On t-Level R-Subgroups of Near-Rings

Kyung Ho Kim

Department of Mathematics, Chungju National University Chungju 380-702, Korea ghkim@cjnu.ac.kr

Abstract

Using t-norm T, we introduce the notion of t-level R-subgroup, and some related properties are investigated.

Mathematics Subject Classification: 06F35, 03G25, 03E72

Keywords: Near-ring, t-norm, T-fuzzy left (resp. right) R-subgroup, idempotent T-fuzzy R-subgroup, t-level subset

1 Introduction

W. Liu [5] has studied fuzzy ideals of a ring, and many researchers are engaged in extending the concepts. S. Abou-Zaid [1] introduced the notion of a fuzzy subnear-ring, and studied fuzzy left (resp. right) ideals of a near-ring, and the present author [4] discussed further properties of fuzzy R-subgroups in near-rings. S. Abou-Zaid [1] also introduced the concept of R-subgroups of a near-ring. In this paper, using t-norm T, we introduce the notion of t-level R-subgroup, and some related properties are investigated.

2 Preliminaries

In this section we include some elementary aspects that are necessary for this paper.

By a *near-ring* we mean a non-empty set R with two binary operations "+" and "·" satisfying the following axioms:

- (i) (R, +) is a group,
- (ii) (R, \cdot) is a semigroup,
- (iii) $x \cdot (y+z) = x \cdot y + x \cdot z$ for all $x, y, z \in R$.

Precisely speaking, it is a left near-ring because it satisfies the left distributive law. We will use the word "near-ring" in stead of "left near-ring". We denote

xy instead of $x \cdot y$. Note that x0 = 0 and x(-y) = -xy but in general $0x \neq 0$ for some $x \in R$. A two sided R-subgroup of a near-ring R is a subset H of R such that

- (i) (H, +) is a subgroup of (R, +),
- (ii) $RH \subset H$,
- (iii) $HR \subset H$.

If H satisfies (i) and (ii) then it is called a *left R-subgroup* of R. If H satisfies (i) and (iii) then it is called a *right R-subgroup* of R.

We now review some fuzzy logic concepts. A fuzzy set μ in a set R is a function $\mu: R \to [0,1]$.

Let $(R, +, \cdot)$ be a near-ring. A fuzzy set μ in R is called a fuzzy right (resp. left) R-subgroup of R if

- (1) μ is a fuzzy subgroup of (R, +),
- (2) $\mu(xr) \ge \mu(x)$ (resp. $\mu(rx) \ge \mu(x)$), for all $r, x \in R$.

Definition 2.1. ([7]) By a *t-norm* T, we mean a function $T:[0,1]\times[0,1]\to[0,1]$ satisfying the following conditions:

- (T1) T(x,1) = x,
- (T2) $T(x,y) \le T(x,z)$ if $y \le z$,
- (T3) T(x,y) = T(y,x),
- (T4) T(x, T(y, z)) = T(T(x, y), z),

for all $x, y, z \in [0, 1]$.

For a t-norm T on [0, 1], denote by Δ_T the set of element $\alpha \in [0, 1]$ such that $T(\alpha, \alpha) = \alpha$, i.e., $\Delta_T := \{\alpha \in [0, 1] \mid T(\alpha, \alpha) = \alpha\}.$

Proposition 2.2. Every t-norm T has a useful property:

$$T(\alpha, \beta) \le \min(\alpha, \beta)$$

for all $\alpha, \beta \in [0, 1]$.

Throughout this paper, all proofs are going to proceed the only left cases, because the right cases are obtained from similar method. In what follows, the term "fuzzy R-subgroup" ("T-fuzzy R-subgroup") means "fuzzy left R-subgroup" ("T-fuzzy R-subgroup"), respectively.

3 t-level R-subgroups of near-rings

Definition 3.1. [4] A function $\mu: R \to [0,1]$ is called a T-fuzzy right (resp. left) R-subgroup of R with respect to a t-norm T (briefly, a T-fuzzy right (resp. left) R-subgroup of R) if

(C1) $\mu(x-y) \geq T(\mu(x), \mu(y)),$ (C2) $\mu(xr) \geq \mu(x)$ (resp. $\mu(rx) \geq \mu(x)$) for all $r, x \in R$.

It is easy to show that every fuzzy right (resp. left) R-subgroup is a T-fuzzy R-subgroup of R with $T(\alpha, \beta) = \alpha \wedge \beta$ for each $\alpha, \beta \in [0, 1]$

Definition 3.2. Let T be a t-norm. A fuzzy set A in R is said to satisfy $idempotent\ property$ if $Im(A) \subseteq \Delta_T$.

Proposition 3.3. Let T be a t-norm on [0,1]. If A is an idempotent T-fuzzy R-subgroup of R, then we have $A(0) \ge A(x)$ for all $x \in R$.

Proof. For every $x \in R$, we have

$$A(0) = A(x - x) \ge T(A(x), A(x)) = A(x).$$

This completes the proof.

Proposition 3.4. Let T be a t-norm on [0,1]. If A is an idempotent T-fuzzy R-subgroup of R, then the set

$$A^{\omega} = \{ x \in R \mid A(x) \ge A(\omega) \}$$

is an R-subgroup of a near-ring R.

Proof. Let $x, y \in A^{\omega}$. Then $A(x) \geq A(\omega)$ and $A(y) \geq A(\omega)$. Since A is an idempotent T-fuzzy R-subgroup of R, it follows that

$$A(x-y) \geq T(A(x),A(y)) \geq T(A(x),A(\omega)) \geq T(A(\omega),A(\omega)) = A(\omega).$$

Now let $r \in R, x \in A^{\omega}$. Then $A(rx) \geq A(x) \geq A(\omega)$. Thus, we have $A(x-y) \geq A(\omega)$ and $A(rx) \geq A(\omega)$, that is., $x-y \in A^{\omega}$ and $rx \in A^{\omega}$. This completes the proof.

Corollary 3.5. Let T be a t-norm. If A is an idempotent T-fuzzy R-subgroup of R, then the set

$$A_R = \{ x \in R \mid A(x) = A(0) \}$$

is an R-subgroup of a near-ring R.

Proof. From the Proposition 3.3, $A_R = \{x \in R \mid A(x) = A(0)\} = \{x \in R \mid A(x) \geq A(0)\}$, hence A_R is an R-subgroup of a near-ring R from Proposition 3.4.

Let χ_I denote the characteristic function of a non-empty subset I of a near-ring R.

Theorem 3.6. Let $I \subseteq R$. Then I is an R-subgroup of a near-ring R if and only if χ_I is a T-fuzzy R-subgroup of a near-ring R.

Proof. Let I be an R-subgroup of R. Then it is easy to show that χ_I is an T-fuzzy R-subgroup of R. In fact, let $x,y\in I$ and $r\in R$. Then $x-y\in I$ and $rx\in I$. Hence

$$\chi_I(x - y) = 1 = T(\chi_I(x), \chi_I(y)) \text{ and } \chi_I(rx) \ge \chi_I(y) = 1.$$

If $x \in I$, $y \notin I$ (or $x \notin I$ and $y \in I$), then we have $\chi_I(x) = 1$ or $\chi_I(y) = 0$. This means that

$$\chi_I(x-y) \geq T(\chi_I(x), \chi_I(y)) = 0$$
 and $\chi_I(rx) \geq \chi_I(x) = 0$.

Conversely, suppose that χ_I is a T-fuzzy R-subgroup of R. Now let $x, y \in I$. Then $\chi_I(x-y) \geq T(\chi_I(x), \chi_I(y)) = 1$, and so $\chi_I(x-y) = 1$, that is, $x-y \in I$. Let $r \in R, x \in I$. Then $\chi_I(rx) \geq \chi_I(x) = 1$, and so $rx \in I$. This proves the theorem.

Lemma 3.7. ([2]) Let T be a t-norm. Then

$$T(T(\alpha, \beta), T(\gamma, \delta)) = T(T(\alpha, \gamma), T(\beta, \delta))$$

for all $\alpha, \beta, \gamma, \delta \in [0, 1]$.

Proposition 3.8. If A and B are T-fuzzy R-subgroups of a near-ring R, then $A \wedge B : R \rightarrow [0,1]$ defined by

$$(A \wedge B)(x) = T(A(x), B(x))$$

for all $x \in R$ is a T-fuzzy R-subgroup of R.

Proof. Let x, y and $r \in R$. Then we have

$$(A \land B)(x - y) = T(A(x - y), B(x - y)) \ge T(T(A(x), A(y)), T(B(x), B(y)))$$

= $T(T(A(x), B(x)), T(A(y), B(y))) = T((A \land B)(x), (A \land B)(y))$

and

$$(A \wedge B)(rx) = T(A(rx), B(rx)) \ge T(A(x), B(x))$$

= $(A \wedge B)(x)$.

This completes the proof.

Definition 3.9. A fuzzy R-subgroup A of a near-ring R is said to be *normal* if A(0) = 1.

Theorem 3.10. Let A be a T-fuzzy R-subgroup of near-ring R and let A^* be a fuzzy set in R defined by $A^*(x) = A(x) + 1 - A(0)$ for all $x \in R$. Then A^* is a normal T-fuzzy R-subgroup of a near-ring R containing A.

Proof. For $x, y \in R$ and $r \in R$, we have

$$A^*(x - y) = A(x - y) + 1 - A(0) \ge T(A(x), A(y)) + 1 - A(0)$$

= $T(A(x) + 1 - A(0), A(y) + 1 - A(0))$
= $T(A^*(x), A^*(y))$

and

$$A^{*}(rx) = A(rx) + 1 - A(0)$$

$$\geq A(x) + 1 - A(0)$$

$$= A^{*}(x).$$

Hence A^* is a T-fuzzy R-subgroup of a near-ring R. Clearly, $A^*(0) = 1$ and $A \subset A^*$.

Definition 3.11. Let A be a fuzzy subset of a set R, T a t-norm and $r \in [0, 1]$. Then we define a t-level subset of a fuzzy subset A as

$$A_r^T = \{ x \in R \mid T(A(x), r) \ge r \}.$$

Theorem 3.12. Let R be a near-ring and A a T-fuzzy R-subgroup of R. Then t-level subset A_{α}^{T} is an R-subgroup of R where $T(A(0), \alpha) \geq \alpha$ for $\alpha \in [0, 1]$.

Proof. $A_{\alpha}^{T} = \{x \in M \mid T(A(x), \alpha) \geq \alpha\}$ is clearly nonempty. Let $x, y \in A_{\alpha}^{T}$. Then we have $T(A(x), \alpha) \geq \alpha$ and $T(A(y), \alpha) \geq \alpha$, Since A is a T-fuzzy R-subgroup of R, $A(x-y) \geq T(A(x), A(y))$ is satisfied. This means that

$$T(A(x-y),\alpha) \ge T(T(A(x),A(y)),\alpha) = T(A(x),T(A(y),\alpha)) \ge T(A(x),\alpha) \ge \alpha.$$

Hence $x-y\in A_{\alpha}^T$. Now let $r\in R$ and $x\in A_{\alpha}^T$. Then we have $T(A(x),\alpha)\geq \alpha$. Since A is a T-fuzzy R-subgroup of R, we have $A(rx)\geq A(x)$, and so $T(A(rx),\alpha)\geq T(A(x),\alpha)\geq \alpha$. This means that $rx\in A_{\alpha}^T$. Therefore A_{α}^T is an R-subgroup of R.

Theorem 3.13. Let R be a near-ring and A a fuzzy R-subgroup of R. Then t-level subset A_{α}^{T} is an R-subgroup of R where $T(A(0), \alpha) \geq \alpha$ for $\alpha \in [0, 1]$.

Proof. $A_{\alpha}^T = \{x \in R \mid T(A(x), \alpha) \geq \alpha\}$ is clearly nonempty. Let $x, y \in A_{\alpha}^T$. Then we have $T(A(x), \alpha) \geq \alpha$ and $T(A(y), \alpha) \geq \alpha$. Since A is a fuzzy R-subgroup of R, $A(x-y) \geq \min\{A(x), A(y)\}$ is satisfied. This means that $T(A(x-y), \alpha) \geq T(\min(A(x), A(y)), \alpha)$. If $\min\{A(x), A(y)\} = A(x)$ or $\min\{A(x), A(y)\} = A(y)$, in two cases, we have $T(\min\{A(x), A(y)\}, \alpha) \geq \alpha$ since $x, y \in A_{\alpha}^T$. Therefore, $T(A(x-y), \alpha) \geq \alpha$. Thus we get $x-y \in A_{\alpha}^T$. It is easily seen that, as above, $rx \in A_{\alpha}^T$. Hence A_{α}^T is an R-subgroup of R.

Theorem 3.14. Let R be a near-ring and A be a fuzzy set of R such that A_{α}^{T} is an R-subgroup of R where $T(A(x), \alpha) \geq \alpha$ for all $\alpha \in [0, 1]$. Then A is a T-fuzzy R-subgroup of R.

Proof. Let $x, y \in R$ and $T(A(x), \alpha_1) = \alpha_1$ and $T(A(y), \alpha_2) = \alpha_2$. Then $x \in A_{\alpha_1}^T$ and $y \in A_{\alpha_2}^T$. Let us assume $\alpha_1 < \alpha_2$. Then there follows that $T(A(x), \alpha_1) < T(A(y), \alpha_2)$ and $A_{\alpha_2}^T \subseteq A_{\alpha_1}^T$. So, $y \in A_{\alpha_1}^T$. Thus $x, y \in A_{\alpha_1}^T$ and since $A_{\alpha_1}^T$ is an R-subgroup of R, by hypothesis, $x - y \in A_{\alpha_1}^T$. Therefore we have

$$T(A(x - y), \alpha_1) \ge \alpha_1 = T(A(x), \alpha_1)$$

$$\ge T(A(x), T(A(y), \alpha_1))$$

$$= T(T(A(x), A(y)), \alpha_1).$$

Thus we get $T(A(x-y), \alpha_1) \geq T(T(A(x), A(y)), \alpha_1)$. As a t-norm is monotone with respect to each variable and symmetric, we have $A(x-y) \geq T(A(x), A(y))$. Now let, $r \in R$ and $T(A(x), \alpha) = \alpha$. Then $x \in A_{\alpha}^T$. Since A_{α}^T is an R-subgroup of R, we have $rx \in A_{\alpha}^T$. Therefore $T(A(rx), \alpha) \geq \alpha$, and hence $T(A(rx), \alpha) \geq T(A(x), \alpha)$. So, we have $A(rx) \geq A(x)$. Thus A is a T-fuzzy R-subgroup of R.

Definition 3.15. For each i = 1, 2, 3, ..., n, let A_i be a T-fuzzy R-subgroup in a near-ring R_i . Let T be a t-norm. Then the T-product of A_i (i = 1, 2, ..., n) is the function $A_1 \times A_2 \times A_3 \times \cdots \times A_n : R_1 \times R_2 \times R_3 \times \cdots \times R_n \to [0, 1]$ defined

$$(A_1 \times A_2 \times A_3 \times \cdots \times A_n)(x_1, x_2, x_3, \cdots, x_n)$$

= $T(A_1(x_1), A_2(x_2), A_3(x_3), \dots, A_n(x_n))$

for $x_i \in R_i \ (i = 1, 2, ..., n)$.

Theorem 3.16. ([3]) Let A and B be t-level subsets of the sets G and H, respectively, and let $\alpha \in [0,1]$. Then $A \times B$ is also t-level subset of $G \times H$.

Definition 3.17. Let R be a near-ring and A a T-fuzzy R-subgroup of R. The R-subgroup A_{α}^{T} is called t-level R-subgroup of R where $T(A(0), \alpha) \geq \alpha$ for $\alpha \in [0, 1]$.

Theorem 3.18. Let R_1 and R_2 be two near-rings, and A and B T-fuzzy R-subgroups of R_1 and R_2 , respectively. Then the t-level subset $(A \times B)^T_{\alpha}$, for $\alpha \in [0,1]$, is an R-subgroups of $R_1 \times R_2$.

Proof.
$$(A \times B)_{\alpha}^{T} = \{(x, y) \mid T((A \times B)(x, y), \alpha) \geq \alpha\}$$
. Since
$$T((A \times B)(0_{R_{1}}, 0_{R_{2}}), \alpha) = T(T(A(0_{R_{1}}), B(0_{R_{2}})), \alpha))$$

$$= T(A(0_{R_{1}}), T(B(0_{R_{2}}), \alpha))$$

$$> T(A(0_{R_{1}}), \alpha) > \alpha,$$

 $(A \times B)_{\alpha}^{T}$ is nonempty. Let $(x_1, y_1), (x_2, y_2) \in (A \times B)_{\alpha}^{T}$. Then we have $T((A \times B)(x_1, y_1), \alpha) \geq \alpha$ and $T((A \times B)(x_2, y_2), \alpha) \geq \alpha$. Since $A \times B$ is an T-fuzzy R-subgroup of $R_1 \times R_2$, we get

$$(A \times B)((x_1, y_1) - (x_2, y_2)) = (A \times B)(x_1 - x_2, y_1 - y_2) = T(A(x_1 - x_2), B(y_1 - y_2)).$$

Since A and B are T-fuzzy R-subgroups, we get

$$T((A \times B)(x_1 - x_2, y_1 - y_2), \alpha) \ge T(T(A(x_1 - x_2), B(y_1 - y_2)), \alpha)$$

= $T((A(x_1 - x_2), T(B(y_1 - y_2), \alpha))$
 $\ge T(A(x_1 - x_2), \alpha) \ge \alpha.$

Hence $(x_1, y_1) - (x_2, y_2) \in (A \times B)^T_{\alpha}$. Now let $(r_1, r_2) \in R_1 \times R_2$ and $(x_1, x_2) \in (A \times B)^T_{\alpha}$. Then we have

$$T((A \times B)(r_1, r_2)(x_1, x_2), \alpha) = T((A \times B)(r_1x_1, r_2x_2), \alpha)$$

$$\geq T(T(A(r_1x_1), B(r_2x_2)), \alpha)$$

$$= T((A(r_1x_1), T(B(r_2x_2), \alpha))$$

$$\geq T(A(x_1), T(B(x_2), \alpha))$$

$$\geq T(A(x_1), \alpha) \geq \alpha.$$

This means that $(x_1, x_2) \in (A \times B)^T_{\alpha}$. Therefore $(A \times B)^T_{\alpha}$ is an R-subgroup of $R_1 \times R_2$.

Theorem 3.19. ([3]) Let A and B be fuzzy sets of the sets G and H, respectively, T a t-norm and $\alpha \in [0,1]$. Then $A_{\alpha}^T \times B_{\alpha}^T = (A \times B)_{\alpha}^T$.

Theorem 3.20. Let $A_1, A_2, A_3, ..., A_n$ be fuzzy R-subgroups under a minimum operation in near-rings $R_1, R_2, R_3, ..., R_n$, respectively, and let $\alpha \in [0, 1]$. Then

$$(A_1 \times A_2 \times \cdots \times A_n)_{\alpha}^T = A_{1\alpha}^T \times A_{2\alpha}^T \times \cdots \times A_{n\alpha}^T.$$

Proof. Let $(a_1, a_2, a_3, ..., a_n) \in (A_1 \times A_2 \times \cdots \times A_n)_{\alpha}^T$. Then we have

$$T(\min((A_1 \times A_2 \times \cdots \times A_n)(a_1, a_2, a_3, ..., a_n), \alpha))$$

= $T(\min(A_1(a_1), A_2(a_2), ..., A_n(a_n)), \alpha).$

For all i = 1, 2, ..., n, $\min(A_1(a_1), A_2(a_2), ..., A_n(a_n)) = A_i(a_i)$. This gives us

$$T(\min(A_1(a_1), A(2(a_2), ..., A_n(a_n)), \alpha)$$

= $T(A_i(a_i), \alpha) \ge \alpha$.

Thus we have $a_i \in A_{i\alpha}^T$. That is, $(a_1, a_2, a_3, ..., a_n) \in A_{1\alpha}^T \times A_{2\alpha}^T \times \cdots \times A_{n\alpha}^T$. Similarly, $(a_1, a_2, a_3, ..., a_n) \in A_{1\alpha}^T \times A_{2\alpha}^T \times \cdots \times A_{n\alpha}^T$. Then, for all i = 1, 2, ..., n, we

have $a_i \in A_{i\alpha}^T$. That is, $T(A_i(a_i), \alpha) \ge \alpha$. Since $\min(A_1(a_1), A(2(a_2), ..., A_n(a_n)) = A_i(a_i)$ and $T(A_i(a_i), \alpha) \ge \alpha$, we have

$$T((A_1 \times A_2 \times \cdots \times A_n)(a_1, a_2, a_3, ..., a_n), \alpha)$$

= $T(\min(A_1(a_1), A(2(a_2), ..., A_n(a_n)), \alpha)$
= $T(A_i(a_i), \alpha) \ge \alpha$.

Thus we have $(a_1, a_2, a_3, ..., a_n) \in (A_1 \times A_2 \times \cdots \times A_n)_{\alpha}^T$.

References

- [1] Abou-Zaid, On fuzzy subnear-rings and ideals, Fuzzy Sets and Sys 44 (1991), 139-146.
- [2] M. T. Abu Osman, On some product of fuzzy subgroups, Fuzzy Sets and Systems 24 (1987), 79-86.
- [3] H. Aktas and N. Cagman, Generalized product of subgroups and t-level subgroups, Mathematical Communications 11 (2006), 121-128.
- [4] K. H. Kim, *T-fuzzy R-subgroups of near-rings*, PanAmerican Mathematical Journal **12** (2002), 21-29.
- [5] W. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems 8 (1982), 133-139.
- [6] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific Journal of Mathematics. 10 (No. 1) (1963), 313-334.
- [7] Y. Yu, J. N. Mordeson and S. C. Cheng, *Elements of L-algebra*, Lecture Notes in Fuzzy Math. and Computer Sciences, Creighton Univ., Omaha, Nebraska 68178, USA (1994).
- [8] L. A. Zadeh, Fuzzy sets, Inform. and Control, 8 (1965), 338-353.

Received: April 21, 2008