High Degree Special Ruled Surfaces on Curves with General Moduli

E. Ballico¹

Dept. of Mathematics University of Trento 38050 Povo (TN), Italy ballico@science.unitn.it

Abstract. Fix integers $g \geq 3$ and $d \geq 6g-4$. Here we describe the irreducible components of the set of all triples (C, E, V), where C is a smooth genus g curve with general moduli, E is a rank 2 vector bundle on C with degree d and V is a linear subspace of $H^0(C, E)$ such that $\dim(V) = d + 2 - 2g$, V spans E and the morphism $\mathbb{P}(E) \to \mathbb{P}^{d-2g+1}$ induced by V is birational onto its image. For another proof (and more) see arXiv:math/0809.0373.

Mathematics Subject Classification: 14H60; 14J26; 14N05

Keywords: scroll; surface scroll; rank two vector bundle; ruled surface

1. Introduction

As in [2], Th. 1.2, for all integers d, g such that $g \geq 0$ and $d \geq 2g + 2$ let $\mathcal{H}_{d,g}$ denote the unique irreducible component of the Hilbert scheme of surface scrolls of degree d and sectional genus g in \mathbb{P}^{d-2g+1} whose general member represents a non-special linearly normal smooth scroll and which maps dominantly on the moduli space \mathcal{M}_g of genus g smooth curve (with obvious modifications when g = 1). dim $(\mathcal{H}_{d,g}) = (d - 2g + 2)^2 + 7(g - 1)$. Moreover $\mathcal{H}_{d,g}$ is the unique component of the set of non-degenerate and non-special scrolls of degree d and genus g in \mathbb{P}^{d-2g+1} ([2]). If $g \geq 2$, then a general element of $\mathcal{H}_{d,g}$ is associated to a general pair (C, E) where C is general in \mathcal{M}_g and E is a general rank 2 stable vector bundle on C with degree d (and the converse holds) [3], Th. 5.4). Let H[d, g] denote the reduction of the Hilbert scheme of all non-degenerate surface scrolls in \mathbb{P}^{d-2g+1} with degree d and with sectional genus g. If $g \geq 2$ let H'[d, g] denote the union of the irreducible components of H[d, g] which dominate \mathcal{M}_g . If we drop the non-speciality assumption (or, equivalently, by Riemann-Roch the linearly normal condition),

¹The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

E. Ballico

then other components which dominate \mathcal{M}_g exist, at least if $d \geq 2g + 11$ ([2], Example 5.12). For any smooth genus g curve let H[d, C] denote the moduli space of degree d surface scrolls $S \subset \mathbb{P}^{d-2g+1}$ such that C is the normalization of a general hyperplane section of S. There are two interesting algebraic sets which deserve to be studied:

- (a) The set $S_{d,g}$ of all triples (C, E, V), where $C \in \mathcal{M}_g$, E is a rank 2 vector bundle on C, V is a (d+2-2g)-dimensional linear subspace of $H^0(C, E)$ spanning V and such that the morphism $\mathbb{P}(E) \to \mathbb{P}^{d+1-2g}$ is birational onto its image, up to isomorphisms of triples.
- (b) The set H[d, g].

We write $\widetilde{H}'[d,g]$ for the open subset of $\mathcal{S}_{d,g}$ obtained restricting the curve C to be with general moduli. Moreover, if we fix the curve $C \in \mathcal{M}_g$, we also get the set $\widetilde{H}[d,C]$ associated to the subset of $\mathcal{S}_{d,g}$ with C as the base curve. We write $\widetilde{\mathcal{H}}_{d,g_{d,g}}$ for the subset of $\mathcal{S}_{d,g}$ corresponding to non-special vector bundles. We write $\widetilde{H}[d,C]$ for the set of non-special degree d rank 2 vector bundles over the fixed curve C. There is a surjection ϕ between each set with a $\widetilde{}$ onto the corresponding set without the $\widetilde{}$. The fiber of any of these surjections over a scroll S corresponds to the subset of $\operatorname{Aut}(\mathbb{P}^{d+1-2g})$ inducing an automorphism of S.

We believe that the algebraic sets $S_{d,g}$ deserve to be studied for their own sake. Anyway, their study is a preliminary step for the study of $\mathcal{H}_{d,g}$.

In this note we describe the irreducible components of $\widetilde{H}'[d, g]$ and of $\widetilde{H}[d, C]$ when $d \geq 6g - 6$ and C is general (see Theorem 1). This result (and much more) was also proved in [4].

For all integers g, r, d let $\rho(g, r, d) := (r+1)d - rg - r(r+1)$ denote (the Brill-Noether number).

- **Theorem 1.** Fix an integer $g \geq 2$, an integer $d \geq 6g-4$ and general $C \in \mathcal{M}_g$. Let Θ be the set of all pairs (m,α) , where $\lfloor (g+3)/3 \rfloor \leq m \leq 2g-2$, $\alpha > 0$, $m+\alpha > g$ and $\rho(g,m-g+\alpha,m) \geq 0$. For all integers r,m such that r > 0, $\lfloor (g+3)/3 \rfloor \leq m \leq g$, and $\rho(g,r,m) = 0$ let $\tau(g,r,m)$ denote the number of all g_m^r on C. Let Θ' be the set of all triples (m,α,t) , where $(m,\alpha) \in \Theta$, t=1 if $\rho(g,m-g+\alpha,m) > 0$, while t is any positive integer $\leq \tau(g,r,m)$ if $\rho(g,m-g+\alpha,m) = 0$. Set $\theta_g := \sharp(\Theta)$ and $\theta_g' := \sharp(\Theta')$.
 - (i) $\widetilde{H}'[d,g]$ has $\theta_g + 2$ irreducible components. $\widetilde{\mathcal{H}}_{d,g}$ is the only component of H'[d,g] whose general member is associated to an indecomposable vector bundle. One irreducible component of $\widetilde{H}'[d,g]$ is associated to cones, i.e. its general member is associated to a triple $(C', \mathcal{O}_{C'} \oplus L, V)$, with C' general in \mathcal{M}_g , $L \in Pic^d(C')$ and V a general (d+2-2g)-dimensional linear subspace of $H^0(C', \mathcal{O}_{C'} \oplus L)$. The general member of the irreducible component with label $(m, \alpha) \in \Theta$ is of the form $(C', L \oplus M, V)$, with C' general in \mathcal{M}_g , $L \in Pic^{(d-m)}(C')$, $M \in W_m^{m+\alpha-g}(C')$ and V a general (d+2-2g)-dimensional linear subspace of $H^0(C', L \oplus M)$. The

Scrolls 2157

irreducible components of $\widetilde{H}'[d,g]$ whose general member has smooth image in \mathbb{P}^{d+1-2g} are $\widetilde{\mathcal{H}}_{d,g}$ and the ones associated to a pair (m,α) with $m-g+\alpha\geq 3$.

(ii) H[d, C] has $\theta'_g + 2$ irreducible components whose description is as in part (i) taking C' := C and Θ' instead of Θ .

We work over an algebraically closed field \mathbb{K} . The Brill-Noether theory of special divisors on a curve with general moduli is true in arbitrary characteristic ([6]). For part (i) of Theorem 1 we assume $\operatorname{char}(\mathbb{K}) = 0$, because we quote a special case of [5]. B. Osserman exteded Eisenbud-Harris limit linear series to the positive characteristic case ([7]), allowing the interested reader to extend that part of [5] to the case $\operatorname{char}(\mathbb{K}) > 2g - 2$.

We thank the anonimous referee of a previous version and the authors of [4] for several very useful observations.

2. The proof

Fix an integer $g \geq 2$. A general member of $\mathcal{H}_{d,g}$ is associated to a pair (C, E)with C general in \mathcal{M}_q and E a general degree d rank 2 stable vector bundle on C ([1], §2, [3], Th. 5.4). In particular the general $S \in \mathcal{H}_{d,q}$ is linearly normal. Let E be a rank two vector bundle on the smooth genus g curve X. Set $s(E) := \deg(E) - 2\deg(L)$, where L is a maximal degree line subsheaf of E. A classical theorem of C. Segre and M. Nagata says that $s(E) \leq g$ for all E. Take any maximal degree line subsheaf L of E. The maximality of the integer $\deg(L)$ gives that L is saturated in E, i.e. $E/L \in \operatorname{Pic}(X)$. Since $\deg(Hom(E/L,L)) = -s(E), E \cong E/L \oplus L \text{ if } s(E) < 2-2g.$ It is easy to check that any integer $2-2q \le s(E) \le q$ is realized by some indecomposable rank two vector bundle on X. The definition of stability (resp. semistability) gives that E is stable (resp. semistable, resp. properly semistable) if and only if s(E) > 0 (resp. s(E) > 0, resp. s(E) = 0). Since E is an extension of E/Lby L and $s(E) = \deg(E/L) - \deg(E)$, then $s(E) \equiv \deg(E) \pmod{2}$. Fix any irreducible component Γ of H[d,g] or of H[d,g] or of H[d,C] or of H[d,C] and take a general $S \in \Gamma$, say associated to the pair (C, E). Set $s(\Gamma) := s(E)$. A semicontinuity theorem for the integer s(E) gives that $s(\Gamma)$ is well-defined. We have $s(E) \leq g$ and $s(E) \equiv d \pmod{2}$. We have $s(\mathcal{H}_{d,q}) = g$ if $d \equiv g \pmod{2}$ and $s(\mathcal{H}_{d,q}) = g - 1$ if $d \equiv g - 1 \pmod{2}$.

Remark 1. Let C be a smooth genus g curve and E a rank 2 vector bundle on C. Set $d := \deg(E)$ and s := s(E). Notice that $d \equiv s \pmod{2}$. The integer s is often called the degree of stability of E. Let L be a maximal degree line subbundle of E. Hence $E/L \in \operatorname{Pic}(C)$, $\deg(L) = (d-s)/2$, $\deg(E/L) = (d+s)/2$ and E is an extension of E/L by E. Thus $e^1(C,E) = 0$ if $e^1(d-|s|)/2 \ge 2g-1$, i.e. if $e^1(d-|s|)/2 \ge$

E. Ballico

to assume $\deg(F) \geq 1$. Thus if $g \geq 2$, $d \geq 6g - 4$, $C \in \mathcal{M}_g$ and Γ is any component of H[d, C], then either Γ is in the closure of the fiber over C of the map $\mathcal{H}_{d,g} \to \mathcal{M}_g$ or its general member is associated to a decomposable vector bundle. A similar statement follows for the irreducible components of H[d, g], $\widetilde{H}[d, C]$ and $\widetilde{H}[d, g]$.

Remark 2. Fix an irreducible component Γ of $\widetilde{H}[d,g]$ or of H[d,g] whose general element S is associated to a triple (C,E,V) with $E\cong L\oplus M, V\subseteq H^0(C,E), L,M\in \operatorname{Pic}(C), h^1(C,L)=0$ and $h^1(C,M)>0$. Set $m:=\deg(M)$ and $r:=h^0(C,M)-1$. The generality of S implies that L is a general element of $\operatorname{Pic}^{d-m}(C)$. The semicontinuity theorem for the degree of stability shows that $s(E')\leq 2m-d$ for all pairs (C',E') associated to some element of Γ . If $M\cong \mathcal{O}_C$, then S is a cone. From now on we assume that S is not a cone. Hence $m\geq \gcd(C)$. Now assume that S has general moduli. Hence $M \geq \lfloor (g+3)/2 \rfloor$ and $\rho(g,r,m)\geq 0$. If $\rho(g,r,m)>0$, the irreducibility of $G^r_d(C)$ and the fact that we may take as S any general element of S pice S gives that S contains all S with S with S general in S pice S pice S pice S pice S of the fiber of the rational map from S into S pice on the even the fiber S at S of the fiber of the rational map from S into S pice on tains all scrolls associated to vector bundles S with S with S pice S pice S pice S with S pice S pic

Remark 3. Fix integers g, m, α, d , such that $g \geq 2$, $\alpha > 0$, $m + \alpha - g \geq 1$, $d - m \geq 2g$, and $\rho(g, m + \alpha - g, m) \geq 0$. Fix a general genus g curve C. Let A (resp. B) be the set of all decomposable vector bundles $E = L \oplus M$ with $\deg(L) = d - m$, $\deg(M) = m$, M spanned and $h^1(C, M) = \alpha$ (resp. $\deg(L) = d - m - 1$, $\deg(M) = m + 1$, M spanned and $h^1(C, M) = \alpha - 1$).

Since C is general, Brill-Noether theory gives that the set A' (resp. B') of all line bundles M appearing in the definition of A (resp. B) is non-empty, that it has pure dimension $\rho(g, m + \alpha - g, m)$ (resp. $\rho(g, m + \alpha - g, m + 1) =$ $\rho(g, m+\alpha-g, m)+m+\alpha-g$) and that it is irreducible if $\rho(g, m+\alpha-g, m)>0$ (resp. $\rho(g, m+\alpha-g, m+1) > 0$). Notice that $h^0(C, L \oplus M) = d+2-2g+\alpha$. Let $G(d+2-2g,d+2-2g+\alpha)$ denote the Grassmannian of all (d+2-2g)dimensional linear subspaces of $\mathbb{K}^{\oplus (d+2-2g+\alpha)}$. $G(d+2-2q,d+2-2q+\alpha)$ is irreducible and dim $(G(d+2-2g,d+2-2g+\alpha)) = \alpha(d+2-2g)$. Notice that $\dim(G(d+2-2g,d+2-2g+\alpha-1)) = (\alpha-1)(d+2-2g)$. Let A''(resp. B'') be the set of all pairs (E, V) with $E \in A$ (resp. $E \in B$) and Va (d+2-2g)-dimensional linear subspace of $H^0(C,E)$. Hence $\dim(A'')=$ $\dim(B'') + d + 2 - 2g - (m + \alpha - g) > \dim(B'')$. Hence A'' is not in the closure of B" and the same is true for the set of all scrolls in H[d, g] coming from A" and B''. The same is true for all curves C with general moduli, i.e. for the subsets A_1 and B_1 of $\widetilde{H}[d,g]$ obtained from A'' and B'' varying C among a non-empty open subset of \mathcal{M}_g . Since s(E) = 2m - d < 2m - d + 2 = s(F) for all $(E, F) \in A \oplus B$, B_1 is disjoint from the closure of A_1 in H[d, g].

Scrolls 2159

Proof of Theorem 1. We first consider part (ii). For all $(m, \alpha, x) \in \Theta'$ let $\Gamma_{m,\alpha,x}$ denote the irreducible algebraic subset of H[d,C] parametrized by the pairs $(L \oplus M, V)$ with $L \oplus M$ labelled by (m, α, x) and V a general (d + 1)(2-2q)-dimensional linear subspace of $H^0(C, L \oplus M)$. Let Γ be an irreducible component of $\widetilde{H}[d,C]$ different from the fiber over C of the map $\widetilde{\mathcal{H}}_{d,g} \to \mathcal{M}_g$. Let (E,V) be a general element of Γ . Since $d \geq 6g-4$, $E \cong L \oplus M$, with, say $\deg(M) < \deg(L)$. Set $m := \deg(M) < \deg(L)$. The induced scroll S is a cone if and only if $M \cong \mathcal{O}_C$, i.e. if and only if m = 0. Assume m > 0. Since M is spanned, Γ is the closure of a unique $\Gamma_{m,\alpha,x}$ with $\alpha := h^1(C,M)$ (Remark 2). To prove part (ii), except the smoothness assertion, it is sufficient to prove that Γ contains no $\Gamma_{m',\alpha',x'}$ with $(m',\alpha,x') \neq (m,\alpha,x)$. Assume that this is not the case, and take $(m', \alpha, x') \neq (m, \alpha, x)$ such that $\Gamma_{\alpha', m', x'} \subset \Gamma$. Look at Remark 3. If $\rho(g, m_1 + \alpha_1 - g, m_1) = 0$, then all $\Gamma_{m_1, \alpha_1, t}, 1 \le t \le \tau(g, m_1 + \alpha_1 - g, m_1)$ (g, m_1) , have the same dimension. Hence $(m', \alpha') \neq (m, \alpha)$. The semicontinuity theorem for cohomology gives $\alpha' \geq \alpha$. The semicontinuity theorem for the stability degree s(E) gives $m' \leq m$. We have $\dim(\Gamma_{m,\alpha,t}) - \dim(\Gamma_{m',\alpha',t'}) =$ $\rho(g, m + \alpha - g, \alpha) + \alpha(d + 2 - 2g) - \rho(g, m' + \alpha' - g, \alpha) + \alpha'(d + 2 - 2g).$ Since $\dim(\Gamma_{m,\alpha,t}) > \dim(\Gamma_{m',\alpha',t'})$ and $m' \leq m$, we easily get $\alpha' > \alpha$. Since d+2-2g>g, while $|\rho(g,m+\alpha-g,\alpha)|-\rho(g,m'+\alpha'-g,\alpha)|\leq g$, we get $\dim(\Gamma_{m,\alpha,t}) < \dim(\Gamma_{m',\alpha',t'})$, contradiction. Now we check that last assertion of (i) and (ii). L is very ample. Since M is general in $G_m^{m+\alpha-g}(C)$, M is very ample if and only if $m+\alpha-g\geq 3$. Since $d+2-2g\geq 5$, we get that if $m+\alpha-g\geq 3$, then $S \cong \mathbb{P}(L \oplus M)$ and hence S is smooth. Now assume $m + \alpha - q < 2$ and take a general $S \in \Gamma_{m,\alpha,t}$, say represented by a pair $(L \oplus M, V)$. M is spanned, but not very ample. The generality of S implies the generality of M in $W_m^{m+\alpha-g}$ when $\rho(g, g + \alpha - m, m) > 0$. Hence there are $P, Q \in C$, such that $P \neq Q$ and $h^0(C, M(-P-Q)) = h^0(C, M) - 1$. Hence $h^0(C, (L \oplus M)(-P-Q)) =$ $h^0(C, L \oplus M) - 3$. Let $S_1 \subset \mathbb{P}^{d+1-g+\alpha}$ denote the image of $\mathbb{P}(L \oplus M)$ obtained using $H^0(C, L \oplus M)$. Since $h^0(C, (L \oplus M)(-P-Q)) = h^0(C, L \oplus M) - 3$, the fibers D_P and D_Q of the ruling of $\mathbb{P}(L \oplus M)$ over P and over Q are coplanar. Hence $D_P \cap D_Q \neq \emptyset$. Hence S_1 is not smooth. Hence a general projection of S_1 in \mathbb{P}^{d+1-2g} is not smooth. Hence a general element of $\Gamma_{m,\alpha,t}$ is not smooth, concluding the proof of part (ii). Part (i) follows from part (ii), the fact that $G_y^x(C')$ and $W_y^x(C')$ are irreducible and non-empty for all general C' and all x,y such that $\rho(g,x,y)>0$ and the irreducibility statement for W_y^x and G_y^x over a dense open subset of \mathcal{M}_q proved in [5] in the case $\rho(g, x, y) = 0$.

References

- [1] E. Arrondo, M. Pedreira and I. Sols, On regular and stable ruled urfaces in \mathbb{P}^3 , Algebraic Curves and Projective Geometry, Proceedings, Trento 1988, Lect. Notes in Math. 1389, Springer, Berlin, 1989.
- [2] A. Calabri, C. Ciliberto, F. Flamini and R. Miranda, Degenerations of scrolls to unions of planes, Rend. Lincei Mat. Appl. (IX) 17 (2006), no. 2, 95–123.

E. Ballico

- [3] A. Calabri, C. Ciliberto, F. Flamini and R. Miranda, Non-special scrolls with general moduli, Rend. Circ. Mat. Palermo (2) 57 (2008), no. 1, 1–31.
- [4] A. Calabri, C. Ciliberto, F. Flamini and R. Miranda, Special scrolls whose base curve has general moduli, arXiv:math/0809.0373.
- [5] D. Eisenbud and J. Harris, Irreducibility and monodromy of some families of linear series, Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 1, 65–87.
- [6] D. Gieseker, Stable curves and special divisors: Petri's conjecture, Invent. Math. 66 (1982), no. 2, 251–275.
- [7] B. Osserman, A limit linear series moduli scheme, Ann. Inst. Fourier (Grenoble) 56 (2006), no. 4, 1165–1205.

Received: September, 2008