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Abstract

The notion of prime and irreducible ideals in subtraction algebras
is introduced. Characterizations of a prime ideal are given. Extension
property of a prime ideal is established. Conditions for an ideal to be
an irreducible ideal are given.
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1 Introduction

B. M. Schein [4] considered systems of the form (®;o0,)\), where ® is a set of
functions closed under the composition “o” of functions (and hence (®;o0) is
a function semigroup) and the set theoretic subtraction “\” (and hence (®;\)
is a subtraction algebra in the sense of [1]). He proved that every subtrac-
tion semigroup is isomorphic to a difference semigroup of invertible functions.
B. Zelinka [5] discussed a problem proposed by B. M. Schein concerning the
structure of multiplication in a subtraction semigroup. He solved the prob-
lem for subtraction algebras of a special type, called the atomic subtraction
algebras. Y. B. Jun et al. [2] introduced the notion of ideals in subtraction
algebras and discussed characterization of ideals. In [3], Y. B. Jun and H. S.

Kim established the ideal generated by a set, and discussed related results.
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In this paper, we investigate some properties of ideals in subtraction algebras.
We give a condition for a nonempty subset to be an ideal. We introduce the
notion of prime and irreducible ideals of a subtraction algebra, and we give a
characterization of a prime ideal. We also provide a condition for an ideal to
be a prime/irreducible ideal.

2 Preliminaries

By a subtraction algebra we mean an algebra (X; —) with a single binary op-
eration “—” that satisfies the following identities: for any z,y, z € X,

(S1) v —(y — o) = z;
(S2) v — (v —y)=y— (y — x);

(83) (e—y)—z=(x—2)—vy

The last identity permits us to omit parentheses in expressions of the form
(x — y) — z. The subtraction determines an order relation on X: a < b <
a —b =0, where 0 = a — a is an element that does not depend on the choice
of a € X. The ordered set (X; <) is a semi-Boolean algebra in the sense of
[1], that is, it is a meet semilattice with zero 0 in which every interval [0, a] is
a Boolean algebra with respect to the induced order. Here a Ab = a — (a — b);
the complement of an element b € [0, a] is a — b; and if b, ¢ € [0, a], then

bve = (UAd) =a—((a—b)A(a—c))
= a—((a=b)=((a=b) = (a—0))).

In a subtraction algebra, the following are true (see [2]):

pP9) z<yimpliesr —z<y—zand z —y < z—x forall z € X.

(pl) (z—y)—y=z—y.
(p2) 2—0==zand 0 —z = 0.
(p3) (x—y)—z=0.
(pd) z— (v —y) <.
(P5) (z—y)—(y—z)=2—y.
(p6) 2 —(z—(z—y)) =z —y.
(p7) (z—y)—(z—y) <z —
(p8) = <y if and only if z = y — w for some w € X.
(p9)
)

(pl0) z,y < z implies x —y =z A (z — y).
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3 Main Results.

Definition 3.1 (Jun et al. [2]). A nonempty subset A of a subtraction algebra
X is called an ideal of X if it satisfies

(I1) 0e A

(I12) ye Aand z —y € Aimply z € A for all z,y € X.

Lemma 3.2. Let A be an ideal of a subtraction algebra X. If v <y and
y€ A, thenx € A.

Proof. 1t is straightforward. O

Lemma 3.3. In a subtraction algebra X, the following inequality is valid.

(xAy)—(xANz)<zA(y—=2).

Proof. For any z,y,z € X, we have

(@Ay)=(zAhz)=(—(z-y) = (z-(r-2))

<S@@-z)—-(z-y <y-=z (3.1)
On the other hand,

(xAy)—(xANz)<zAhy<zx. (3.2)
Combining (3.1) and (3.2), we have (z Ay) — (z A 2) <z A(y — 2). O

Theorem 3.4. Let A be an ideal of a subtraction algebra X. For any
w € X, the set
Al i={ze X |wAxe A}

s an ideal of X containing A.

Proof. Since w A0 =w —(w—0) =w—w =0 € A, we have 0 € AJ.
Let 2,y € X be such that y € A}, and z —y € A). Then w Ay € A and
wA (z—y) €A Since (wAz)— (wAy) <wA (z—y) by Lemma 3.3, it
follows from Lemma 3.2 and (I2) that w Az € A, that is, x € A}. Hence A is
an ideal of X. Now let # € A. Since w Az < x by (p4), we have w Ax € A by
Lemma 3.2. Therefore z € A, and so A C AJ\. This completes the proof. [

Theorem 3.5. Let A be a nonempty subset of a subtraction algebra X
such that

(i) x € A and y < x imply y € A.
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(ii) For x,y € A, there exists z € A such that v < z and y < z.

Then A is an ideal of X.

Proof. Since A is nonempty, we have 0 € A by (i) and (p2). Let z,y € X
be such that y € A and x —y € A. Then, by (ii), there exists z € A such that
y <zand z—y <z It follows from (p2) and [2, Lemma 3.10] that

r—z=(x—-2)-0=(@—2)—(y—2)=(r—y)—2=0

so that © < z. Since z € A, it follows from (i) that x € A. Hence A is an ideal
of X. O

Definition 3.6. Let X be a subtraction algebra. A prime ideal of X is
defined to be an ideal P of X such that if t Ay € P then x € P ory € P.

Theorem 3.7. Let P be an ideal of a subtraction algebra X. Then the
following are equivalent.

(i) P is a prime ideal of X.

(ii) For any ideals A and B of X, AN B C P implies A C P or B C P,
where ANB:={aNb|la€ A, be B}.

Proof. Suppose that P is a prime ideal of X such that A A B C P, where
A and B are ideals of X. Assume that A ¢ P and B ¢ P. Then there
exist € A\Pandy € B\ P,andsox Ay € AANB C P. Since P is
prime, it follows that x € P or y € P, which is a contradiction. Consequently,
ANB C P implies A C P or B C P. Conversely assume that for any ideals
Aand Bof X, ANB C P implies A C Por B C P. Let x,y € X be such
that x Ay € P. Note from [2, Theorem 3.4] that (z] :== {a € X | a < z} and
(y] :=4{be X | b <y} are ideals of X. Let a € (z] and b € (y|. Then a < z
and b < y. It follows from a A b < a,b that a Ab < x and a Ab < y so that
a/Nb < xAy. Since P is an ideal and x Ay € P, by Lemma 3.2 we get aAb € P.
Therefore (x| A (y] C P, which implies that (z] C P or (y] C P by hypothesis.
In particular, z € P or y € P, and thus P is a prime ideal of X. O

Theorem 3.8. FEwvery prime ideal of a subtraction algebra is a maximal
1deal, that is, every prime ideal is not contained in any other proper ideal.

Proof. Let P be a prime ideal of a subtraction algebra X. Suppose that P
is not maximal. Then there exists a proper ideal A of X such that P C A and
P # A. Let y € X and consider x € A\ P. Then

tANy—x)=x—(r—(y—z))=x—x=0€ P,

and so y —x € P because P is a prime ideal and = ¢ P. It follows from (I2)
that y € A, that is, X = A, which contradicts the assumption that A is proper.
Hence P is a maximal ideal of X. O



Prime and irreducible ideals in subtraction algebras 461

Proposition 3.9. If A is a maximal ideal of a subtraction algebra X, then
r—y€Aory—x€AforalzyelX.

Proof. Let x,y € A. Then z —y € A since A is an ideal. Assume that
x € Aand y € X \ A. Since x —y < z, it follows from Lemma 3.3 that
x—y € A. Similarly, ifr € X\ Aandy € A, theny—z € A. Letz,y € X\ A
and assume that y —x ¢ A. Then the set

Q={zeX|z2—(y—2x) € A}

is the least ideal of X containing A and y — = (see [2, Theorem 3.11}). Since
y—x ¢ A we have A # @, and so Q = X because A is maximal. Therefore
r—y € Q, that is, (z —y) — (y —x) € A. Using (p2), (p3), (S3), and [2,
Lemma 3.10], we get

r—y = (r-y)-0=(r—-y)—((y—2)—y)
= (z-(y—2)~y=(@-y) - (y—) €A
This completes the proof. O

Corollary 3.10. If A is a prime ideal of a subtraction algebra X, then
r—y€Aory—x €A foralzyelX.

Now we consider the converse of Corollary 3.10.

Theorem 3.11. Let A be an ideal of a subtraction algebra X such that
r—y€eAory—xeAforalx,ye X. Then A is a prime ideal of X.

Proof. Let A be an ideal of X such that t —y € A or y — x € A for all
x,y € X. Assume that t A\y € A. f x —y € A, thenz — (z —y) =z Ay €A
andsox € Aby (I12). Ify—z € A, theny—(y—z) =z—(x—y) =x Ay € A.
It follows from (I2) that y € A. Hence A is a prime ideal of X. O

Hence we know that the notion of prime ideals and maximal ideals in a
subtraction algebra coincide, and we restate it as a theorem.

Theorem 3.12. Let A be an ideal of a subtraction algebra X. Then the
following are equivalent.

(i) A is a prime ideal.
(ii) A is a mazimal ideal.

(iii) v —y € Aory—ax €A foralz,ye X.

Using Theorem 3.12, we can establish the extension property of prime
ideals.

Corollary 3.13. Let A and B be ideals of a subtraction algebra X such
that A C B. If A is a prime ideal of X, then so is B.
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Definition 3.14. An ideal A of a subtraction algebra X is said to be
irreducible if for any ideals C' and D of X, A = C N D implies A = C or
A=D.

Theorem 3.15. Let A be an ideal of a subtraction algebra X and let
w € X \ A. Then there exists an irreducible ideal M of X such that A C M
and w ¢ M.

Proof. Let A := {I | I is anideal of X, A C I, w ¢ I}. Note that any
chain of elements in A has an upper bound. Thus, by Zorn’s Lemma, there
exists a maximal element M in A. Then A C M and w ¢ M. Let C and D
be ideals of X such that M = C' N D. Assume that M # C and M # D. By
the maximality of M, we have w € C' and w € D, that is, w € C'N D. Hence
M # C'N D, a contradiction. Therefore M is an irreducible ideal of X. O

Theorem 3.16. Let A be an ideal of a subtraction algebra X. Assume
that for any x,y € X \ A, there exists z € X \ A such that z < x and z < y.
Then A is an irreducible ideal of X .

Proof. Suppose that A is not an irreducible ideal of X. Then there are
two ideals C' and D of X such that A=CnND, A# C,and A # D. Let
xeC\ Aand y € D\ A. Using the assumption, there exists z € X \ A such
that 2 <z and z < y. Since z € C and y € D, it follows from Lemma 3.2
that z € C N D = A, which is a contradiction. Hence A is an irreducible ideal
of X. O
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