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Abstract

Let K be a nonempty closed convex and bounded subset of a real
Banach space E; Let f : K → K be a contraction map with a con-
tractive constant α ∈ (0, 1) and Ti : K → K, i = 1, 2, · · · , N , be N
uniformly L-Lipschitzian, asymptotically pseudocontractive maps with
sequences {k(i)

n }, and uniformly asymptotically regular with sequence
{εn}. Suppose {xn} is generated iteratively by xn+1 := λnθnf(xn)+
[1−λn(1+θn)]xn+λnT n

n xn n ≥ 1, where Tn = Tn(mod N), x1 ∈ K is a
given point. If {λn}, {θn} ⊂ [0, 1] satisfy appropriate conditions, then
lim

n→∞ ‖xn − Tlxn‖ = 0 for each l ∈ {1, 2, · · · , N}.
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1 Introduction and preliminaries

Throughout this paper we assume that E is a real Banach space and let J
denote the normalized duality mapping from E into 2E∗

given by J(x) = {f ∈
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E∗ : 〈x, f〉 = ‖x‖2, ‖x‖ = ‖f‖, x ∈ E}, where E∗ denotes the dual space of
E and 〈·, ·〉 denotes the generalized duality pairing. It is well known that if
E∗ is strictly convex, then J is single-valved. In the sequel,we shall denote the
single-valved duality mapping by j .

LetK be a subset ofE and T : K → K a mapping. It is called nonexpansive
if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ K. It is called a contraction if there
exists α ∈ (0, 1) such that ‖Tx− Ty‖ ≤ α‖x− y‖ for all x, y ∈ K. It is called
asymptotically nonexpansive if there exists a sequence {kn} with kn ≥ 1 and
limn→∞ kn = 1 such that ‖T nx−T ny‖ ≤ kn‖x−y‖ for all n ≥ 1 and x, y ∈ K.
It is called asymptotically pseudocontractive if there exists a sequence {kn} ⊂
[1,+∞) such that limn→∞ kn = 1, and there exists j(x − y) ∈ J(x − y) such
that the inequality

〈T nx− T ny, j(x− y)〉 ≤ kn‖x− y‖2, n ≥ 1 (1.1)

holds for all x, y ∈ K. It is easy to see that every asymptotically nonexpansive
mapping is asymptotically pseudocontractive mapping.

Let {Ti}N
i=1 : K → K be a family of mappings. It is called uniformly

asymptotically regular if for each ε > 0 there exists integer n0, such that for
all n ≥ n0 max1≤i,j≤N ‖T n+1

i x − T n
j x‖ ≤ ε, ∀ x ∈ K. It is called uniformly

asymptotically regular with sequence {εn} if max1≤i,j≤N ‖T n+1
i x − T n

j x‖ ≤ εn,
for all x ∈ K, where εn → 0 as n→ ∞.

Mapping T : K → K is called uniformly L-Lipschitzian if there exists
L > 0 such that ‖T nx − T ny‖ ≤ L‖x − y‖, n ≥ 1, ∀x, y ∈ K. It is called
pseudocontractive if there exists j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2, ∀ x, y ∈ K. (1.2)

It follows from a result of Kato [4] that (1.2) is equivalent to

‖x− y‖ ≤ ‖x− y + r((I − T )x− (I − T )y)‖ (1.3)

for all x, y ∈ K and all r > 0, where I denotes the identity mapping.
A mapping T : K → K is called strongly pseudocontractive if for each

x, y ∈ K, there exists j(x − y) ∈ J(x − y) and k ∈ (0, 1) such that 〈Tx −
Ty, j(x− y)〉 ≤ k‖x− y‖2.

Any sequence {xn} satisfying lim
n→∞

‖xn − Tlxn‖ = 0, l = 1, · · · , N , is called

an approximate fixed point sequence for a family mappings {Ti}N
i=1.

The asymptotically pseudocontractive mapping has been studied by vari-
ous authors(see e.g., [8,9] etc.). In 2003, Chidume and Zegeye[3] construct an
approximate fixed point sequence for the class of asymptotically pseudocon-
tractive mapping in Banach space,they proved the following theorem:

Theorem CZ[3] Let K be a nonempty closed convex and bounded subset of
a real Banach space E. Let T : K → K be uniformly L-Lipschitzian, uniformly
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asymptotically regular with sequence {εn} and asymptotically pseudocontrac-
tive with sequence {κn} such that for λn, θn ∈ (0, 1), ∀n ≥ 1, the following
conditions are satisfied:

(i)λn(1+θn) ≤ 1,
∑∞

n=1 λnθn = ∞, |κn−1−κn| = o(λnθ
2
n), λn−1= o(θn);

(ii) limn→∞ θn = 0, limn→∞ λn

θn
= 0, limn→∞

| θn−1
θn

−1|
λnθn

= 0, limn→∞
εn−1

λnθ2
n

= 0.

Let {xn} be generated from x1 ∈ K by

xn+1 := (1 − λn)xn + λnT
nxn − λnθn(xn − x1), ∀n ≥ 1,

Then ‖xn − Txn‖ = 0 as n→ ∞.
The above iterative sequences is generalized by WZ[11] as following:

xn+1 := λnθnf(xn) + [1 − λn(1 + θn)]xn + λnT
nxn, x1 ∈ K.

It is called viscosity iterative scheme. Recently, many authors studied this
class of the iterative scheme because it is able to approximate solution of
some variational inequalities ( for example,1,2,10,11). By the sequence, WZ[11]
prove the following result.

Theorem WZ [11] Let K be a nonempty closed convex and bounded subset
of a real Banach space E, f : K → K be a contraction. T : K → K
is uniformly L-Lipschitzian, uniformly asymptotically regular with sequence
{εn} and asymptotically pseudocontractive with sequence {κn} such that for
λn, θn ∈ (0, 1), the following conditions are satisfied:

(i)λn(1+θn)≤ 1,
∑∞

n=1 λnθn = ∞, |κn−1−κn| = o(λnθ
2
n), λn−1 = o(θn);

(ii) limn→∞ θn = limn→∞ λn

θn
= limn→∞

| θn−1
θn

−1|
λnθn

= limn→∞
εn−1

λnθ2
n

= 0.

Let {xn} be generated from x1 ∈ K by

xn+1 := λnθnf(xn) + [1 − λn(1 + θn)]xn + λnT
nxn

for all positive integer n ≥ 1. Then ‖xn − Txn‖ = 0, as n→ ∞.
The importance of approximate fixed point sequences is that once a se-

quence has been constructed and proved to be an appropriate fixed point
sequence for a mapping T , then it is generally achieved that the sequence con-
verges to a fixed point of T .

Question 1. Is it possible to construct an approximate fixed point sequence
for a finite family of asymptotically pseudocontractive mappings in Banach
spaces?

In this paper, we introduce the following iterative sequence {xn}:
xn+1 := λnθnf(xn)+[1−λn(1+θn)]xn+λnT

n
n xn, n ≥ 1. (1.4)

for a finite family of asymptotically pseudocontractive mappings {Ti}N
i=1 : K →

K, where Tn = Tn(modN), {λn}, {θn} ⊂ [0, 1], x1 ∈ K is a given point.
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Our purpose in this paper is to give an affirmative answers to Question
1. Under suitable condition, we prove that ‖xn − Tlxn‖ → 0 as n → ∞ for
l = 1, 2, · · · , N .The results obtained can be regarded as extension of Theorem
CZ and Theorem WZ.

In the sequel, we shall make use of the following Lemmas:

Lemma 1.1([6]). Let E be a real normed linear space and J the normalized
duality mapping on E. Then for each x, y ∈ E and j(x + y) ∈ J(x + y), we
have

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉

Lemma 1.2([5]). Let {ρn}, {αn}, {σn} be three sequences of nonnegative
numbers satisfying conditions αn→0, σn

αn
→0, as n→∞, Σ∞

n=1αn =∞,

ρ2
n+1 ≤ ρ2

n − αnψ(ρn+1) + σn, n ≥ 1

be given where ψ : [0,+∞) → [0,+∞) is a strictly increasing function such
that it is positive on (0,+∞) and ψ(0) = 0. Then ρn → 0 as n→ ∞.

2 Main results

Lemma 2.1. Let K be a nonempty closed convex and bounded subset of
a real Banach space E. Let f : K → K be a contraction mapping and
Ti : K → K be N uniformly asymptotically regular, uniformly L-Lipschitzian
and asymptotically pseudocontractive mapping with sequence {κ(i)

n }, i =
1, · · · , N . Suppose θn ∈ (0, 1) such that θn → 0 and κn −1 = o(θn) as n→ ∞,

where κn = max{κ(1)
n , · · · , κ(N)

n }. Then there exists a positive integer n0 and
a sequence {yn} ⊂ K such that when n ≥ n0, {yn} satisfies the following
condition:

yn = AnT
n
n yn + (1 − An)f(yn) (2.1)

where T n
n = T n

n(mod N), An = 1
κn(1+θn)

. Further, ‖yn − Tnyn‖ → 0, as n→ ∞.

Proof. Since f : K → K is a contraction, then there exists α ∈ (0, 1) such
that ‖f(x)−f(y)‖≤α‖x−y‖, x, y ∈K. By θn→0 and κn−1 =o(θn), as n→ ∞,
there exists n0 such that κn−1

κnθn
< t0 <

1
α
−1 , n ≥ n0.

For n ≥ 1, define the mapping Sn : K → K by Sn(y) := AnT
n
n y + (1 −

An)f(y). Then Sn : K → K is continuous and strongly pseudocontractive,
when n ≥ n0. By theorem 5 in Reich [7], Sn has a unique fixed point(say)
yn ∈ K, for n ≥ n0. This means that yn = AnT

n
n yn + (1 − An)f(yn) has a

unique solution for n ≥ n0. Since K is bounded, then we have

‖yn − T n
n yn‖ = (1 − An)‖f(yn) − T n

n yn‖ → 0(n→ ∞). (2.2)
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Given that for n ≥ n0,

‖yn−Tnyn‖ = ‖(1 − An)(f(yn) − Tnyn) + An(T n
n yn − Tnyn)‖

≤ (1−An)‖f(yn)−Tnyn‖+An(‖T n
n yn−T n+1

n yn‖+‖T n+1
n yn−Tnyn‖)

≤ (1−An)‖f(yn)−Tnyn‖+An(‖T n
n yn−T n+1

n yn‖+L‖T n
n yn−yn‖). (2.3)

By the uniformly asymptotic regularity of {Ti}N
i=1 and (2.2-2.3) we have lim

n→∞
‖yn−

Tnyn‖ = 0. Completing the proof of lemma 2.1. �

Theorem 2.2 Let K be a nonempty closed convex and bounded subset of
a real Banach space E, f : K → K a contraction. Ti : K → K are N uni-
formly L-Lipschitzian, asymptotically pseudocontractive with sequence {κ(i)

n },
i = 1, 2, · · · , N , and a family uniformly asymptotically regular mappings with
sequence {εn}. Let {xn} be defined by

xn+1 := λnθnf(xn) + [1 − λn(1 + θn)]xn + λnT
n
n xn, n ≥ 1 (2.4)

where Tn = Tn(modN), x1 ∈ K is a given point, {λn}, {θn} be two real sequences
in [0, 1] satisfying the following conditions:

(i) λn(1 + θn) ≤ 1,
∑∞

n=1 λnθn = ∞, limn→∞ θn = 0;

(ii) limn→∞ λn

θn
= 0, limn→∞

| θn−1
θn

−1|
λnθn

= 0, limn→∞
εn−1

λnθ2
n

= 0;

(iii) |κn−1−κn| = o(λnθ
2
n), κn−1 = o(θn), κn = max{κ(1)

n , · · · , κ(N)
n }.

Then ‖xn − Tlxn‖ → 0 as n→ ∞, for l = 1, 2, · · · , N .

Proof. Step 1. We prove that ‖xn − yn‖ → 0 as n→ ∞. Since f : K → K
is a contraction, then there exists α ∈ (0, 1) such that ‖f(x)− f(y)‖ ≤ α‖x−
y‖, x, y ∈ K. Since θn → 0 and κn − 1 = o(θn), as n → ∞, there exists n0

such that κn−1
κnθn

< t0 <
1
α
− 1, n ≥ n0.

For n ≥ n0, let {yn} be the sequence defined as that in (2.1) and Bn = 1
κn

.
Then from (2.4) and lemma 1.1 we get that, for n ≥ n0,

‖xn+1−yn‖2 = ‖xn − yn + λnθnf(xn) − λn(1 + θn)xn + λnT
n
n xn‖2

≤ ‖xn − yn‖2 + 2λn〈θnf(xn) − (1 + θn)xn + T n
n xn, j(xn+1 − yn)〉

= ‖xn−yn‖2+2λn〈θn(xn+1−xn−xn+1+yn+f(xn)−yn)−xn+T n
n xn, j(xn+1−yn)〉

≤ ‖xn − yn‖2 − 2λnθn‖xn+1 − yn‖2 + 2λn〈θn(xn+1 − xn)

+θn(f(xn) − yn) − (xn − T n
n xn) − (yn − BnT

n
n yn) + (yn − BnT

n
n yn)

−(xn+1 −BnT
n
n xn+1) + (xn+1 −BnT

n
n xn+1), j(xn+1 − yn)〉 (2.5)

By the properties of yn and the asymptotically pseudocontractivity of Tn, then

θn(f(yn) − yn) − (yn − BnT
n
n yn) + (1 − Bn)f(yn) = 0, (2.6)
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〈(xn+1 − BnT
n
n xn+1) − (yn −BnT

n
n yn), j(xn+1 − yn)〉 ≥ 0, (2.7)

for all n ≥ n0. It follows from (2.5) and (2.7) that, for all n ≥ n0,

‖xn+1−yn‖2

≤ ‖xn−yn‖2−2λnθn‖xn+1−yn‖2+2λn〈θn(xn+1−xn) + θn(f(xn)−yn)

−(xn−T n
n xn)−(yn−BnT

n
n yn)+(xn+1−BnT

n
n xn+1), j(xn+1−yn)〉 (2.8)

Substituting (2.6) into (2.8) we have that

‖xn+1−yn‖2

≤ ‖xn−yn‖2−2λnθn‖xn+1−yn‖2+2λn〈θn(xn+1−xn)+θn(f(xn)−yn)−xn

+T n
n xn−θn(f(yn)−yn)−(1−Bn)f(yn)+xn+1−BnT

n
n xn+1, j(xn+1−yn)〉

= ‖xn − yn‖2 − 2λnθn‖xn+1 − yn‖2 + 2λn〈(θn + 1)(xn+1 − xn)

+θn(f(xn) − f(xn+1) + f(xn+1) − f(yn)) + T n
n xn − BnT

n
n xn

+BnT
n
n xn − BnT

n
n xn+1 − (1 − Bn)f(yn), j(xn+1 − yn)〉

≤ ‖xn − yn‖2 − 2λnθn(1 − α)‖xn+1 − yn‖2 + 6λn‖xn+1 − xn‖‖xn+1 − yn‖
+2λn[(1 − Bn)(‖T n

n xn‖ + ‖f(yn)‖) +Bn‖T n
n xn − T n

n xn+1‖]‖xn+1 − yn‖
≤ ‖xn−yn‖2−2λnθn(1−α)‖xn+1−yn‖2+2λn(3+L)‖xn+1−xn‖‖xn+1−yn‖

+2λn[(1 − Bn)(‖T n
n xn‖ + ‖f(yn)‖)]‖xn+1 − yn‖ (2.9)

Notice the fact that

‖xn+1 − xn‖ = λn‖θnf(xn) − (1 + θn)xn + T n
n xn‖ � λn‖vn‖.

Since K is bounded, which implies that {xn},{f(xn)} and {T n
n xn} are all

bounded, then there exists M1 > 0 such that

max{‖xn+1 − yn‖, ‖vn‖, ‖T n
n xn‖ + ‖f(yn)‖} ≤M1, n ≥ 1

Let Cn = 2λ2
n(3+L)M2

1 + 2λn(1−Bn)M
2
1 . Hence, from (2.9) we get

‖xn+1−yn‖2≤‖xn−yn‖2−2λnθn(1−α)‖xn+1−yn‖2 + Cn. (2.10)

Letting T := 1
κn
T n

n , then we have

〈Tx− Ty, j(x− y)〉 = Bn〈T n
n x− T n

n y, j(x− y)〉 ≤ ‖x− y‖2,

therefore, T is a pseudocontractive mapping. Hence from (1.3) we have for
n ≥ n0,

‖yn−1−yn‖ ≤ ‖yn−1−yn+
1

θn
{(yn−1−BnT

n
n yn−1)−(yn−BnT

n
n yn)}‖. (2.11)

By Bn = 1/κn and (2.6) and (2.11) we get that
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‖yn−1−yn‖
≤‖yn−1−yn+

1

θn
{yn−1−Bn−1T

n−1
n−1 yn−1+Bn−1T

n−1
n−1 yn−1−BnT

n
n yn−1−yn+BnT

n
n yn}‖

=

∥∥∥∥
(
1− θn−1

θn

)
(yn−1 − f(yn−1))+f(yn−1)−f(yn)+

1

θn
Bn−1(T

n−1
n−1 yn−1−T n

n yn−1)

+
1

θn
(Bn−1−Bn)(T n

n yn−1 − f(yn)) +
1

θn
(1 − Bn−1)[f(yn−1) − f(yn)]

∥∥∥∥
≤

∣∣∣∣1 − θn−1

θn

∣∣∣∣ ‖yn−1 − f(yn−1)‖ + α‖yn−1 − yn‖ +
εn−1Bn−1

θn

+
1

θn
|Bn−1 − Bn|‖T n

n yn−1 − f(yn)‖ +
α

θn
(1 −Bn)‖yn−1 − yn‖ (2.12)

By α
θn

(1−Bn) = α(κn−1)
θnκn

< αt0, n ≥ n0, it follows from (2.12) that

‖yn−1−yn‖ ≤ 1

1−α−αt0

∣∣∣∣1− θn−1

θn

∣∣∣∣ ‖yn−1−f(yn−1)‖+
εn−1

θnκn−1(1−α−αt0)
+

1

θn(1 − α− αt0)
|Bn−1 − Bn|‖T n

n yn−1 − f(yn)‖ (2.13)

Because K is bounded, which implies that {xn}, {yn}, {‖yn − f(yn−1)‖} and
{‖T n

n yn−1 − f(yn)‖} are all bounded. Thus, there exists M2 > 0 such that

max{2‖xn−yn−1‖+‖yn−1−yn‖, ‖yn−1−f(yn−1)‖
1−α−αt0 ,

‖T n
n yn−1−f(yn)‖
1−α−αt0 }≤M2.

Let M = max{M1,M2}, notice that

‖xn−yn‖2 ≤ ‖xn−yn−1‖2+‖yn−1−yn‖M. (2.14)

Hence, from (2.10), (2.13) and (2.14), we have that for n ≥ n0

‖xn+1−yn‖2≤‖xn−yn−1‖2−2λnθn(1−α)‖xn+1−yn‖2+2λ2
n(3 + L)M2

+2λn(1−Bn)M2+
εn−1

θnκn−1
M2+

∣∣∣∣1− θn−1

θn

∣∣∣∣M2+
1

θn
|Bn−1−Bn|M2. (2.15)

By Lemma 1.2 and the conditions on {λn}, {θn} , we get that ‖xn+1−yn‖ → 0
as n→ ∞. Consequently, ‖xn−yn‖ → 0 as n→ ∞.

Step2. We prove that ‖xn − Tnxn‖ → 0, as n→ ∞. Since

‖xn−Tnxn‖ ≤ (1 + L)‖xn−yn‖+‖yn−Tnyn‖,
from Lemma 2.1 and step 1, we know that ‖xn−Tnxn‖→ 0 (n→∞).

Step3. We prove that lim
n→∞

‖xn−Tlxn‖ = 0, l = 1, · · · , N . Since

‖xn+1 − xn‖ = λn‖vn‖ ≤ λnM1 → 0 (n→ ∞).

Thus, for each j ∈ {1, 2, · · · , N}, when n→ ∞, we have that
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‖xn+j − xn‖ → 0, ‖xn − Tn+jxn‖ → 0, (2.16)

which implies that the sequence

N⋃
j=1

{||xn − Tn+jxn||}∞n=1 → 0 (n→ ∞).

For each l ∈ {1, 2, · · · , N}, observe that

{‖xn−Tlxn‖}∞n=1 = {‖xn−Tn+(l−n)xn‖}∞n=1

= {‖xn−Tn+lnxn‖}∞n=1 ⊂
N⋃

l=1

{‖xn−Tn+lxn‖}∞n=1,

where l−n = ln(modN), ln ∈ {1, · · · , N}. Therefore, we have ‖xn−Tlxn‖ → 0
as n→ ∞. Completing the proof of Theorem 2.2. �

Remark 2.1 When N ≡ 1, Theorem 2.2 reduces to Theorem 3.2 in [11].
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