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Abstract

We consider the class Gm of 3-colorable graphs containing neither
claw nor hole of length more than m, where m is an integer ≥ 5. We give
a complete description by a few basic graphs of the blocks containing a
5-hole in graphs of G5.
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1 Introduction

The graphs considered in this paper are undirected, finite and simple. Let
G = (V, E) be a graph, where V is the vertex-set and E is the edge-set. For
X ⊆ V , the subgraph of G induced by X is the subgraph with vertex-set X
and edge-set all edges of G with both ends in X. The graph obtained from
G by deleting X is denoted by G\X . In the graph G, for every subset X of
vertices, the neighbourhood N (X) of X is the subset of vertices of G\X that
have at least one neighbour in X. An edge x1x2 is called independent from an
other edge x′

1x
′
2 if xi �= x′

j and xi is no adjacent to x′
j for every i = 1, 2 and

every j = 1, 2. A path is a subgraph of G described by a sequence x1x2...xk of

1The corresponding author.
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distinct vertices of G and xixi+1 ∈ E for every i, 1 ≤ i ≤ k−1, vertices x1 and
xk will be called the endpoints of the path. A cycle of G is a path x1x2...xk

with xk = x1; the length of a path or a cycle is the number of its vertices. A
cycle with length three is a triangle. A chord of a path or a cycle x1x2...xk is
an edge xixj with j �= i± 1. A hole in G is a chordless cycle with at least five
vertices. We will frequently say k−hole instead of ”hole of length k”. Two
vertices x and y in a chordless path (resp. hole) are consecutive if xy is an
edge in the path (resp. the hole). A clique X in G is a subgraph of G such
that every two vertices of X are adjacent; a clique with n vertices is denoted
by Kn. A claw is a graph with four vertices a, b, c and d and three edges ab, ac
and ad. A vertex is called simplicial if its neighbourhood is a clique.

A graph is said to be F -free if it does not contain an induced subgraph iso-
morphic to a given graph F .

The line-graph of G is the graph whose vertices are the edges of G and whose
edges are the pairs of incident edges of G. A block in G is a subgraph of G
that is 2-connected and is maximal with that property. It is well-known that
the incidence graph of blocks and cut-vertices of a graph is a tree.

A k−coloring of the vertices of G is a mapping c : V → {1, 2, . . . , k} for which
every edge xy of G has c (x) �= c (y). The graph G is called k−colorable if it
admits a k−coloring.

The treatment of the coloration problem by list which is a generalization of
the classic coloration (see Häggkvist and Chetwynd [4]), of vertices or edges of
a graph, would be less difficult if its structure is known. The class of claw-free
graphs is natural to study in particular because it contains all line-graphs,
studied by several authors (see Maffray and Reed [5]). Chvátal and Sbihi
[3] discovered a decomposition of claw-free and 3-colorable graphs which are
perfect; Gravier and Maffray [2] show that they are 3-list-colorable. We are
interested in claw-free and 3-colorable graphs which are not necessarily perfect.
It is always interesting to characterize this class of graphs; a complete descrip-
tion of graphs contributes in particular to the treatment of one of problems
known to be difficult as the vertices list coloring. The structure of blocks of
a graph can be useful to determine the structure of the associated incidence
graph which will alow its coloration by list.

Let m ≥ 5 be an integer and consider the class of graphs Gm: G ∈ Gm if and
only if G is claw-free, 3-colorable and contains no hole of length more than m.

In section 2, we give some general properties of claw-free graphs which are
3-colorable; section 3 describes the blocks of a given graph of G5 by a few basic
graphs.
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2 General properties

Let H1 be a subgraph of a graph G; the neighbourhood of H1 is a nonempty
subgraph H2 of G and disjoint from H1 such that every vertex of H2 has at least
one neighbour in H1; the graph G′ = H2 � H1 means that G′ is the subgraph
of G generated by the union of vertex-set of H1 and of its neighbourhood H2.

For a graph G = (V, E) of Gm we will give some properties; the proofs being
immediate, will be omitted. For every vertex u of G, d (u) is the degree of u
in G.

(p1) For every vertex v of G, we have d (v) ≤ 4. Consequently, Δ (G) ≤ 4
(the maximum degree in G).

(p2) Let C be a hole in G.

(i) Every vertex v of G\C which is adjacent to a vertex of C is adjacent
to at least two consecutive vertices of C; in particular, when |C| =
5, the set of vertices N(v) ∩ C induces a path.

(ii) There is no distinct vertices of G\C with common neighbours on
C.

(iii) For every distinct vertices v and v′ of G\C, such that N(v)∩C ⊂
N(v′)∩C, the two respective paths induced by N(v) and N(v′), on
C, have no common endpoints.

(p3) If G = H � C and C is a hole, then |H | ≤ |C|, and consequently |G| ≤
2 |C|.

For any integer n ≥ 4, a stripe T is a graph in which the vertex-set is a
disjoint-union of two sets {x1, x2, . . . , xn} and {y1, y2, . . . , yn−1} and whose
edges are xixi+1, yiyi+1, xiyi, yixi+1, for i = 1, 2, . . . , n − 2 and xn−1xn,
xn−1yn−1, yn−1xn; such a stripe will be denoted by T = x1y1x2y2 . . . xn−1yn−1xn.
Because a stripe T contains neither a claw nor a hole and its chromatic number
is three, T ∈ Gm.

The two following results due to Abbas and Saoula [1] summarize the neigh-
bourhood structure of holes in graphs of Gm.

Lemma 2.1 [1] Let G be a graph of Gm. Assume that P is a chordless path
of length l and C is a k−hole. If G = P � C with 3 ≤ l ≤ k − 2, then C
contains a chordless path P ′ with l + 1 vertices such that the subgraph of G
induced by P ∪ P ′ is a stripe.
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Theorem 2.2 [1] Let G be a graph of Gm and C be a k−hole with G = H � C.
Let B be a connected component of H. We have:

(1) If k ≡ 1 or 2 mod 3, then B is a triangle or a chordless path with length
at most k − 1.

(2) If k ≡ 0 mod 3, then B is either a triangle, or a k−hole, or a chordless
path with length at most k.

3 The class G5

Throughout this section G is a graph of G5 with G = H � C, where C =
v1v2 . . . v5v1 is a 5−hole and the vertex-set of H is {w1, . . . , wl}. From property
(p3) and Theorem 2.2, l ≤ 5 and λ (H) ≤ 4, where λ (H) means the length of
a largest chordless path in H .

3.1 Preliminary properties

The particular graphs F1 and F2 shown in Figure 1 will be denoted by F1 =
w1w2 − v1v2v3v4 and F2 = w′

1w
′
2 − v′

1v
′
2v

′
3. The edge w1w2 in F1 (resp. w′

1w
′
2 in

F2) will be called superedge of F1 (resp. F2).

v1 v2 v3
v4

1F

1w 2w

1v’ v’2 v’3

2F

w’1 w’2

Figure 1: Particular graphs

Remark 3.1 Let ww′ be an edge of H.

1. ww′ is a superedge of F1 or F2 (because |C| = 5).

2. If ww′ is a superedge of F1, each of the two vertices w and w′ has exactly
two consecutive neighbours on C (because otherwise, G would not be
3−colorable).

3. If ww′ is a superedge of F2, only one vertex w or w′ has three consecutive
neighbours on C (because otherwise, G would not be 3−colorable or
would contain a 6−hole).



Blocks in claw-free 3-colorable graphs 1817

Lemma 3.2 For G = H � C (G ∈ G5), we have:

(1) λ (H) ≤ 2.

(2) H contains at most one edge.

Proof. (1) We only need to show that H contains no chordless path with
length three. Suppose that the conclusion is false and let P = w1w2w3 be
such a path. By Lemma 2.1, there is a path P ′, contained in C, with four
vertices such that P ∪ P ′ induces a stripe T in G; without loss of generality,
we can consider T = v1w1v2w2v3w3v4. Since G is 3-colorable, w1v5 or w3v5 is
not an edge of G; thus v1w1w2v3v4v5v1 or v1v2w2w3v4v5v1 is a 6−hole in G, a
contradiction. Hence λ (H) ≤ 2.

(2) Suppose that H contains two edges e1 = w1w2 and e2 = w3w4.
By (1), e1 and e2 are either independent or belong to a triangle. By 1. of
Remark 3.1, each of the edges e1 and e2 is a superedge of Fi, i = 1 or 2,
(ej ∈ Fi, j = 1 or 2).

Case (a): e1 and e2 are independent:

Subcase a.1: e1 ∈ F1 and e2 ∈ F ′
1 (where F ′

1 is an other copy of F1):
assume that F1 = w1w2−v1v2v3v4 and F ′

1 = w3w4−v′
1v

′
2v

′
3v

′
4 ({v′

1, v
′
2, v

′
3, v

′
4} ⊂

C). Since w3 and w4 play the same role in F ′
1, we only consider w3. The

vertex w3 may not have the same neighbours, on C, as w1 or w2 (2. of Remark
3.1 and (ii) of (p2)); so N (w3) ∩ C is either {v2, v3}, or {v4, v5}, or {v1, v5};
since the length of C is five, v2 and v3 are neighbours of either w3 or w4, say
N (w3) ∩ C = {v2, v3}; consequently N (w4) ∩ C is {v4, v5} or {v1, v5}, hence
v1w1w2v3w3w4v5v1 or v2w1w2v4v5w4w3v2 is a 7−hole in G, a contradiction.

Subcase a.2: e1 ∈ F1 and e2 ∈ F2: Let F1 as in a.1 and F2 = w3w4−v′
1v

′
2v

′
3

({v′
1, v

′
2, v

′
3} ⊂ C). Since the path v′

1v
′
2v

′
3 is without chord and Δ (G) ≤ 4, we

have v′
2 = v5; by symmetry we can suppose that w3 (resp. w4) is adjacent to

v4 (resp. v1); as w1v3 and w2v2 are not edges of G and Δ (G) ≤ 4, neither w3

nor w4 is adjacent to v2 or v3, so the cycle v1v2v3v4w3w4v1 is a 6−hole in G, a
contradiction.

Subcase a.3: e1 ∈ F2 and e2 ∈ F ′
2: We consider F2 = w1w2 − v1v2v3 and

F ′
2 = w3w4−v′

1v
′
2v

′
3 ({v′

1, v
′
2, v

′
3} ⊂ C), where F ′

2 is an other copy of F2. Since v2

(resp.v′
2) is of degree four in F2 (resp. F ′

2) and |C| = 5, we have v′
2 ∈ {v4, v5};

by 3. of Remark 3.1, we can suppose that w2v4 is an edge of G and w1v5 is not
an edge of G; in this case, v′

2 = v5; consequently, v′
1 and v′

3 are in {v1, v4}, say
v′
1 = v4 and v′

3 = v1; so v1w1w2v4w3w4v1 is a 6−hole in G, a contradiction.

Case (b): e1 and e2 are edges of a triangle T ′ = w1w2w3w1.
As every vertex w of T ′ is of degree two in T ′, w has precisely two consec-

utive neighbours on C. By 1. of Remark 3.1, there are two subcases:
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Subcase b.1. e1 ∈ F1 with F1 = w1w2 − v1v2v3v4. Since G is K4-free,
N (w3)∩C is either {v2, v3}, {v1, v5} or {v4, v5} (the last two possibilities pro-
duce the same situation); each of the first two possibilities gives a 6−hole in G:
induced by the vertices of C∪T ′\ {v2, w2} or C ∪T ′\ {v1, w2}, a contradiction.

Subcase b.2. e1 ∈ F2 with F2 = w1w2−v1v2v3. As G is K4-free, N (w3)∩C
is either {v3, v4}, {v4, v5} or {v1, v5} (the first and the last cases are identical),
the first two possibilities produce a 6−hole in G: induced by C ∪ T ′\ {v3, w1}
or C ∪ T ′\ {v2, w3}, a contradiction. �

3.2 Basic graphs of G5

Let Bi, for i = 1, . . . , 5, be the basic graphs depicted in Figure 2; it is easy to
verify that these graphs are in G5.

B2

v1 v2 v3 v4 v5

B1 B3

w2w1

Figure 2: The basic graphs

B5

w1 w2

B4

Lemma 3.3 Let G = H � C (G ∈ G5). Assume that H contains no edge. If
the degree (in G) of every vertex of H is at least three, then G is isomorphic
to one of the basic graphs Bi, i = 0, 1, 2 or 3. (B0 is a graph isomorphic to a
5−hole).

Proof. If H contains no vertices of degree three or four, then we have H = φ
and G = C = B0. Assume now that H �= φ. Let w be a vertex of H with
d = d (w) (degree in G); since the neighbours of w on C are consecutive, we
put N (w) = {vi : 1 ≤ i ≤ d} (3 ≤ d ≤ 4). When H\ {w} = φ and d = 3 or 4,
the graph G is isomorphic to B1 or to B2.

Case 1, d = 4: Suppose that there is a vertex u ∈ H\ {w}; as G is claw-free,
N (u) �= N (w). If d (u) = 4, we have N (u) = {vj , vj+1, vj+2, vj+3} for some
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j, 2 ≤ j ≤ 5 (the subscripts are counted modulo 5); for every 3-coloration of
vertices of C ∪{u, w}, starting by coloring the vertices of the triangle v1v2wv1,
vertices u and v5 receive the same color, a contradiction. If d (u) = 3, using
the same arguments, a contradiction also arises. Consequently, |H| = 1; thus
G is isomorphic to B2.

Case 2, d = 3: Let u ∈ H\ {w}. It is clear that d (u) �= 4, since otherwise, we
return to the previous case and we would have u = w, which is not possible.
So d (u) = 3 and thus N (u) = {vj , vj+1, vj+2} for some j, 2 ≤ j ≤ 5. The case
where j = 2 (resp. j = 3) is the same as the case when j = 5 (resp. j = 4).
When j = 3, for any 3-coloration of vertices of C ∪ {u, w}, the color-set of
{w, v2} and {u, v4} is the same; hence v1 or v5 can not be colored; So this
case is excluded; for j = 2, the set C ∪ {u, w} induces a subgraph isomorphic
to B3 (observe that H has no more than two vertices of degree three because
otherwise, G would not be 3-colorable). �

Lemma 3.4 Let G = H � C (G ∈ G5). Suppose that H contains an edge. If
the degree, in G, of every vertex of H is at least three, then G is isomorphic
to B3, B4 or to B5.

Proof. Let e = w1w2 be the unique edge of H (2. of Lemma 3.2); e is a
superedge of F1 or of F2.

Case 1. e ∈ F1 with F1 = w1w2 − v1v2v3v4. When H\ {w1, w2} contains no
vertex of degree three or four, G is isomorphic to B4. Let v be a vertex of
H\ {w1, w2}. Since 3 ≤ d = d (v) ≤ 4 (degree in G), we distinguish between
two subcases.

Subcase 1.1, d = 4: As |C| = 5, the set N (v) is either {v2, v3, v4, v5}
or {v1, v2, v3, v5} because otherwise, at least one of the set {v1, w1, v, v5},
{v2, v3, v, w2} and {v2, v3, v, w1} induces a claw in G; the two possibilities pro-
duce the same situation, the first means that v1w1w2v3vv5v1 is a 6−hole in G.
So this case is impossible.

Subcase 1.2, d = 3: The set N (v) ∩ C is {vj, vj+1, vj+2} for some j, 1 ≤
j ≤ 5 (the subscripts are counted modulo 5). j = 4 because otherwise either
{v1, w1, v, v5}, or {v4, w2, v, v5}, or {v3, w2, v2, v}, or {v2, w1, v, v3} induces a
claw in G which is not possible. So N (v) ∩ C = {v4, v5, v1}. The subgraph
H\ {w1, w2, v} of G does not contain other vertices of degree three because
otherwise the neighbours of such vertices on C will be non-consecutive. Hence
G is isomorphic to B5.

Case 2, e ∈ F2, F2 = w1w2 − v1v2v3: Only one vertex, among w1 and w2,
must have three neighbours on C because otherwise either G would be not
3-colorable or it would contain a 6−hole; we can assume that the edge w2v4

exists. When H\ {w1, w2} contains no vertex of degree three or four, G is
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isomorphic to B3. Suppose that there is a vertex v in H\ {w1, w2}. v must
be adjacent to at least three consecutive vertices among {v1, v3, v4, v5}. v is
not adjacent to v1 because otherwise C ∪ {v, w1, w2} induces a subgraph of
G which is not 3-colorable; thus v is adjacent to v3, v4 and v5; consequently
v1w1w2v3vv5v1 is a 6−hole in G, a contradiction. �

3.3 Extension of a graph

Let G′ be a graph. Let v and v′ be any two adjacent vertices such that v (resp.
v′) is simplicial in G′\ {v′} (resp. G′\ {v}). The graph, obtained from G′ by
adding a new vertex u adjacent exactly to v and v′, is an extension of G′ (by
u). A graph G′′ is an extension of G′ by a set U = {u1, . . . , ul} if G′′ is the last
graph of the sequence G′

0, G
′
1, . . . , G

′
l where G′

0 = G′ and for every i, 1 ≤ i ≤ l,
the graph G′

i is an extension de G′
i−1 by ui.

Let G′′ be an extension of the graph G′. It is clear that G′ is a claw-free and
3-colorable graph if and only if G′′ is claw-free and 3-colorable graph; since
adding a vertex to G′ to obtain G′′ does not create a hole, G′ ∈ Gm if and only
if G′′ ∈ Gm for every m ≥ 5.

Let G′ ∈ Gm such that G′ = H ′ � C ′ where C ′ is a k−hole. A neighbourhood
H ′ of C ′ is maximal if for every vertex u /∈ G′ we have (H ′ ∪ {u}) � C ′ /∈ Gm,
(5 ≤ k ≤ m).

Notice that if B is a block of a graph G′ and B contains a hole C ′, then the
neighbourhood of C ′ is maximal (because B is 2-connected maximal).

As a consequence of the two previous lemmas, we have following result.

Theorem 3.5 Let G = H � C ∈ G5. If the neighbourhood H of C is maximal,
then G is an extension of one of the graphs Bi, i = 0, 1, . . . , 5.

Proof. Let D be the set of vertices of H of degree two (in G). When H\D = φ;
since neighbours of every vertex of D on C are consecutive, G is an extension
of B0. When H\D �= φ; from Lemma 3.3 and Lemma 3.4, G\D is isomorphic
to one of the graphs Bi, i = 1, . . . , 5. Let us consider an index i such that
G contains Bi and a vertex w ∈ D which has neighbours vj and vj+1 on C;
the vertex vj ( resp. vj+1) is simplicial in G\ {vj+1} (resp. G\ {vj}) because
otherwise, w would be a vertex of a claw contained in G which is impossible;
hence G is an extension of Bi. �
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Remark 3.6

Let G′ be a graph of G5. Suppose that G is a subgraph of G′ with G = H � C,
and H contains two distinct non adjacent vertices, w and w′, of degree two
in G. The vertices w and w′ are not connected by a chordless path P such
that P\ {w, w′} is contained in G′\G because otherwise, the subgraph of G′

induced by P ∪ C will contain a hole of length at least six.

3.4 The main result

Now we can formulate our main result.

Theorem 3.7 Let G′ be a graph of G5 and B be a block of G′. If B contains
a 5−hole, then B is an extension of one of the graphs Bi, i = 0, 1, . . . , 5.

Proof. Let B be a block of G′ containing the 5−hole C. Let G be the
subgraph of B induced by the vertices of C and all their neighbours (in G′),
so G = H � C (G is 2-connected). Since B is 2-connected and maximal, H
is a maximal neighbourhood of C. Using Theorem 3.5, G is one of the graphs
Gi = Hi � C, i = 0, 1, . . . , 5 where Gi is an extension of a graph Bi. For
i = 1, 2 or 3, since every vertex of Hi of degree at least three is not adjacent to
any vertex of B\Gi, we have B\Gi = φ; thus by Remark 3.6, B is isomorphic
to one of Gi, which is an extension of Bi for i = 0, 1, 2, 3.
For i = 4 or 5: Let w1 and w2 be the two endpoints of the unique edge of Hi, for
which the neighbours on C are {v1, v2} and {v3, v4} respectively (neighbours
in Gi). Since B is 2-connected maximal and claw-free, there is a vertex u of
B\Gi adjacent to the simplicial vertices w1 and w2; so G′

i = Gi ∪ {u} is an
extension of Gi by the vertex u. We claim that, in B, for every vertex w of
Hi\ {w1, w2} we have:

(1) u and w are not adjacent and

(2) u and w are not connected by a chordless path P such that P\ {u, w} is
nonempty and is contained in B\G′

i.

Let v be the vertex of B4 which has three neighbours on C. Suppose (1) does
not hold. Since the set of neighbours of w on C is either {v1, v5}, or {v4, v5},
or {v2, v3}, we have either G′

i\ {v1, w2}, or G′
i\ {v1, v5, w2}, or G′

i\ {v2, w2, v}
is a hole of length at least six, a contradiction.
Instead of the edge uw let us consider a chordless path P of endpoints u
and w such that P\ {u, w} ⊂ B\G′

i; using Remark 3.6 and with the same
arguments as in (1), the fact (2) can be established. We have B\G′

i = φ
because otherwise, there is a chordless P ′ containing a vertex u of B\G′

i and
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connecting two vertices of Hi ∪ {u} which contradicts (2). Hence B = G′
i,

therefore, B is an extension of Bi, i = 4 or 5. �
As a consequence:

Corollary 3.8 Let G′ be a graph of G5 and B be a block of G′. If B contains
one of the graphs Bi, i = 0, 1, . . . , 4 or 5, then B is an extension of Bi by at
most five vertices and every vertex of degree two in B is either a simplicial
vertex of degree two in G′ or a cut-vertex of G′.

4 Conclusion

In terms of blocks, we have described the complete structure of graphs in a
small class of claw-free graphs; such a description can contribute to the treat-
ment of the list-colouring problem known to be difficult. In the case studied
here, it becomes clear that the number of basic graphs allowing description of
blocks depend on the length of the hole which they contain, it would be inter-
esting to extend the class and determine properties which allow the description
of basic graphs in an acceptable number.
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