, it follows from (2.12) that

Onkn
1 9n41 En—1
17 In < - n—1 n—
|Yn—1—yn|| < 1—04—0050‘ 0, |Yna—f(y 1)||+in€n_1(1—oz—ozt0)
1
Bn_1— B, |||T" Y1 — n 2.13
e P = Bl — F)l (213)

Because K is bounded, which implies that {x,}, {yn}, {llyn — f(yn—1)|} and
{17 yn-1 — f(yn)||} are all bounded. Thus, there exists My > 0 such that

v f )l T y=T )l

2 n- Yn— n—1—9Yn )
masc{ 2 = |+ | HA L S
Let M = max{M;, M5}, notice that
Hxn_ynHQ < ||xn_yn—1||2+Hyn—l_ynHM‘ (2'14>

Hence, from (2.10), (2.13) and (2.14), we have that for n > ny
141 =yl I?< Hxn_yn—lH2_2)‘n9n(1_a)”xn+l_yn’|2+2/\i(3 + L)M?
enfl
On

+2M,(1— Bn)M2+9€"—1M2+'1—

nkn—1

1
M2+9—]Bn,1—BnLM?. (2.15)

By Lemma 1.2 and the conditions on {\,}, {0,} , we get that ||z,+1—yn| — 0
as n — oo. Consequently, ||z, —y,| — 0 as n — .
Step2. We prove that ||z, — T,,z,|| — 0, as n — oo. Since

|20 —Townll < (1 + L)||2n—Yull+ |y —Taynll;

from Lemma 2.1 and step 1, we know that ||z, —T,z,||— 0 (n— o).
Step3. We prove that lim |x,—Tjz,||=0,l=1,---,N. Since

|Zni1 — Znll = Anllvall < Ay — 0 (0 — o0).

Thus, for each j € {1,2,---, N}, when n — oo, we have that
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Hxn-i—j - an — 0, Hxn - Tn—&-jan — 0, (2'16>

which implies that the sequence
N
U {llzn = Topsal 721 — 0 (n — o0).
j=1
For each | € {1,2,---, N}, observe that
{lzn=Tiwnll}n2 = Allen—Tomzall}os

N
= {llzn—Thzall}22: C U{||an—men||}Z°:1,
=1
where | —n = [,,(modN), l,, € {1,---, N}. Therefore, we have ||z, —Tjz,|| — 0

as n — 0o. Completing the proof of Theorem 2.2. O
Remark 2.1 When N = 1, Theorem 2.2 reduces to Theorem 3.2 in [11].
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